/Sources/Neuro/Learning/IUnsupervisedLearning.cs

https://github.com/apobekiaris/aforge · C# · 46 lines · 9 code · 3 blank · 34 comment · 0 complexity · 51ff2547cee5ad276080fe35bf8bbae1 MD5 · raw file

  1. // AForge Neural Net Library
  2. // AForge.NET framework
  3. // http://www.aforgenet.com/framework/
  4. //
  5. // Copyright © AForge.NET, 2007-2012
  6. // contacts@aforgenet.com
  7. //
  8. namespace AForge.Neuro.Learning
  9. {
  10. using System;
  11. /// <summary>
  12. /// Unsupervised learning interface.
  13. /// </summary>
  14. ///
  15. /// <remarks><para>The interface describes methods, which should be implemented
  16. /// by all unsupervised learning algorithms. Unsupervised learning is such
  17. /// type of learning algorithms, where system's desired output is not known on
  18. /// the learning stage. Given sample input values, it is expected, that
  19. /// system will organize itself in the way to find similarities betweed provided
  20. /// samples.</para></remarks>
  21. ///
  22. public interface IUnsupervisedLearning
  23. {
  24. /// <summary>
  25. /// Runs learning iteration.
  26. /// </summary>
  27. ///
  28. /// <param name="input">Input vector.</param>
  29. ///
  30. /// <returns>Returns learning error.</returns>
  31. ///
  32. double Run( double[] input );
  33. /// <summary>
  34. /// Runs learning epoch.
  35. /// </summary>
  36. ///
  37. /// <param name="input">Array of input vectors.</param>
  38. ///
  39. /// <returns>Returns sum of learning errors.</returns>
  40. ///
  41. double RunEpoch( double[][] input );
  42. }
  43. }