/Agda-2.3.0.1/src/full/Agda/TypeChecking/Free.hs

# · Haskell · 213 lines · 141 code · 41 blank · 31 comment · 3 complexity · 7d2a0d171e71ab56021318b1b427a40a MD5 · raw file

  1. {-# LANGUAGE CPP #-}
  2. -- | Computing the free variables of a term.
  3. module Agda.TypeChecking.Free
  4. ( FreeVars(..)
  5. , Free
  6. , freeVars
  7. , allVars
  8. , relevantVars
  9. , rigidVars
  10. , freeIn, isBinderUsed
  11. , freeInIgnoringSorts
  12. , relevantIn
  13. , Occurrence(..)
  14. , occurrence
  15. ) where
  16. import qualified Agda.Utils.VarSet as Set
  17. import Agda.Utils.VarSet (VarSet)
  18. import Agda.Syntax.Common
  19. import Agda.Syntax.Internal
  20. #include "../undefined.h"
  21. import Agda.Utils.Impossible
  22. -- | The distinction between rigid and strongly rigid occurrences comes from:
  23. -- Jason C. Reed, PhD thesis, 2009, page 96 (see also his LFMTP 2009 paper)
  24. --
  25. -- The main idea is that x = t(x) is unsolvable if x occurs strongly rigidly
  26. -- in t. It might have a solution if the occurrence is not strongly rigid, e.g.
  27. --
  28. -- x = \f -> suc (f (x (\ y -> k))) has x = \f -> suc (f (suc k))
  29. --
  30. -- [Jason C. Reed, PhD thesis, page 106]
  31. -- | Free variables of a term, (disjointly) partitioned into strongly and
  32. -- and weakly rigid variables, flexible variables and irrelevant variables.
  33. data FreeVars = FV
  34. { stronglyRigidVars :: VarSet -- ^ variables at top and under constructors
  35. , weaklyRigidVars :: VarSet -- ^ ord. rigid variables, e.g., in arguments of variables
  36. , flexibleVars :: VarSet -- ^ variables occuring in arguments of metas. These are potentially free, depending how the meta variable is instantiated.
  37. , irrelevantVars :: VarSet -- ^ variables under a @DontCare@, i.e., in irrelevant positions
  38. }
  39. rigidVars :: FreeVars -> VarSet
  40. rigidVars fv = Set.union (stronglyRigidVars fv) (weaklyRigidVars fv)
  41. -- | @allVars fv@ includes irrelevant variables.
  42. allVars :: FreeVars -> VarSet
  43. allVars fv = Set.unions [rigidVars fv, flexibleVars fv, irrelevantVars fv]
  44. -- | All but the irrelevant variables.
  45. relevantVars :: FreeVars -> VarSet
  46. relevantVars fv = Set.unions [rigidVars fv, flexibleVars fv]
  47. data Occurrence
  48. = NoOccurrence
  49. | StronglyRigid
  50. | WeaklyRigid
  51. | Flexible
  52. deriving (Eq,Show)
  53. -- | @occurrence x fv@ ignores irrelevant variables in @fv@
  54. occurrence :: Nat -> FreeVars -> Occurrence
  55. occurrence x fv
  56. | x `Set.member` stronglyRigidVars fv = StronglyRigid
  57. | x `Set.member` weaklyRigidVars fv = WeaklyRigid
  58. | x `Set.member` flexibleVars fv = Flexible
  59. | otherwise = NoOccurrence
  60. -- | Mark variables as flexible. Useful when traversing arguments of metas.
  61. flexible :: FreeVars -> FreeVars
  62. flexible fv =
  63. fv { stronglyRigidVars = Set.empty
  64. , weaklyRigidVars = Set.empty
  65. , flexibleVars = relevantVars fv
  66. }
  67. -- | Mark rigid variables as non-strongly. Useful when traversion arguments of variables.
  68. weakly :: FreeVars -> FreeVars
  69. weakly fv = fv
  70. { stronglyRigidVars = Set.empty
  71. , weaklyRigidVars = rigidVars fv
  72. }
  73. -- | Mark all free variables as irrelevant.
  74. irrelevantly :: FreeVars -> FreeVars
  75. irrelevantly fv = empty { irrelevantVars = allVars fv }
  76. -- | Pointwise union.
  77. union :: FreeVars -> FreeVars -> FreeVars
  78. union (FV sv1 rv1 fv1 iv1) (FV sv2 rv2 fv2 iv2) =
  79. FV (Set.union sv1 sv2) (Set.union rv1 rv2) (Set.union fv1 fv2) (Set.union iv1 iv2)
  80. unions :: [FreeVars] -> FreeVars
  81. unions = foldr union empty
  82. empty :: FreeVars
  83. empty = FV Set.empty Set.empty Set.empty Set.empty
  84. -- | @delete x fv@ deletes variable @x@ from variable set @fv@.
  85. delete :: Nat -> FreeVars -> FreeVars
  86. delete n (FV sv rv fv iv) = FV (Set.delete n sv) (Set.delete n rv) (Set.delete n fv) (Set.delete n iv)
  87. -- | @subtractFV n fv@ subtracts $n$ from each free variable in @fv@.
  88. subtractFV :: Nat -> FreeVars -> FreeVars
  89. subtractFV n (FV sv rv fv iv) = FV (Set.subtract n sv) (Set.subtract n rv) (Set.subtract n fv) (Set.subtract n iv)
  90. -- | A single (strongly) rigid variable.
  91. singleton :: Nat -> FreeVars
  92. singleton x = FV { stronglyRigidVars = Set.singleton x
  93. , weaklyRigidVars = Set.empty -- WAS: Set.singleton x
  94. , flexibleVars = Set.empty
  95. , irrelevantVars = Set.empty
  96. }
  97. -- * Collecting free variables.
  98. class Free a where
  99. freeVars' :: FreeConf -> a -> FreeVars
  100. data FreeConf = FreeConf
  101. { fcIgnoreSorts :: Bool
  102. -- ^ Ignore free variables in sorts.
  103. }
  104. -- | Doesn't go inside solved metas, but collects the variables from a
  105. -- metavariable application @X ts@ as @flexibleVars@.
  106. freeVars :: Free a => a -> FreeVars
  107. freeVars = freeVars' FreeConf{ fcIgnoreSorts = False }
  108. instance Free Term where
  109. freeVars' conf t = case t of
  110. Var n ts -> singleton n `union` weakly (freeVars' conf ts)
  111. Lam _ t -> freeVars' conf t
  112. Lit _ -> empty
  113. Def _ ts -> weakly $ freeVars' conf ts -- because we are not in TCM
  114. -- we cannot query whether we are dealing with a data/record (strongly r.)
  115. -- or a definition by pattern matching (weakly rigid)
  116. -- thus, we approximate, losing that x = List x is unsolvable
  117. Con _ ts -> freeVars' conf ts
  118. Pi a b -> freeVars' conf (a,b)
  119. Sort s -> freeVars' conf s
  120. Level l -> freeVars' conf l
  121. MetaV _ ts -> flexible $ freeVars' conf ts
  122. DontCare mt -> irrelevantly $ freeVars' conf mt
  123. instance Free Type where
  124. freeVars' conf (El s t) = freeVars' conf (s, t)
  125. instance Free Sort where
  126. freeVars' conf s
  127. | fcIgnoreSorts conf = empty
  128. | otherwise = case s of
  129. Type a -> freeVars' conf a
  130. Prop -> empty
  131. Inf -> empty
  132. DLub s1 s2 -> weakly $ freeVars' conf (s1, s2)
  133. instance Free Level where
  134. freeVars' conf (Max as) = freeVars' conf as
  135. instance Free PlusLevel where
  136. freeVars' conf ClosedLevel{} = empty
  137. freeVars' conf (Plus _ l) = freeVars' conf l
  138. instance Free LevelAtom where
  139. freeVars' conf l = case l of
  140. MetaLevel _ vs -> flexible $ freeVars' conf vs
  141. NeutralLevel v -> freeVars' conf v
  142. BlockedLevel _ v -> freeVars' conf v
  143. UnreducedLevel v -> freeVars' conf v
  144. instance Free a => Free [a] where
  145. freeVars' conf = unions . map (freeVars' conf)
  146. instance Free a => Free (Maybe a) where
  147. freeVars' conf = maybe empty (freeVars' conf)
  148. instance (Free a, Free b) => Free (a,b) where
  149. freeVars' conf (x,y) = freeVars' conf x `union` freeVars' conf y
  150. instance Free a => Free (Arg a) where
  151. freeVars' conf = freeVars' conf . unArg
  152. instance Free a => Free (Abs a) where
  153. freeVars' conf (Abs _ b) = subtractFV 1 $ delete 0 $ freeVars' conf b
  154. freeVars' conf (NoAbs _ b) = freeVars' conf b
  155. instance Free a => Free (Tele a) where
  156. freeVars' conf EmptyTel = empty
  157. freeVars' conf (ExtendTel a tel) = freeVars' conf (a, tel)
  158. instance Free ClauseBody where
  159. freeVars' conf (Body t) = freeVars' conf t
  160. freeVars' conf (Bind b) = freeVars' conf b
  161. freeVars' conf NoBody = empty
  162. freeIn :: Free a => Nat -> a -> Bool
  163. freeIn v t = v `Set.member` allVars (freeVars t)
  164. freeInIgnoringSorts :: Free a => Nat -> a -> Bool
  165. freeInIgnoringSorts v t =
  166. v `Set.member` allVars (freeVars' FreeConf{ fcIgnoreSorts = True } t)
  167. relevantIn :: Free a => Nat -> a -> Bool
  168. relevantIn v t = v `Set.member` relevantVars (freeVars' FreeConf{ fcIgnoreSorts = True } t)
  169. -- | Is the variable bound by the abstraction actually used?
  170. isBinderUsed :: Free a => Abs a -> Bool
  171. isBinderUsed NoAbs{} = False
  172. isBinderUsed (Abs _ x) = 0 `freeIn` x