/Agda-2.3.0.1/src/full/Agda/TypeChecking/Free.hs
# · Haskell · 213 lines · 141 code · 41 blank · 31 comment · 3 complexity · 7d2a0d171e71ab56021318b1b427a40a MD5 · raw file
- {-# LANGUAGE CPP #-}
- -- | Computing the free variables of a term.
- module Agda.TypeChecking.Free
- ( FreeVars(..)
- , Free
- , freeVars
- , allVars
- , relevantVars
- , rigidVars
- , freeIn, isBinderUsed
- , freeInIgnoringSorts
- , relevantIn
- , Occurrence(..)
- , occurrence
- ) where
- import qualified Agda.Utils.VarSet as Set
- import Agda.Utils.VarSet (VarSet)
- import Agda.Syntax.Common
- import Agda.Syntax.Internal
- #include "../undefined.h"
- import Agda.Utils.Impossible
- -- | The distinction between rigid and strongly rigid occurrences comes from:
- -- Jason C. Reed, PhD thesis, 2009, page 96 (see also his LFMTP 2009 paper)
- --
- -- The main idea is that x = t(x) is unsolvable if x occurs strongly rigidly
- -- in t. It might have a solution if the occurrence is not strongly rigid, e.g.
- --
- -- x = \f -> suc (f (x (\ y -> k))) has x = \f -> suc (f (suc k))
- --
- -- [Jason C. Reed, PhD thesis, page 106]
- -- | Free variables of a term, (disjointly) partitioned into strongly and
- -- and weakly rigid variables, flexible variables and irrelevant variables.
- data FreeVars = FV
- { stronglyRigidVars :: VarSet -- ^ variables at top and under constructors
- , weaklyRigidVars :: VarSet -- ^ ord. rigid variables, e.g., in arguments of variables
- , flexibleVars :: VarSet -- ^ variables occuring in arguments of metas. These are potentially free, depending how the meta variable is instantiated.
- , irrelevantVars :: VarSet -- ^ variables under a @DontCare@, i.e., in irrelevant positions
- }
- rigidVars :: FreeVars -> VarSet
- rigidVars fv = Set.union (stronglyRigidVars fv) (weaklyRigidVars fv)
- -- | @allVars fv@ includes irrelevant variables.
- allVars :: FreeVars -> VarSet
- allVars fv = Set.unions [rigidVars fv, flexibleVars fv, irrelevantVars fv]
- -- | All but the irrelevant variables.
- relevantVars :: FreeVars -> VarSet
- relevantVars fv = Set.unions [rigidVars fv, flexibleVars fv]
- data Occurrence
- = NoOccurrence
- | StronglyRigid
- | WeaklyRigid
- | Flexible
- deriving (Eq,Show)
- -- | @occurrence x fv@ ignores irrelevant variables in @fv@
- occurrence :: Nat -> FreeVars -> Occurrence
- occurrence x fv
- | x `Set.member` stronglyRigidVars fv = StronglyRigid
- | x `Set.member` weaklyRigidVars fv = WeaklyRigid
- | x `Set.member` flexibleVars fv = Flexible
- | otherwise = NoOccurrence
- -- | Mark variables as flexible. Useful when traversing arguments of metas.
- flexible :: FreeVars -> FreeVars
- flexible fv =
- fv { stronglyRigidVars = Set.empty
- , weaklyRigidVars = Set.empty
- , flexibleVars = relevantVars fv
- }
- -- | Mark rigid variables as non-strongly. Useful when traversion arguments of variables.
- weakly :: FreeVars -> FreeVars
- weakly fv = fv
- { stronglyRigidVars = Set.empty
- , weaklyRigidVars = rigidVars fv
- }
- -- | Mark all free variables as irrelevant.
- irrelevantly :: FreeVars -> FreeVars
- irrelevantly fv = empty { irrelevantVars = allVars fv }
- -- | Pointwise union.
- union :: FreeVars -> FreeVars -> FreeVars
- union (FV sv1 rv1 fv1 iv1) (FV sv2 rv2 fv2 iv2) =
- FV (Set.union sv1 sv2) (Set.union rv1 rv2) (Set.union fv1 fv2) (Set.union iv1 iv2)
- unions :: [FreeVars] -> FreeVars
- unions = foldr union empty
- empty :: FreeVars
- empty = FV Set.empty Set.empty Set.empty Set.empty
- -- | @delete x fv@ deletes variable @x@ from variable set @fv@.
- delete :: Nat -> FreeVars -> FreeVars
- delete n (FV sv rv fv iv) = FV (Set.delete n sv) (Set.delete n rv) (Set.delete n fv) (Set.delete n iv)
- -- | @subtractFV n fv@ subtracts $n$ from each free variable in @fv@.
- subtractFV :: Nat -> FreeVars -> FreeVars
- subtractFV n (FV sv rv fv iv) = FV (Set.subtract n sv) (Set.subtract n rv) (Set.subtract n fv) (Set.subtract n iv)
- -- | A single (strongly) rigid variable.
- singleton :: Nat -> FreeVars
- singleton x = FV { stronglyRigidVars = Set.singleton x
- , weaklyRigidVars = Set.empty -- WAS: Set.singleton x
- , flexibleVars = Set.empty
- , irrelevantVars = Set.empty
- }
- -- * Collecting free variables.
- class Free a where
- freeVars' :: FreeConf -> a -> FreeVars
- data FreeConf = FreeConf
- { fcIgnoreSorts :: Bool
- -- ^ Ignore free variables in sorts.
- }
- -- | Doesn't go inside solved metas, but collects the variables from a
- -- metavariable application @X ts@ as @flexibleVars@.
- freeVars :: Free a => a -> FreeVars
- freeVars = freeVars' FreeConf{ fcIgnoreSorts = False }
- instance Free Term where
- freeVars' conf t = case t of
- Var n ts -> singleton n `union` weakly (freeVars' conf ts)
- Lam _ t -> freeVars' conf t
- Lit _ -> empty
- Def _ ts -> weakly $ freeVars' conf ts -- because we are not in TCM
- -- we cannot query whether we are dealing with a data/record (strongly r.)
- -- or a definition by pattern matching (weakly rigid)
- -- thus, we approximate, losing that x = List x is unsolvable
- Con _ ts -> freeVars' conf ts
- Pi a b -> freeVars' conf (a,b)
- Sort s -> freeVars' conf s
- Level l -> freeVars' conf l
- MetaV _ ts -> flexible $ freeVars' conf ts
- DontCare mt -> irrelevantly $ freeVars' conf mt
- instance Free Type where
- freeVars' conf (El s t) = freeVars' conf (s, t)
- instance Free Sort where
- freeVars' conf s
- | fcIgnoreSorts conf = empty
- | otherwise = case s of
- Type a -> freeVars' conf a
- Prop -> empty
- Inf -> empty
- DLub s1 s2 -> weakly $ freeVars' conf (s1, s2)
- instance Free Level where
- freeVars' conf (Max as) = freeVars' conf as
- instance Free PlusLevel where
- freeVars' conf ClosedLevel{} = empty
- freeVars' conf (Plus _ l) = freeVars' conf l
- instance Free LevelAtom where
- freeVars' conf l = case l of
- MetaLevel _ vs -> flexible $ freeVars' conf vs
- NeutralLevel v -> freeVars' conf v
- BlockedLevel _ v -> freeVars' conf v
- UnreducedLevel v -> freeVars' conf v
- instance Free a => Free [a] where
- freeVars' conf = unions . map (freeVars' conf)
- instance Free a => Free (Maybe a) where
- freeVars' conf = maybe empty (freeVars' conf)
- instance (Free a, Free b) => Free (a,b) where
- freeVars' conf (x,y) = freeVars' conf x `union` freeVars' conf y
- instance Free a => Free (Arg a) where
- freeVars' conf = freeVars' conf . unArg
- instance Free a => Free (Abs a) where
- freeVars' conf (Abs _ b) = subtractFV 1 $ delete 0 $ freeVars' conf b
- freeVars' conf (NoAbs _ b) = freeVars' conf b
- instance Free a => Free (Tele a) where
- freeVars' conf EmptyTel = empty
- freeVars' conf (ExtendTel a tel) = freeVars' conf (a, tel)
- instance Free ClauseBody where
- freeVars' conf (Body t) = freeVars' conf t
- freeVars' conf (Bind b) = freeVars' conf b
- freeVars' conf NoBody = empty
- freeIn :: Free a => Nat -> a -> Bool
- freeIn v t = v `Set.member` allVars (freeVars t)
- freeInIgnoringSorts :: Free a => Nat -> a -> Bool
- freeInIgnoringSorts v t =
- v `Set.member` allVars (freeVars' FreeConf{ fcIgnoreSorts = True } t)
- relevantIn :: Free a => Nat -> a -> Bool
- relevantIn v t = v `Set.member` relevantVars (freeVars' FreeConf{ fcIgnoreSorts = True } t)
- -- | Is the variable bound by the abstraction actually used?
- isBinderUsed :: Free a => Abs a -> Bool
- isBinderUsed NoAbs{} = False
- isBinderUsed (Abs _ x) = 0 `freeIn` x