/Objects/complexobject.c
http://unladen-swallow.googlecode.com/ · C · 1273 lines · 1054 code · 120 blank · 99 comment · 245 complexity · 878e77cf5dc6790c95a85581092f9459 MD5 · raw file
- /* Complex object implementation */
- /* Borrows heavily from floatobject.c */
- /* Submitted by Jim Hugunin */
- #include "Python.h"
- #include "structmember.h"
- #ifdef HAVE_IEEEFP_H
- #include <ieeefp.h>
- #endif
- #ifndef WITHOUT_COMPLEX
- /* Precisions used by repr() and str(), respectively.
- The repr() precision (17 significant decimal digits) is the minimal number
- that is guaranteed to have enough precision so that if the number is read
- back in the exact same binary value is recreated. This is true for IEEE
- floating point by design, and also happens to work for all other modern
- hardware.
- The str() precision is chosen so that in most cases, the rounding noise
- created by various operations is suppressed, while giving plenty of
- precision for practical use.
- */
- #define PREC_REPR 17
- #define PREC_STR 12
- /* elementary operations on complex numbers */
- static Py_complex c_1 = {1., 0.};
- Py_complex
- c_sum(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real + b.real;
- r.imag = a.imag + b.imag;
- return r;
- }
- Py_complex
- c_diff(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real - b.real;
- r.imag = a.imag - b.imag;
- return r;
- }
- Py_complex
- c_neg(Py_complex a)
- {
- Py_complex r;
- r.real = -a.real;
- r.imag = -a.imag;
- return r;
- }
- Py_complex
- c_prod(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real*b.real - a.imag*b.imag;
- r.imag = a.real*b.imag + a.imag*b.real;
- return r;
- }
- Py_complex
- c_quot(Py_complex a, Py_complex b)
- {
- /******************************************************************
- This was the original algorithm. It's grossly prone to spurious
- overflow and underflow errors. It also merrily divides by 0 despite
- checking for that(!). The code still serves a doc purpose here, as
- the algorithm following is a simple by-cases transformation of this
- one:
- Py_complex r;
- double d = b.real*b.real + b.imag*b.imag;
- if (d == 0.)
- errno = EDOM;
- r.real = (a.real*b.real + a.imag*b.imag)/d;
- r.imag = (a.imag*b.real - a.real*b.imag)/d;
- return r;
- ******************************************************************/
- /* This algorithm is better, and is pretty obvious: first divide the
- * numerators and denominator by whichever of {b.real, b.imag} has
- * larger magnitude. The earliest reference I found was to CACM
- * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
- * University). As usual, though, we're still ignoring all IEEE
- * endcases.
- */
- Py_complex r; /* the result */
- const double abs_breal = b.real < 0 ? -b.real : b.real;
- const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
- if (abs_breal >= abs_bimag) {
- /* divide tops and bottom by b.real */
- if (abs_breal == 0.0) {
- errno = EDOM;
- r.real = r.imag = 0.0;
- }
- else {
- const double ratio = b.imag / b.real;
- const double denom = b.real + b.imag * ratio;
- r.real = (a.real + a.imag * ratio) / denom;
- r.imag = (a.imag - a.real * ratio) / denom;
- }
- }
- else {
- /* divide tops and bottom by b.imag */
- const double ratio = b.real / b.imag;
- const double denom = b.real * ratio + b.imag;
- assert(b.imag != 0.0);
- r.real = (a.real * ratio + a.imag) / denom;
- r.imag = (a.imag * ratio - a.real) / denom;
- }
- return r;
- }
- Py_complex
- c_pow(Py_complex a, Py_complex b)
- {
- Py_complex r;
- double vabs,len,at,phase;
- if (b.real == 0. && b.imag == 0.) {
- r.real = 1.;
- r.imag = 0.;
- }
- else if (a.real == 0. && a.imag == 0.) {
- if (b.imag != 0. || b.real < 0.)
- errno = EDOM;
- r.real = 0.;
- r.imag = 0.;
- }
- else {
- vabs = hypot(a.real,a.imag);
- len = pow(vabs,b.real);
- at = atan2(a.imag, a.real);
- phase = at*b.real;
- if (b.imag != 0.0) {
- len /= exp(at*b.imag);
- phase += b.imag*log(vabs);
- }
- r.real = len*cos(phase);
- r.imag = len*sin(phase);
- }
- return r;
- }
- static Py_complex
- c_powu(Py_complex x, long n)
- {
- Py_complex r, p;
- long mask = 1;
- r = c_1;
- p = x;
- while (mask > 0 && n >= mask) {
- if (n & mask)
- r = c_prod(r,p);
- mask <<= 1;
- p = c_prod(p,p);
- }
- return r;
- }
- static Py_complex
- c_powi(Py_complex x, long n)
- {
- Py_complex cn;
- if (n > 100 || n < -100) {
- cn.real = (double) n;
- cn.imag = 0.;
- return c_pow(x,cn);
- }
- else if (n > 0)
- return c_powu(x,n);
- else
- return c_quot(c_1,c_powu(x,-n));
- }
- double
- c_abs(Py_complex z)
- {
- /* sets errno = ERANGE on overflow; otherwise errno = 0 */
- double result;
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- /* C99 rules: if either the real or the imaginary part is an
- infinity, return infinity, even if the other part is a
- NaN. */
- if (Py_IS_INFINITY(z.real)) {
- result = fabs(z.real);
- errno = 0;
- return result;
- }
- if (Py_IS_INFINITY(z.imag)) {
- result = fabs(z.imag);
- errno = 0;
- return result;
- }
- /* either the real or imaginary part is a NaN,
- and neither is infinite. Result should be NaN. */
- return Py_NAN;
- }
- result = hypot(z.real, z.imag);
- if (!Py_IS_FINITE(result))
- errno = ERANGE;
- else
- errno = 0;
- return result;
- }
- static PyObject *
- complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
- {
- PyObject *op;
- op = type->tp_alloc(type, 0);
- if (op != NULL)
- ((PyComplexObject *)op)->cval = cval;
- return op;
- }
- PyObject *
- PyComplex_FromCComplex(Py_complex cval)
- {
- register PyComplexObject *op;
- /* Inline PyObject_New */
- op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
- if (op == NULL)
- return PyErr_NoMemory();
- PyObject_INIT(op, &PyComplex_Type);
- op->cval = cval;
- return (PyObject *) op;
- }
- static PyObject *
- complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
- {
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return complex_subtype_from_c_complex(type, c);
- }
- PyObject *
- PyComplex_FromDoubles(double real, double imag)
- {
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return PyComplex_FromCComplex(c);
- }
- double
- PyComplex_RealAsDouble(PyObject *op)
- {
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.real;
- }
- else {
- return PyFloat_AsDouble(op);
- }
- }
- double
- PyComplex_ImagAsDouble(PyObject *op)
- {
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.imag;
- }
- else {
- return 0.0;
- }
- }
- Py_complex
- PyComplex_AsCComplex(PyObject *op)
- {
- Py_complex cv;
- PyObject *newop = NULL;
- static PyObject *complex_str = NULL;
- assert(op);
- /* If op is already of type PyComplex_Type, return its value */
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval;
- }
- /* If not, use op's __complex__ method, if it exists */
- /* return -1 on failure */
- cv.real = -1.;
- cv.imag = 0.;
- if (complex_str == NULL) {
- if (!(complex_str = PyString_InternFromString("__complex__")))
- return cv;
- }
-
- if (PyInstance_Check(op)) {
- /* this can go away in python 3000 */
- if (PyObject_HasAttr(op, complex_str)) {
- newop = PyObject_CallMethod(op, "__complex__", NULL);
- if (!newop)
- return cv;
- }
- /* else try __float__ */
- } else {
- PyObject *complexfunc;
- complexfunc = _PyType_Lookup(op->ob_type, complex_str);
- /* complexfunc is a borrowed reference */
- if (complexfunc) {
- newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
- if (!newop)
- return cv;
- }
- }
- if (newop) {
- if (!PyComplex_Check(newop)) {
- PyErr_SetString(PyExc_TypeError,
- "__complex__ should return a complex object");
- Py_DECREF(newop);
- return cv;
- }
- cv = ((PyComplexObject *)newop)->cval;
- Py_DECREF(newop);
- return cv;
- }
- /* If neither of the above works, interpret op as a float giving the
- real part of the result, and fill in the imaginary part as 0. */
- else {
- /* PyFloat_AsDouble will return -1 on failure */
- cv.real = PyFloat_AsDouble(op);
- return cv;
- }
- }
- static void
- complex_dealloc(PyObject *op)
- {
- op->ob_type->tp_free(op);
- }
- static void
- complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
- {
- char format[32];
- if (v->cval.real == 0.) {
- if (!Py_IS_FINITE(v->cval.imag)) {
- if (Py_IS_NAN(v->cval.imag))
- strncpy(buf, "nan*j", 6);
- else if (copysign(1, v->cval.imag) == 1)
- strncpy(buf, "inf*j", 6);
- else
- strncpy(buf, "-inf*j", 7);
- }
- else {
- PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
- PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
- strncat(buf, "j", 1);
- }
- } else {
- char re[64], im[64];
- /* Format imaginary part with sign, real part without */
- if (!Py_IS_FINITE(v->cval.real)) {
- if (Py_IS_NAN(v->cval.real))
- strncpy(re, "nan", 4);
- /* else if (copysign(1, v->cval.real) == 1) */
- else if (v->cval.real > 0)
- strncpy(re, "inf", 4);
- else
- strncpy(re, "-inf", 5);
- }
- else {
- PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
- PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
- }
- if (!Py_IS_FINITE(v->cval.imag)) {
- if (Py_IS_NAN(v->cval.imag))
- strncpy(im, "+nan*", 6);
- /* else if (copysign(1, v->cval.imag) == 1) */
- else if (v->cval.imag > 0)
- strncpy(im, "+inf*", 6);
- else
- strncpy(im, "-inf*", 6);
- }
- else {
- PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
- PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
- }
- PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
- }
- }
- static int
- complex_print(PyComplexObject *v, FILE *fp, int flags)
- {
- char buf[100];
- complex_to_buf(buf, sizeof(buf), v,
- (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
- Py_BEGIN_ALLOW_THREADS
- fputs(buf, fp);
- Py_END_ALLOW_THREADS
- return 0;
- }
- static PyObject *
- complex_repr(PyComplexObject *v)
- {
- char buf[100];
- complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
- return PyString_FromString(buf);
- }
- static PyObject *
- complex_str(PyComplexObject *v)
- {
- char buf[100];
- complex_to_buf(buf, sizeof(buf), v, PREC_STR);
- return PyString_FromString(buf);
- }
- static long
- complex_hash(PyComplexObject *v)
- {
- long hashreal, hashimag, combined;
- hashreal = _Py_HashDouble(v->cval.real);
- if (hashreal == -1)
- return -1;
- hashimag = _Py_HashDouble(v->cval.imag);
- if (hashimag == -1)
- return -1;
- /* Note: if the imaginary part is 0, hashimag is 0 now,
- * so the following returns hashreal unchanged. This is
- * important because numbers of different types that
- * compare equal must have the same hash value, so that
- * hash(x + 0*j) must equal hash(x).
- */
- combined = hashreal + 1000003 * hashimag;
- if (combined == -1)
- combined = -2;
- return combined;
- }
- /* This macro may return! */
- #define TO_COMPLEX(obj, c) \
- if (PyComplex_Check(obj)) \
- c = ((PyComplexObject *)(obj))->cval; \
- else if (to_complex(&(obj), &(c)) < 0) \
- return (obj)
- static int
- to_complex(PyObject **pobj, Py_complex *pc)
- {
- PyObject *obj = *pobj;
- pc->real = pc->imag = 0.0;
- if (PyInt_Check(obj)) {
- pc->real = PyInt_AS_LONG(obj);
- return 0;
- }
- if (PyLong_Check(obj)) {
- pc->real = PyLong_AsDouble(obj);
- if (pc->real == -1.0 && PyErr_Occurred()) {
- *pobj = NULL;
- return -1;
- }
- return 0;
- }
- if (PyFloat_Check(obj)) {
- pc->real = PyFloat_AsDouble(obj);
- return 0;
- }
- Py_INCREF(Py_NotImplemented);
- *pobj = Py_NotImplemented;
- return -1;
- }
-
- static PyObject *
- complex_add(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex result;
- PyFPE_START_PROTECT("complex_add", return 0)
- result = c_sum(v->cval,w->cval);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_sub(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex result;
- PyFPE_START_PROTECT("complex_sub", return 0)
- result = c_diff(v->cval,w->cval);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_mul(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex result;
- PyFPE_START_PROTECT("complex_mul", return 0)
- result = c_prod(v->cval,w->cval);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_div(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex quot;
- PyFPE_START_PROTECT("complex_div", return 0)
- errno = 0;
- quot = c_quot(v->cval,w->cval);
- PyFPE_END_PROTECT(quot)
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
- return NULL;
- }
- return PyComplex_FromCComplex(quot);
- }
- static PyObject *
- complex_classic_div(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex quot;
- if (Py_DivisionWarningFlag >= 2 &&
- PyErr_Warn(PyExc_DeprecationWarning,
- "classic complex division") < 0)
- return NULL;
- PyFPE_START_PROTECT("complex_classic_div", return 0)
- errno = 0;
- quot = c_quot(v->cval,w->cval);
- PyFPE_END_PROTECT(quot)
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
- return NULL;
- }
- return PyComplex_FromCComplex(quot);
- }
- static PyObject *
- complex_remainder(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex div, mod;
- if (PyErr_Warn(PyExc_DeprecationWarning,
- "complex divmod(), // and % are deprecated") < 0)
- return NULL;
- errno = 0;
- div = c_quot(v->cval,w->cval); /* The raw divisor value. */
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
- return NULL;
- }
- div.real = floor(div.real); /* Use the floor of the real part. */
- div.imag = 0.0;
- mod = c_diff(v->cval, c_prod(w->cval, div));
- return PyComplex_FromCComplex(mod);
- }
- static PyObject *
- complex_divmod(PyComplexObject *v, PyComplexObject *w)
- {
- Py_complex div, mod;
- PyObject *d, *m, *z;
- if (PyErr_Warn(PyExc_DeprecationWarning,
- "complex divmod(), // and % are deprecated") < 0)
- return NULL;
- errno = 0;
- div = c_quot(v->cval,w->cval); /* The raw divisor value. */
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
- return NULL;
- }
- div.real = floor(div.real); /* Use the floor of the real part. */
- div.imag = 0.0;
- mod = c_diff(v->cval, c_prod(w->cval, div));
- d = PyComplex_FromCComplex(div);
- m = PyComplex_FromCComplex(mod);
- z = PyTuple_Pack(2, d, m);
- Py_XDECREF(d);
- Py_XDECREF(m);
- return z;
- }
- static PyObject *
- complex_pow(PyObject *v, PyObject *w, PyObject *z)
- {
- Py_complex p;
- Py_complex exponent;
- long int_exponent;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- if (z!=Py_None) {
- PyErr_SetString(PyExc_ValueError, "complex modulo");
- return NULL;
- }
- PyFPE_START_PROTECT("complex_pow", return 0)
- errno = 0;
- exponent = b;
- int_exponent = (long)exponent.real;
- if (exponent.imag == 0. && exponent.real == int_exponent)
- p = c_powi(a,int_exponent);
- else
- p = c_pow(a,exponent);
- PyFPE_END_PROTECT(p)
- Py_ADJUST_ERANGE2(p.real, p.imag);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 to a negative or complex power");
- return NULL;
- }
- else if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "complex exponentiation");
- return NULL;
- }
- return PyComplex_FromCComplex(p);
- }
- static PyObject *
- complex_int_div(PyComplexObject *v, PyComplexObject *w)
- {
- PyObject *t, *r;
-
- if (PyErr_Warn(PyExc_DeprecationWarning,
- "complex divmod(), // and % are deprecated") < 0)
- return NULL;
- t = complex_divmod(v, w);
- if (t != NULL) {
- r = PyTuple_GET_ITEM(t, 0);
- Py_INCREF(r);
- Py_DECREF(t);
- return r;
- }
- return NULL;
- }
- static PyObject *
- complex_neg(PyComplexObject *v)
- {
- Py_complex neg;
- neg.real = -v->cval.real;
- neg.imag = -v->cval.imag;
- return PyComplex_FromCComplex(neg);
- }
- static PyObject *
- complex_pos(PyComplexObject *v)
- {
- if (PyComplex_CheckExact(v)) {
- Py_INCREF(v);
- return (PyObject *)v;
- }
- else
- return PyComplex_FromCComplex(v->cval);
- }
- static PyObject *
- complex_abs(PyComplexObject *v)
- {
- double result;
- PyFPE_START_PROTECT("complex_abs", return 0)
- result = c_abs(v->cval);
- PyFPE_END_PROTECT(result)
- if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "absolute value too large");
- return NULL;
- }
- return PyFloat_FromDouble(result);
- }
- static int
- complex_nonzero(PyComplexObject *v)
- {
- return v->cval.real != 0.0 || v->cval.imag != 0.0;
- }
- static int
- complex_coerce(PyObject **pv, PyObject **pw)
- {
- Py_complex cval;
- cval.imag = 0.;
- if (PyInt_Check(*pw)) {
- cval.real = (double)PyInt_AsLong(*pw);
- *pw = PyComplex_FromCComplex(cval);
- Py_INCREF(*pv);
- return 0;
- }
- else if (PyLong_Check(*pw)) {
- cval.real = PyLong_AsDouble(*pw);
- if (cval.real == -1.0 && PyErr_Occurred())
- return -1;
- *pw = PyComplex_FromCComplex(cval);
- Py_INCREF(*pv);
- return 0;
- }
- else if (PyFloat_Check(*pw)) {
- cval.real = PyFloat_AsDouble(*pw);
- *pw = PyComplex_FromCComplex(cval);
- Py_INCREF(*pv);
- return 0;
- }
- else if (PyComplex_Check(*pw)) {
- Py_INCREF(*pv);
- Py_INCREF(*pw);
- return 0;
- }
- return 1; /* Can't do it */
- }
- static PyObject *
- complex_richcompare(PyObject *v, PyObject *w, int op)
- {
- int c;
- Py_complex i, j;
- PyObject *res;
- c = PyNumber_CoerceEx(&v, &w);
- if (c < 0)
- return NULL;
- if (c > 0) {
- Py_INCREF(Py_NotImplemented);
- return Py_NotImplemented;
- }
- /* Make sure both arguments are complex. */
- if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
- Py_DECREF(v);
- Py_DECREF(w);
- Py_INCREF(Py_NotImplemented);
- return Py_NotImplemented;
- }
- i = ((PyComplexObject *)v)->cval;
- j = ((PyComplexObject *)w)->cval;
- Py_DECREF(v);
- Py_DECREF(w);
- if (op != Py_EQ && op != Py_NE) {
- PyErr_SetString(PyExc_TypeError,
- "no ordering relation is defined for complex numbers");
- return NULL;
- }
- if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
- res = Py_True;
- else
- res = Py_False;
- Py_INCREF(res);
- return res;
- }
- static PyObject *
- complex_int(PyObject *v)
- {
- PyErr_SetString(PyExc_TypeError,
- "can't convert complex to int");
- return NULL;
- }
- static PyObject *
- complex_long(PyObject *v)
- {
- PyErr_SetString(PyExc_TypeError,
- "can't convert complex to long");
- return NULL;
- }
- static PyObject *
- complex_float(PyObject *v)
- {
- PyErr_SetString(PyExc_TypeError,
- "can't convert complex to float");
- return NULL;
- }
- static PyObject *
- complex_conjugate(PyObject *self)
- {
- Py_complex c;
- c = ((PyComplexObject *)self)->cval;
- c.imag = -c.imag;
- return PyComplex_FromCComplex(c);
- }
- PyDoc_STRVAR(complex_conjugate_doc,
- "complex.conjugate() -> complex\n"
- "\n"
- "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
- static PyObject *
- complex_getnewargs(PyComplexObject *v)
- {
- Py_complex c = v->cval;
- return Py_BuildValue("(dd)", c.real, c.imag);
- }
- #if 0
- static PyObject *
- complex_is_finite(PyObject *self)
- {
- Py_complex c;
- c = ((PyComplexObject *)self)->cval;
- return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
- Py_IS_FINITE(c.imag)));
- }
- PyDoc_STRVAR(complex_is_finite_doc,
- "complex.is_finite() -> bool\n"
- "\n"
- "Returns True if the real and the imaginary part is finite.");
- #endif
- static PyMethodDef complex_methods[] = {
- {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
- complex_conjugate_doc},
- #if 0
- {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
- complex_is_finite_doc},
- #endif
- {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
- {NULL, NULL} /* sentinel */
- };
- static PyMemberDef complex_members[] = {
- {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
- "the real part of a complex number"},
- {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
- "the imaginary part of a complex number"},
- {0},
- };
- static PyObject *
- complex_subtype_from_string(PyTypeObject *type, PyObject *v)
- {
- const char *s, *start;
- char *end;
- double x=0.0, y=0.0, z;
- int got_re=0, got_im=0, got_bracket=0, done=0;
- int digit_or_dot;
- int sw_error=0;
- int sign;
- char buffer[256]; /* For errors */
- #ifdef Py_USING_UNICODE
- char s_buffer[256];
- #endif
- Py_ssize_t len;
- if (PyString_Check(v)) {
- s = PyString_AS_STRING(v);
- len = PyString_GET_SIZE(v);
- }
- #ifdef Py_USING_UNICODE
- else if (PyUnicode_Check(v)) {
- if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
- PyErr_SetString(PyExc_ValueError,
- "complex() literal too large to convert");
- return NULL;
- }
- if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
- PyUnicode_GET_SIZE(v),
- s_buffer,
- NULL))
- return NULL;
- s = s_buffer;
- len = strlen(s);
- }
- #endif
- else if (PyObject_AsCharBuffer(v, &s, &len)) {
- PyErr_SetString(PyExc_TypeError,
- "complex() arg is not a string");
- return NULL;
- }
- /* position on first nonblank */
- start = s;
- while (*s && isspace(Py_CHARMASK(*s)))
- s++;
- if (s[0] == '\0') {
- PyErr_SetString(PyExc_ValueError,
- "complex() arg is an empty string");
- return NULL;
- }
- if (s[0] == '(') {
- /* Skip over possible bracket from repr(). */
- got_bracket = 1;
- s++;
- while (*s && isspace(Py_CHARMASK(*s)))
- s++;
- }
- z = -1.0;
- sign = 1;
- do {
- switch (*s) {
- case '\0':
- if (s-start != len) {
- PyErr_SetString(
- PyExc_ValueError,
- "complex() arg contains a null byte");
- return NULL;
- }
- if(!done) sw_error=1;
- break;
- case ')':
- if (!got_bracket || !(got_re || got_im)) {
- sw_error=1;
- break;
- }
- got_bracket=0;
- done=1;
- s++;
- while (*s && isspace(Py_CHARMASK(*s)))
- s++;
- if (*s) sw_error=1;
- break;
- case '-':
- sign = -1;
- /* Fallthrough */
- case '+':
- if (done) sw_error=1;
- s++;
- if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'||
- isspace(Py_CHARMASK(*s)) ) sw_error=1;
- break;
- case 'J':
- case 'j':
- if (got_im || done) {
- sw_error = 1;
- break;
- }
- if (z<0.0) {
- y=sign;
- }
- else{
- y=sign*z;
- }
- got_im=1;
- s++;
- if (*s!='+' && *s!='-' )
- done=1;
- break;
- default:
- if (isspace(Py_CHARMASK(*s))) {
- while (*s && isspace(Py_CHARMASK(*s)))
- s++;
- if (*s && *s != ')')
- sw_error=1;
- else
- done = 1;
- break;
- }
- digit_or_dot =
- (*s=='.' || isdigit(Py_CHARMASK(*s)));
- if (done||!digit_or_dot) {
- sw_error=1;
- break;
- }
- errno = 0;
- PyFPE_START_PROTECT("strtod", return 0)
- z = PyOS_ascii_strtod(s, &end) ;
- PyFPE_END_PROTECT(z)
- if (errno == ERANGE && fabs(z) >= 1.0) {
- PyOS_snprintf(buffer, sizeof(buffer),
- "float() out of range: %.150s", s);
- PyErr_SetString(
- PyExc_ValueError,
- buffer);
- return NULL;
- }
- s=end;
- if (*s=='J' || *s=='j') {
- break;
- }
- if (got_re) {
- sw_error=1;
- break;
- }
- /* accept a real part */
- x=sign*z;
- got_re=1;
- if (got_im) done=1;
- z = -1.0;
- sign = 1;
- break;
- } /* end of switch */
- } while (s - start < len && !sw_error);
- if (sw_error || got_bracket) {
- PyErr_SetString(PyExc_ValueError,
- "complex() arg is a malformed string");
- return NULL;
- }
- return complex_subtype_from_doubles(type, x, y);
- }
- static PyObject *
- complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
- {
- PyObject *r, *i, *tmp, *f;
- PyNumberMethods *nbr, *nbi = NULL;
- Py_complex cr, ci;
- int own_r = 0;
- int cr_is_complex = 0;
- int ci_is_complex = 0;
- static PyObject *complexstr;
- static char *kwlist[] = {"real", "imag", 0};
- r = Py_False;
- i = NULL;
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
- &r, &i))
- return NULL;
- /* Special-case for a single argument when type(arg) is complex. */
- if (PyComplex_CheckExact(r) && i == NULL &&
- type == &PyComplex_Type) {
- /* Note that we can't know whether it's safe to return
- a complex *subclass* instance as-is, hence the restriction
- to exact complexes here. If either the input or the
- output is a complex subclass, it will be handled below
- as a non-orthogonal vector. */
- Py_INCREF(r);
- return r;
- }
- if (PyString_Check(r) || PyUnicode_Check(r)) {
- if (i != NULL) {
- PyErr_SetString(PyExc_TypeError,
- "complex() can't take second arg"
- " if first is a string");
- return NULL;
- }
- return complex_subtype_from_string(type, r);
- }
- if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
- PyErr_SetString(PyExc_TypeError,
- "complex() second arg can't be a string");
- return NULL;
- }
- /* XXX Hack to support classes with __complex__ method */
- if (complexstr == NULL) {
- complexstr = PyString_InternFromString("__complex__");
- if (complexstr == NULL)
- return NULL;
- }
- f = PyObject_GetAttr(r, complexstr);
- if (f == NULL)
- PyErr_Clear();
- else {
- PyObject *args = PyTuple_New(0);
- if (args == NULL)
- return NULL;
- r = PyEval_CallObject(f, args);
- Py_DECREF(args);
- Py_DECREF(f);
- if (r == NULL)
- return NULL;
- own_r = 1;
- }
- nbr = r->ob_type->tp_as_number;
- if (i != NULL)
- nbi = i->ob_type->tp_as_number;
- if (nbr == NULL || nbr->nb_float == NULL ||
- ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
- PyErr_SetString(PyExc_TypeError,
- "complex() argument must be a string or a number");
- if (own_r) {
- Py_DECREF(r);
- }
- return NULL;
- }
- /* If we get this far, then the "real" and "imag" parts should
- both be treated as numbers, and the constructor should return a
- complex number equal to (real + imag*1j).
- Note that we do NOT assume the input to already be in canonical
- form; the "real" and "imag" parts might themselves be complex
- numbers, which slightly complicates the code below. */
- if (PyComplex_Check(r)) {
- /* Note that if r is of a complex subtype, we're only
- retaining its real & imag parts here, and the return
- value is (properly) of the builtin complex type. */
- cr = ((PyComplexObject*)r)->cval;
- cr_is_complex = 1;
- if (own_r) {
- Py_DECREF(r);
- }
- }
- else {
- /* The "real" part really is entirely real, and contributes
- nothing in the imaginary direction.
- Just treat it as a double. */
- tmp = PyNumber_Float(r);
- if (own_r) {
- /* r was a newly created complex number, rather
- than the original "real" argument. */
- Py_DECREF(r);
- }
- if (tmp == NULL)
- return NULL;
- if (!PyFloat_Check(tmp)) {
- PyErr_SetString(PyExc_TypeError,
- "float(r) didn't return a float");
- Py_DECREF(tmp);
- return NULL;
- }
- cr.real = PyFloat_AsDouble(tmp);
- cr.imag = 0.0; /* Shut up compiler warning */
- Py_DECREF(tmp);
- }
- if (i == NULL) {
- ci.real = 0.0;
- }
- else if (PyComplex_Check(i)) {
- ci = ((PyComplexObject*)i)->cval;
- ci_is_complex = 1;
- } else {
- /* The "imag" part really is entirely imaginary, and
- contributes nothing in the real direction.
- Just treat it as a double. */
- tmp = (*nbi->nb_float)(i);
- if (tmp == NULL)
- return NULL;
- ci.real = PyFloat_AsDouble(tmp);
- Py_DECREF(tmp);
- }
- /* If the input was in canonical form, then the "real" and "imag"
- parts are real numbers, so that ci.imag and cr.imag are zero.
- We need this correction in case they were not real numbers. */
- if (ci_is_complex) {
- cr.real -= ci.imag;
- }
- if (cr_is_complex) {
- ci.real += cr.imag;
- }
- return complex_subtype_from_doubles(type, cr.real, ci.real);
- }
- PyDoc_STRVAR(complex_doc,
- "complex(real[, imag]) -> complex number\n"
- "\n"
- "Create a complex number from a real part and an optional imaginary part.\n"
- "This is equivalent to (real + imag*1j) where imag defaults to 0.");
- static PyNumberMethods complex_as_number = {
- (binaryfunc)complex_add, /* nb_add */
- (binaryfunc)complex_sub, /* nb_subtract */
- (binaryfunc)complex_mul, /* nb_multiply */
- (binaryfunc)complex_classic_div, /* nb_divide */
- (binaryfunc)complex_remainder, /* nb_remainder */
- (binaryfunc)complex_divmod, /* nb_divmod */
- (ternaryfunc)complex_pow, /* nb_power */
- (unaryfunc)complex_neg, /* nb_negative */
- (unaryfunc)complex_pos, /* nb_positive */
- (unaryfunc)complex_abs, /* nb_absolute */
- (inquiry)complex_nonzero, /* nb_nonzero */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- complex_coerce, /* nb_coerce */
- complex_int, /* nb_int */
- complex_long, /* nb_long */
- complex_float, /* nb_float */
- 0, /* nb_oct */
- 0, /* nb_hex */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply*/
- 0, /* nb_inplace_divide */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- (binaryfunc)complex_int_div, /* nb_floor_divide */
- (binaryfunc)complex_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- };
- PyTypeObject PyComplex_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "complex",
- sizeof(PyComplexObject),
- 0,
- complex_dealloc, /* tp_dealloc */
- (printfunc)complex_print, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_compare */
- (reprfunc)complex_repr, /* tp_repr */
- &complex_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)complex_hash, /* tp_hash */
- 0, /* tp_call */
- (reprfunc)complex_str, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- complex_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- complex_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- complex_methods, /* tp_methods */
- complex_members, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- PyType_GenericAlloc, /* tp_alloc */
- complex_new, /* tp_new */
- PyObject_Del, /* tp_free */
- };
- #endif