/Modules/sha512module.c

http://unladen-swallow.googlecode.com/ · C · 767 lines · 594 code · 107 blank · 66 comment · 42 complexity · 801bbca65e09da6d6571da523b6f43a8 MD5 · raw file

  1. /* SHA512 module */
  2. /* This module provides an interface to NIST's SHA-512 and SHA-384 Algorithms */
  3. /* See below for information about the original code this module was
  4. based upon. Additional work performed by:
  5. Andrew Kuchling (amk@amk.ca)
  6. Greg Stein (gstein@lyra.org)
  7. Trevor Perrin (trevp@trevp.net)
  8. Copyright (C) 2005 Gregory P. Smith (greg@krypto.org)
  9. Licensed to PSF under a Contributor Agreement.
  10. */
  11. /* SHA objects */
  12. #include "Python.h"
  13. #include "structmember.h"
  14. #ifdef PY_LONG_LONG /* If no PY_LONG_LONG, don't compile anything! */
  15. /* Endianness testing and definitions */
  16. #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
  17. if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
  18. #define PCT_LITTLE_ENDIAN 1
  19. #define PCT_BIG_ENDIAN 0
  20. /* Some useful types */
  21. typedef unsigned char SHA_BYTE;
  22. #if SIZEOF_INT == 4
  23. typedef unsigned int SHA_INT32; /* 32-bit integer */
  24. typedef unsigned PY_LONG_LONG SHA_INT64; /* 64-bit integer */
  25. #else
  26. /* not defined. compilation will die. */
  27. #endif
  28. /* The SHA block size and message digest sizes, in bytes */
  29. #define SHA_BLOCKSIZE 128
  30. #define SHA_DIGESTSIZE 64
  31. /* The structure for storing SHA info */
  32. typedef struct {
  33. PyObject_HEAD
  34. SHA_INT64 digest[8]; /* Message digest */
  35. SHA_INT32 count_lo, count_hi; /* 64-bit bit count */
  36. SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */
  37. int Endianness;
  38. int local; /* unprocessed amount in data */
  39. int digestsize;
  40. } SHAobject;
  41. /* When run on a little-endian CPU we need to perform byte reversal on an
  42. array of longwords. */
  43. static void longReverse(SHA_INT64 *buffer, int byteCount, int Endianness)
  44. {
  45. SHA_INT64 value;
  46. if ( Endianness == PCT_BIG_ENDIAN )
  47. return;
  48. byteCount /= sizeof(*buffer);
  49. while (byteCount--) {
  50. value = *buffer;
  51. ((unsigned char*)buffer)[0] = (unsigned char)(value >> 56) & 0xff;
  52. ((unsigned char*)buffer)[1] = (unsigned char)(value >> 48) & 0xff;
  53. ((unsigned char*)buffer)[2] = (unsigned char)(value >> 40) & 0xff;
  54. ((unsigned char*)buffer)[3] = (unsigned char)(value >> 32) & 0xff;
  55. ((unsigned char*)buffer)[4] = (unsigned char)(value >> 24) & 0xff;
  56. ((unsigned char*)buffer)[5] = (unsigned char)(value >> 16) & 0xff;
  57. ((unsigned char*)buffer)[6] = (unsigned char)(value >> 8) & 0xff;
  58. ((unsigned char*)buffer)[7] = (unsigned char)(value ) & 0xff;
  59. buffer++;
  60. }
  61. }
  62. static void SHAcopy(SHAobject *src, SHAobject *dest)
  63. {
  64. dest->Endianness = src->Endianness;
  65. dest->local = src->local;
  66. dest->digestsize = src->digestsize;
  67. dest->count_lo = src->count_lo;
  68. dest->count_hi = src->count_hi;
  69. memcpy(dest->digest, src->digest, sizeof(src->digest));
  70. memcpy(dest->data, src->data, sizeof(src->data));
  71. }
  72. /* ------------------------------------------------------------------------
  73. *
  74. * This code for the SHA-512 algorithm was noted as public domain. The
  75. * original headers are pasted below.
  76. *
  77. * Several changes have been made to make it more compatible with the
  78. * Python environment and desired interface.
  79. *
  80. */
  81. /* LibTomCrypt, modular cryptographic library -- Tom St Denis
  82. *
  83. * LibTomCrypt is a library that provides various cryptographic
  84. * algorithms in a highly modular and flexible manner.
  85. *
  86. * The library is free for all purposes without any express
  87. * gurantee it works.
  88. *
  89. * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
  90. */
  91. /* SHA512 by Tom St Denis */
  92. /* Various logical functions */
  93. #define ROR64(x, y) \
  94. ( ((((x) & Py_ULL(0xFFFFFFFFFFFFFFFF))>>((unsigned PY_LONG_LONG)(y) & 63)) | \
  95. ((x)<<((unsigned PY_LONG_LONG)(64-((y) & 63))))) & Py_ULL(0xFFFFFFFFFFFFFFFF))
  96. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  97. #define Maj(x,y,z) (((x | y) & z) | (x & y))
  98. #define S(x, n) ROR64((x),(n))
  99. #define R(x, n) (((x) & Py_ULL(0xFFFFFFFFFFFFFFFF)) >> ((unsigned PY_LONG_LONG)n))
  100. #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
  101. #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
  102. #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
  103. #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
  104. static void
  105. sha512_transform(SHAobject *sha_info)
  106. {
  107. int i;
  108. SHA_INT64 S[8], W[80], t0, t1;
  109. memcpy(W, sha_info->data, sizeof(sha_info->data));
  110. longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
  111. for (i = 16; i < 80; ++i) {
  112. W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
  113. }
  114. for (i = 0; i < 8; ++i) {
  115. S[i] = sha_info->digest[i];
  116. }
  117. /* Compress */
  118. #define RND(a,b,c,d,e,f,g,h,i,ki) \
  119. t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
  120. t1 = Sigma0(a) + Maj(a, b, c); \
  121. d += t0; \
  122. h = t0 + t1;
  123. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,Py_ULL(0x428a2f98d728ae22));
  124. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,Py_ULL(0x7137449123ef65cd));
  125. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,Py_ULL(0xb5c0fbcfec4d3b2f));
  126. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,Py_ULL(0xe9b5dba58189dbbc));
  127. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,Py_ULL(0x3956c25bf348b538));
  128. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,Py_ULL(0x59f111f1b605d019));
  129. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,Py_ULL(0x923f82a4af194f9b));
  130. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,Py_ULL(0xab1c5ed5da6d8118));
  131. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,Py_ULL(0xd807aa98a3030242));
  132. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,Py_ULL(0x12835b0145706fbe));
  133. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,Py_ULL(0x243185be4ee4b28c));
  134. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,Py_ULL(0x550c7dc3d5ffb4e2));
  135. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,Py_ULL(0x72be5d74f27b896f));
  136. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,Py_ULL(0x80deb1fe3b1696b1));
  137. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,Py_ULL(0x9bdc06a725c71235));
  138. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,Py_ULL(0xc19bf174cf692694));
  139. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,Py_ULL(0xe49b69c19ef14ad2));
  140. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,Py_ULL(0xefbe4786384f25e3));
  141. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,Py_ULL(0x0fc19dc68b8cd5b5));
  142. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,Py_ULL(0x240ca1cc77ac9c65));
  143. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,Py_ULL(0x2de92c6f592b0275));
  144. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,Py_ULL(0x4a7484aa6ea6e483));
  145. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,Py_ULL(0x5cb0a9dcbd41fbd4));
  146. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,Py_ULL(0x76f988da831153b5));
  147. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,Py_ULL(0x983e5152ee66dfab));
  148. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,Py_ULL(0xa831c66d2db43210));
  149. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,Py_ULL(0xb00327c898fb213f));
  150. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,Py_ULL(0xbf597fc7beef0ee4));
  151. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,Py_ULL(0xc6e00bf33da88fc2));
  152. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,Py_ULL(0xd5a79147930aa725));
  153. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,Py_ULL(0x06ca6351e003826f));
  154. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,Py_ULL(0x142929670a0e6e70));
  155. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,Py_ULL(0x27b70a8546d22ffc));
  156. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,Py_ULL(0x2e1b21385c26c926));
  157. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,Py_ULL(0x4d2c6dfc5ac42aed));
  158. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,Py_ULL(0x53380d139d95b3df));
  159. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,Py_ULL(0x650a73548baf63de));
  160. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,Py_ULL(0x766a0abb3c77b2a8));
  161. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,Py_ULL(0x81c2c92e47edaee6));
  162. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,Py_ULL(0x92722c851482353b));
  163. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,Py_ULL(0xa2bfe8a14cf10364));
  164. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,Py_ULL(0xa81a664bbc423001));
  165. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,Py_ULL(0xc24b8b70d0f89791));
  166. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,Py_ULL(0xc76c51a30654be30));
  167. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,Py_ULL(0xd192e819d6ef5218));
  168. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,Py_ULL(0xd69906245565a910));
  169. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,Py_ULL(0xf40e35855771202a));
  170. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,Py_ULL(0x106aa07032bbd1b8));
  171. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,Py_ULL(0x19a4c116b8d2d0c8));
  172. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,Py_ULL(0x1e376c085141ab53));
  173. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,Py_ULL(0x2748774cdf8eeb99));
  174. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,Py_ULL(0x34b0bcb5e19b48a8));
  175. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,Py_ULL(0x391c0cb3c5c95a63));
  176. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,Py_ULL(0x4ed8aa4ae3418acb));
  177. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,Py_ULL(0x5b9cca4f7763e373));
  178. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,Py_ULL(0x682e6ff3d6b2b8a3));
  179. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,Py_ULL(0x748f82ee5defb2fc));
  180. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,Py_ULL(0x78a5636f43172f60));
  181. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,Py_ULL(0x84c87814a1f0ab72));
  182. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,Py_ULL(0x8cc702081a6439ec));
  183. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,Py_ULL(0x90befffa23631e28));
  184. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,Py_ULL(0xa4506cebde82bde9));
  185. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,Py_ULL(0xbef9a3f7b2c67915));
  186. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,Py_ULL(0xc67178f2e372532b));
  187. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],64,Py_ULL(0xca273eceea26619c));
  188. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],65,Py_ULL(0xd186b8c721c0c207));
  189. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],66,Py_ULL(0xeada7dd6cde0eb1e));
  190. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],67,Py_ULL(0xf57d4f7fee6ed178));
  191. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],68,Py_ULL(0x06f067aa72176fba));
  192. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],69,Py_ULL(0x0a637dc5a2c898a6));
  193. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],70,Py_ULL(0x113f9804bef90dae));
  194. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],71,Py_ULL(0x1b710b35131c471b));
  195. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],72,Py_ULL(0x28db77f523047d84));
  196. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],73,Py_ULL(0x32caab7b40c72493));
  197. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],74,Py_ULL(0x3c9ebe0a15c9bebc));
  198. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],75,Py_ULL(0x431d67c49c100d4c));
  199. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],76,Py_ULL(0x4cc5d4becb3e42b6));
  200. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],77,Py_ULL(0x597f299cfc657e2a));
  201. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],78,Py_ULL(0x5fcb6fab3ad6faec));
  202. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],79,Py_ULL(0x6c44198c4a475817));
  203. #undef RND
  204. /* feedback */
  205. for (i = 0; i < 8; i++) {
  206. sha_info->digest[i] = sha_info->digest[i] + S[i];
  207. }
  208. }
  209. /* initialize the SHA digest */
  210. static void
  211. sha512_init(SHAobject *sha_info)
  212. {
  213. TestEndianness(sha_info->Endianness)
  214. sha_info->digest[0] = Py_ULL(0x6a09e667f3bcc908);
  215. sha_info->digest[1] = Py_ULL(0xbb67ae8584caa73b);
  216. sha_info->digest[2] = Py_ULL(0x3c6ef372fe94f82b);
  217. sha_info->digest[3] = Py_ULL(0xa54ff53a5f1d36f1);
  218. sha_info->digest[4] = Py_ULL(0x510e527fade682d1);
  219. sha_info->digest[5] = Py_ULL(0x9b05688c2b3e6c1f);
  220. sha_info->digest[6] = Py_ULL(0x1f83d9abfb41bd6b);
  221. sha_info->digest[7] = Py_ULL(0x5be0cd19137e2179);
  222. sha_info->count_lo = 0L;
  223. sha_info->count_hi = 0L;
  224. sha_info->local = 0;
  225. sha_info->digestsize = 64;
  226. }
  227. static void
  228. sha384_init(SHAobject *sha_info)
  229. {
  230. TestEndianness(sha_info->Endianness)
  231. sha_info->digest[0] = Py_ULL(0xcbbb9d5dc1059ed8);
  232. sha_info->digest[1] = Py_ULL(0x629a292a367cd507);
  233. sha_info->digest[2] = Py_ULL(0x9159015a3070dd17);
  234. sha_info->digest[3] = Py_ULL(0x152fecd8f70e5939);
  235. sha_info->digest[4] = Py_ULL(0x67332667ffc00b31);
  236. sha_info->digest[5] = Py_ULL(0x8eb44a8768581511);
  237. sha_info->digest[6] = Py_ULL(0xdb0c2e0d64f98fa7);
  238. sha_info->digest[7] = Py_ULL(0x47b5481dbefa4fa4);
  239. sha_info->count_lo = 0L;
  240. sha_info->count_hi = 0L;
  241. sha_info->local = 0;
  242. sha_info->digestsize = 48;
  243. }
  244. /* update the SHA digest */
  245. static void
  246. sha512_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
  247. {
  248. int i;
  249. SHA_INT32 clo;
  250. clo = sha_info->count_lo + ((SHA_INT32) count << 3);
  251. if (clo < sha_info->count_lo) {
  252. ++sha_info->count_hi;
  253. }
  254. sha_info->count_lo = clo;
  255. sha_info->count_hi += (SHA_INT32) count >> 29;
  256. if (sha_info->local) {
  257. i = SHA_BLOCKSIZE - sha_info->local;
  258. if (i > count) {
  259. i = count;
  260. }
  261. memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
  262. count -= i;
  263. buffer += i;
  264. sha_info->local += i;
  265. if (sha_info->local == SHA_BLOCKSIZE) {
  266. sha512_transform(sha_info);
  267. }
  268. else {
  269. return;
  270. }
  271. }
  272. while (count >= SHA_BLOCKSIZE) {
  273. memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
  274. buffer += SHA_BLOCKSIZE;
  275. count -= SHA_BLOCKSIZE;
  276. sha512_transform(sha_info);
  277. }
  278. memcpy(sha_info->data, buffer, count);
  279. sha_info->local = count;
  280. }
  281. /* finish computing the SHA digest */
  282. static void
  283. sha512_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
  284. {
  285. int count;
  286. SHA_INT32 lo_bit_count, hi_bit_count;
  287. lo_bit_count = sha_info->count_lo;
  288. hi_bit_count = sha_info->count_hi;
  289. count = (int) ((lo_bit_count >> 3) & 0x7f);
  290. ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
  291. if (count > SHA_BLOCKSIZE - 16) {
  292. memset(((SHA_BYTE *) sha_info->data) + count, 0,
  293. SHA_BLOCKSIZE - count);
  294. sha512_transform(sha_info);
  295. memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 16);
  296. }
  297. else {
  298. memset(((SHA_BYTE *) sha_info->data) + count, 0,
  299. SHA_BLOCKSIZE - 16 - count);
  300. }
  301. /* GJS: note that we add the hi/lo in big-endian. sha512_transform will
  302. swap these values into host-order. */
  303. sha_info->data[112] = 0;
  304. sha_info->data[113] = 0;
  305. sha_info->data[114] = 0;
  306. sha_info->data[115] = 0;
  307. sha_info->data[116] = 0;
  308. sha_info->data[117] = 0;
  309. sha_info->data[118] = 0;
  310. sha_info->data[119] = 0;
  311. sha_info->data[120] = (hi_bit_count >> 24) & 0xff;
  312. sha_info->data[121] = (hi_bit_count >> 16) & 0xff;
  313. sha_info->data[122] = (hi_bit_count >> 8) & 0xff;
  314. sha_info->data[123] = (hi_bit_count >> 0) & 0xff;
  315. sha_info->data[124] = (lo_bit_count >> 24) & 0xff;
  316. sha_info->data[125] = (lo_bit_count >> 16) & 0xff;
  317. sha_info->data[126] = (lo_bit_count >> 8) & 0xff;
  318. sha_info->data[127] = (lo_bit_count >> 0) & 0xff;
  319. sha512_transform(sha_info);
  320. digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 56) & 0xff);
  321. digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 48) & 0xff);
  322. digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 40) & 0xff);
  323. digest[ 3] = (unsigned char) ((sha_info->digest[0] >> 32) & 0xff);
  324. digest[ 4] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
  325. digest[ 5] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
  326. digest[ 6] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
  327. digest[ 7] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
  328. digest[ 8] = (unsigned char) ((sha_info->digest[1] >> 56) & 0xff);
  329. digest[ 9] = (unsigned char) ((sha_info->digest[1] >> 48) & 0xff);
  330. digest[10] = (unsigned char) ((sha_info->digest[1] >> 40) & 0xff);
  331. digest[11] = (unsigned char) ((sha_info->digest[1] >> 32) & 0xff);
  332. digest[12] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
  333. digest[13] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
  334. digest[14] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
  335. digest[15] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
  336. digest[16] = (unsigned char) ((sha_info->digest[2] >> 56) & 0xff);
  337. digest[17] = (unsigned char) ((sha_info->digest[2] >> 48) & 0xff);
  338. digest[18] = (unsigned char) ((sha_info->digest[2] >> 40) & 0xff);
  339. digest[19] = (unsigned char) ((sha_info->digest[2] >> 32) & 0xff);
  340. digest[20] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
  341. digest[21] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
  342. digest[22] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
  343. digest[23] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
  344. digest[24] = (unsigned char) ((sha_info->digest[3] >> 56) & 0xff);
  345. digest[25] = (unsigned char) ((sha_info->digest[3] >> 48) & 0xff);
  346. digest[26] = (unsigned char) ((sha_info->digest[3] >> 40) & 0xff);
  347. digest[27] = (unsigned char) ((sha_info->digest[3] >> 32) & 0xff);
  348. digest[28] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
  349. digest[29] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
  350. digest[30] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
  351. digest[31] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
  352. digest[32] = (unsigned char) ((sha_info->digest[4] >> 56) & 0xff);
  353. digest[33] = (unsigned char) ((sha_info->digest[4] >> 48) & 0xff);
  354. digest[34] = (unsigned char) ((sha_info->digest[4] >> 40) & 0xff);
  355. digest[35] = (unsigned char) ((sha_info->digest[4] >> 32) & 0xff);
  356. digest[36] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
  357. digest[37] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
  358. digest[38] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
  359. digest[39] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
  360. digest[40] = (unsigned char) ((sha_info->digest[5] >> 56) & 0xff);
  361. digest[41] = (unsigned char) ((sha_info->digest[5] >> 48) & 0xff);
  362. digest[42] = (unsigned char) ((sha_info->digest[5] >> 40) & 0xff);
  363. digest[43] = (unsigned char) ((sha_info->digest[5] >> 32) & 0xff);
  364. digest[44] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
  365. digest[45] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
  366. digest[46] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff);
  367. digest[47] = (unsigned char) ((sha_info->digest[5] ) & 0xff);
  368. digest[48] = (unsigned char) ((sha_info->digest[6] >> 56) & 0xff);
  369. digest[49] = (unsigned char) ((sha_info->digest[6] >> 48) & 0xff);
  370. digest[50] = (unsigned char) ((sha_info->digest[6] >> 40) & 0xff);
  371. digest[51] = (unsigned char) ((sha_info->digest[6] >> 32) & 0xff);
  372. digest[52] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
  373. digest[53] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
  374. digest[54] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff);
  375. digest[55] = (unsigned char) ((sha_info->digest[6] ) & 0xff);
  376. digest[56] = (unsigned char) ((sha_info->digest[7] >> 56) & 0xff);
  377. digest[57] = (unsigned char) ((sha_info->digest[7] >> 48) & 0xff);
  378. digest[58] = (unsigned char) ((sha_info->digest[7] >> 40) & 0xff);
  379. digest[59] = (unsigned char) ((sha_info->digest[7] >> 32) & 0xff);
  380. digest[60] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
  381. digest[61] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
  382. digest[62] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff);
  383. digest[63] = (unsigned char) ((sha_info->digest[7] ) & 0xff);
  384. }
  385. /*
  386. * End of copied SHA code.
  387. *
  388. * ------------------------------------------------------------------------
  389. */
  390. static PyTypeObject SHA384type;
  391. static PyTypeObject SHA512type;
  392. static SHAobject *
  393. newSHA384object(void)
  394. {
  395. return (SHAobject *)PyObject_New(SHAobject, &SHA384type);
  396. }
  397. static SHAobject *
  398. newSHA512object(void)
  399. {
  400. return (SHAobject *)PyObject_New(SHAobject, &SHA512type);
  401. }
  402. /* Internal methods for a hash object */
  403. static void
  404. SHA512_dealloc(PyObject *ptr)
  405. {
  406. PyObject_Del(ptr);
  407. }
  408. /* External methods for a hash object */
  409. PyDoc_STRVAR(SHA512_copy__doc__, "Return a copy of the hash object.");
  410. static PyObject *
  411. SHA512_copy(SHAobject *self, PyObject *unused)
  412. {
  413. SHAobject *newobj;
  414. if (((PyObject*)self)->ob_type == &SHA512type) {
  415. if ( (newobj = newSHA512object())==NULL)
  416. return NULL;
  417. } else {
  418. if ( (newobj = newSHA384object())==NULL)
  419. return NULL;
  420. }
  421. SHAcopy(self, newobj);
  422. return (PyObject *)newobj;
  423. }
  424. PyDoc_STRVAR(SHA512_digest__doc__,
  425. "Return the digest value as a string of binary data.");
  426. static PyObject *
  427. SHA512_digest(SHAobject *self, PyObject *unused)
  428. {
  429. unsigned char digest[SHA_DIGESTSIZE];
  430. SHAobject temp;
  431. SHAcopy(self, &temp);
  432. sha512_final(digest, &temp);
  433. return PyString_FromStringAndSize((const char *)digest, self->digestsize);
  434. }
  435. PyDoc_STRVAR(SHA512_hexdigest__doc__,
  436. "Return the digest value as a string of hexadecimal digits.");
  437. static PyObject *
  438. SHA512_hexdigest(SHAobject *self, PyObject *unused)
  439. {
  440. unsigned char digest[SHA_DIGESTSIZE];
  441. SHAobject temp;
  442. PyObject *retval;
  443. char *hex_digest;
  444. int i, j;
  445. /* Get the raw (binary) digest value */
  446. SHAcopy(self, &temp);
  447. sha512_final(digest, &temp);
  448. /* Create a new string */
  449. retval = PyString_FromStringAndSize(NULL, self->digestsize * 2);
  450. if (!retval)
  451. return NULL;
  452. hex_digest = PyString_AsString(retval);
  453. if (!hex_digest) {
  454. Py_DECREF(retval);
  455. return NULL;
  456. }
  457. /* Make hex version of the digest */
  458. for (i=j=0; i<self->digestsize; i++) {
  459. char c;
  460. c = (digest[i] >> 4) & 0xf;
  461. c = (c>9) ? c+'a'-10 : c + '0';
  462. hex_digest[j++] = c;
  463. c = (digest[i] & 0xf);
  464. c = (c>9) ? c+'a'-10 : c + '0';
  465. hex_digest[j++] = c;
  466. }
  467. return retval;
  468. }
  469. PyDoc_STRVAR(SHA512_update__doc__,
  470. "Update this hash object's state with the provided string.");
  471. static PyObject *
  472. SHA512_update(SHAobject *self, PyObject *args)
  473. {
  474. unsigned char *cp;
  475. int len;
  476. if (!PyArg_ParseTuple(args, "s#:update", &cp, &len))
  477. return NULL;
  478. sha512_update(self, cp, len);
  479. Py_INCREF(Py_None);
  480. return Py_None;
  481. }
  482. static PyMethodDef SHA_methods[] = {
  483. {"copy", (PyCFunction)SHA512_copy, METH_NOARGS, SHA512_copy__doc__},
  484. {"digest", (PyCFunction)SHA512_digest, METH_NOARGS, SHA512_digest__doc__},
  485. {"hexdigest", (PyCFunction)SHA512_hexdigest, METH_NOARGS, SHA512_hexdigest__doc__},
  486. {"update", (PyCFunction)SHA512_update, METH_VARARGS, SHA512_update__doc__},
  487. {NULL, NULL} /* sentinel */
  488. };
  489. static PyObject *
  490. SHA512_get_block_size(PyObject *self, void *closure)
  491. {
  492. return PyInt_FromLong(SHA_BLOCKSIZE);
  493. }
  494. static PyObject *
  495. SHA512_get_name(PyObject *self, void *closure)
  496. {
  497. if (((SHAobject *)self)->digestsize == 64)
  498. return PyString_FromStringAndSize("SHA512", 6);
  499. else
  500. return PyString_FromStringAndSize("SHA384", 6);
  501. }
  502. static PyGetSetDef SHA_getseters[] = {
  503. {"block_size",
  504. (getter)SHA512_get_block_size, NULL,
  505. NULL,
  506. NULL},
  507. {"name",
  508. (getter)SHA512_get_name, NULL,
  509. NULL,
  510. NULL},
  511. {NULL} /* Sentinel */
  512. };
  513. static PyMemberDef SHA_members[] = {
  514. {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
  515. /* the old md5 and sha modules support 'digest_size' as in PEP 247.
  516. * the old sha module also supported 'digestsize'. ugh. */
  517. {"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
  518. {NULL} /* Sentinel */
  519. };
  520. static PyTypeObject SHA384type = {
  521. PyVarObject_HEAD_INIT(NULL, 0)
  522. "_sha512.sha384", /*tp_name*/
  523. sizeof(SHAobject), /*tp_size*/
  524. 0, /*tp_itemsize*/
  525. /* methods */
  526. SHA512_dealloc, /*tp_dealloc*/
  527. 0, /*tp_print*/
  528. 0, /*tp_getattr*/
  529. 0, /*tp_setattr*/
  530. 0, /*tp_compare*/
  531. 0, /*tp_repr*/
  532. 0, /*tp_as_number*/
  533. 0, /*tp_as_sequence*/
  534. 0, /*tp_as_mapping*/
  535. 0, /*tp_hash*/
  536. 0, /*tp_call*/
  537. 0, /*tp_str*/
  538. 0, /*tp_getattro*/
  539. 0, /*tp_setattro*/
  540. 0, /*tp_as_buffer*/
  541. Py_TPFLAGS_DEFAULT, /*tp_flags*/
  542. 0, /*tp_doc*/
  543. 0, /*tp_traverse*/
  544. 0, /*tp_clear*/
  545. 0, /*tp_richcompare*/
  546. 0, /*tp_weaklistoffset*/
  547. 0, /*tp_iter*/
  548. 0, /*tp_iternext*/
  549. SHA_methods, /* tp_methods */
  550. SHA_members, /* tp_members */
  551. SHA_getseters, /* tp_getset */
  552. };
  553. static PyTypeObject SHA512type = {
  554. PyVarObject_HEAD_INIT(NULL, 0)
  555. "_sha512.sha512", /*tp_name*/
  556. sizeof(SHAobject), /*tp_size*/
  557. 0, /*tp_itemsize*/
  558. /* methods */
  559. SHA512_dealloc, /*tp_dealloc*/
  560. 0, /*tp_print*/
  561. 0, /*tp_getattr*/
  562. 0, /*tp_setattr*/
  563. 0, /*tp_compare*/
  564. 0, /*tp_repr*/
  565. 0, /*tp_as_number*/
  566. 0, /*tp_as_sequence*/
  567. 0, /*tp_as_mapping*/
  568. 0, /*tp_hash*/
  569. 0, /*tp_call*/
  570. 0, /*tp_str*/
  571. 0, /*tp_getattro*/
  572. 0, /*tp_setattro*/
  573. 0, /*tp_as_buffer*/
  574. Py_TPFLAGS_DEFAULT, /*tp_flags*/
  575. 0, /*tp_doc*/
  576. 0, /*tp_traverse*/
  577. 0, /*tp_clear*/
  578. 0, /*tp_richcompare*/
  579. 0, /*tp_weaklistoffset*/
  580. 0, /*tp_iter*/
  581. 0, /*tp_iternext*/
  582. SHA_methods, /* tp_methods */
  583. SHA_members, /* tp_members */
  584. SHA_getseters, /* tp_getset */
  585. };
  586. /* The single module-level function: new() */
  587. PyDoc_STRVAR(SHA512_new__doc__,
  588. "Return a new SHA-512 hash object; optionally initialized with a string.");
  589. static PyObject *
  590. SHA512_new(PyObject *self, PyObject *args, PyObject *kwdict)
  591. {
  592. static char *kwlist[] = {"string", NULL};
  593. SHAobject *new;
  594. unsigned char *cp = NULL;
  595. int len;
  596. if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
  597. &cp, &len)) {
  598. return NULL;
  599. }
  600. if ((new = newSHA512object()) == NULL)
  601. return NULL;
  602. sha512_init(new);
  603. if (PyErr_Occurred()) {
  604. Py_DECREF(new);
  605. return NULL;
  606. }
  607. if (cp)
  608. sha512_update(new, cp, len);
  609. return (PyObject *)new;
  610. }
  611. PyDoc_STRVAR(SHA384_new__doc__,
  612. "Return a new SHA-384 hash object; optionally initialized with a string.");
  613. static PyObject *
  614. SHA384_new(PyObject *self, PyObject *args, PyObject *kwdict)
  615. {
  616. static char *kwlist[] = {"string", NULL};
  617. SHAobject *new;
  618. unsigned char *cp = NULL;
  619. int len;
  620. if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
  621. &cp, &len)) {
  622. return NULL;
  623. }
  624. if ((new = newSHA384object()) == NULL)
  625. return NULL;
  626. sha384_init(new);
  627. if (PyErr_Occurred()) {
  628. Py_DECREF(new);
  629. return NULL;
  630. }
  631. if (cp)
  632. sha512_update(new, cp, len);
  633. return (PyObject *)new;
  634. }
  635. /* List of functions exported by this module */
  636. static struct PyMethodDef SHA_functions[] = {
  637. {"sha512", (PyCFunction)SHA512_new, METH_VARARGS|METH_KEYWORDS, SHA512_new__doc__},
  638. {"sha384", (PyCFunction)SHA384_new, METH_VARARGS|METH_KEYWORDS, SHA384_new__doc__},
  639. {NULL, NULL} /* Sentinel */
  640. };
  641. /* Initialize this module. */
  642. #define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
  643. PyMODINIT_FUNC
  644. init_sha512(void)
  645. {
  646. PyObject *m;
  647. Py_TYPE(&SHA384type) = &PyType_Type;
  648. if (PyType_Ready(&SHA384type) < 0)
  649. return;
  650. Py_TYPE(&SHA512type) = &PyType_Type;
  651. if (PyType_Ready(&SHA512type) < 0)
  652. return;
  653. m = Py_InitModule("_sha512", SHA_functions);
  654. if (m == NULL)
  655. return;
  656. }
  657. #endif