PageRenderTime 30ms CodeModel.GetById 16ms app.highlight 11ms RepoModel.GetById 1ms app.codeStats 0ms

/arch/powerpc/include/asm/pgalloc-64.h

http://github.com/mirrors/linux
C++ Header | 243 lines | 175 code | 40 blank | 28 comment | 4 complexity | bfe678bed8f1c30358742db826d5f9af MD5 | raw file
  1#ifndef _ASM_POWERPC_PGALLOC_64_H
  2#define _ASM_POWERPC_PGALLOC_64_H
  3/*
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public License
  6 * as published by the Free Software Foundation; either version
  7 * 2 of the License, or (at your option) any later version.
  8 */
  9
 10#include <linux/slab.h>
 11#include <linux/cpumask.h>
 12#include <linux/percpu.h>
 13
 14struct vmemmap_backing {
 15	struct vmemmap_backing *list;
 16	unsigned long phys;
 17	unsigned long virt_addr;
 18};
 19
 20/*
 21 * Functions that deal with pagetables that could be at any level of
 22 * the table need to be passed an "index_size" so they know how to
 23 * handle allocation.  For PTE pages (which are linked to a struct
 24 * page for now, and drawn from the main get_free_pages() pool), the
 25 * allocation size will be (2^index_size * sizeof(pointer)) and
 26 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
 27 *
 28 * The maximum index size needs to be big enough to allow any
 29 * pagetable sizes we need, but small enough to fit in the low bits of
 30 * any page table pointer.  In other words all pagetables, even tiny
 31 * ones, must be aligned to allow at least enough low 0 bits to
 32 * contain this value.  This value is also used as a mask, so it must
 33 * be one less than a power of two.
 34 */
 35#define MAX_PGTABLE_INDEX_SIZE	0xf
 36
 37extern struct kmem_cache *pgtable_cache[];
 38#define PGT_CACHE(shift) ({				\
 39			BUG_ON(!(shift));		\
 40			pgtable_cache[(shift) - 1];	\
 41		})
 42
 43static inline pgd_t *pgd_alloc(struct mm_struct *mm)
 44{
 45	return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
 46}
 47
 48static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
 49{
 50	kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
 51}
 52
 53#ifndef CONFIG_PPC_64K_PAGES
 54
 55#define pgd_populate(MM, PGD, PUD)	pgd_set(PGD, PUD)
 56
 57static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
 58{
 59	return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
 60				GFP_KERNEL|__GFP_REPEAT);
 61}
 62
 63static inline void pud_free(struct mm_struct *mm, pud_t *pud)
 64{
 65	kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
 66}
 67
 68static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
 69{
 70	pud_set(pud, (unsigned long)pmd);
 71}
 72
 73#define pmd_populate(mm, pmd, pte_page) \
 74	pmd_populate_kernel(mm, pmd, page_address(pte_page))
 75#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
 76#define pmd_pgtable(pmd) pmd_page(pmd)
 77
 78static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
 79					  unsigned long address)
 80{
 81	return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
 82}
 83
 84static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
 85				      unsigned long address)
 86{
 87	struct page *page;
 88	pte_t *pte;
 89
 90	pte = pte_alloc_one_kernel(mm, address);
 91	if (!pte)
 92		return NULL;
 93	page = virt_to_page(pte);
 94	pgtable_page_ctor(page);
 95	return page;
 96}
 97
 98static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
 99{
100	free_page((unsigned long)pte);
101}
102
103static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
104{
105	pgtable_page_dtor(ptepage);
106	__free_page(ptepage);
107}
108
109static inline void pgtable_free(void *table, unsigned index_size)
110{
111	if (!index_size)
112		free_page((unsigned long)table);
113	else {
114		BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
115		kmem_cache_free(PGT_CACHE(index_size), table);
116	}
117}
118
119#ifdef CONFIG_SMP
120static inline void pgtable_free_tlb(struct mmu_gather *tlb,
121				    void *table, int shift)
122{
123	unsigned long pgf = (unsigned long)table;
124	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
125	pgf |= shift;
126	tlb_remove_table(tlb, (void *)pgf);
127}
128
129static inline void __tlb_remove_table(void *_table)
130{
131	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
132	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
133
134	pgtable_free(table, shift);
135}
136#else /* !CONFIG_SMP */
137static inline void pgtable_free_tlb(struct mmu_gather *tlb,
138				    void *table, int shift)
139{
140	pgtable_free(table, shift);
141}
142#endif /* CONFIG_SMP */
143
144static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
145				  unsigned long address)
146{
147	struct page *page = page_address(table);
148
149	tlb_flush_pgtable(tlb, address);
150	pgtable_page_dtor(page);
151	pgtable_free_tlb(tlb, page, 0);
152}
153
154#else /* if CONFIG_PPC_64K_PAGES */
155/*
156 * we support 16 fragments per PTE page.
157 */
158#define PTE_FRAG_NR	16
159/*
160 * We use a 2K PTE page fragment and another 2K for storing
161 * real_pte_t hash index
162 */
163#define PTE_FRAG_SIZE_SHIFT  12
164#define PTE_FRAG_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
165
166extern pte_t *page_table_alloc(struct mm_struct *, unsigned long, int);
167extern void page_table_free(struct mm_struct *, unsigned long *, int);
168extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
169#ifdef CONFIG_SMP
170extern void __tlb_remove_table(void *_table);
171#endif
172
173#define pud_populate(mm, pud, pmd)	pud_set(pud, (unsigned long)pmd)
174
175static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
176				       pte_t *pte)
177{
178	pmd_set(pmd, (unsigned long)pte);
179}
180
181static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
182				pgtable_t pte_page)
183{
184	pmd_set(pmd, (unsigned long)pte_page);
185}
186
187static inline pgtable_t pmd_pgtable(pmd_t pmd)
188{
189	return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS);
190}
191
192static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
193					  unsigned long address)
194{
195	return (pte_t *)page_table_alloc(mm, address, 1);
196}
197
198static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
199					unsigned long address)
200{
201	return (pgtable_t)page_table_alloc(mm, address, 0);
202}
203
204static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
205{
206	page_table_free(mm, (unsigned long *)pte, 1);
207}
208
209static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
210{
211	page_table_free(mm, (unsigned long *)ptepage, 0);
212}
213
214static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
215				  unsigned long address)
216{
217	tlb_flush_pgtable(tlb, address);
218	pgtable_free_tlb(tlb, table, 0);
219}
220#endif /* CONFIG_PPC_64K_PAGES */
221
222static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
223{
224	return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
225				GFP_KERNEL|__GFP_REPEAT);
226}
227
228static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
229{
230	kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
231}
232
233#define __pmd_free_tlb(tlb, pmd, addr)		      \
234	pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX)
235#ifndef CONFIG_PPC_64K_PAGES
236#define __pud_free_tlb(tlb, pud, addr)		      \
237	pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)
238
239#endif /* CONFIG_PPC_64K_PAGES */
240
241#define check_pgt_cache()	do { } while (0)
242
243#endif /* _ASM_POWERPC_PGALLOC_64_H */