PageRenderTime 164ms CodeModel.GetById 21ms app.highlight 130ms RepoModel.GetById 1ms app.codeStats 1ms

/drivers/net/ethernet/intel/e1000e/ethtool.c

http://github.com/mirrors/linux
C | 2345 lines | 1812 code | 354 blank | 179 comment | 351 complexity | 3a920fd181ef20021f6bfc81035b5643 MD5 | raw file

Large files files are truncated, but you can click here to view the full file

   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26#define E1000_STAT(str, m) { \
  27		.stat_string = str, \
  28		.type = E1000_STATS, \
  29		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  30		.stat_offset = offsetof(struct e1000_adapter, m) }
  31#define E1000_NETDEV_STAT(str, m) { \
  32		.stat_string = str, \
  33		.type = NETDEV_STATS, \
  34		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  35		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  36
  37static const struct e1000_stats e1000_gstrings_stats[] = {
  38	E1000_STAT("rx_packets", stats.gprc),
  39	E1000_STAT("tx_packets", stats.gptc),
  40	E1000_STAT("rx_bytes", stats.gorc),
  41	E1000_STAT("tx_bytes", stats.gotc),
  42	E1000_STAT("rx_broadcast", stats.bprc),
  43	E1000_STAT("tx_broadcast", stats.bptc),
  44	E1000_STAT("rx_multicast", stats.mprc),
  45	E1000_STAT("tx_multicast", stats.mptc),
  46	E1000_NETDEV_STAT("rx_errors", rx_errors),
  47	E1000_NETDEV_STAT("tx_errors", tx_errors),
  48	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  49	E1000_STAT("multicast", stats.mprc),
  50	E1000_STAT("collisions", stats.colc),
  51	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  52	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  53	E1000_STAT("rx_crc_errors", stats.crcerrs),
  54	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  55	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  56	E1000_STAT("rx_missed_errors", stats.mpc),
  57	E1000_STAT("tx_aborted_errors", stats.ecol),
  58	E1000_STAT("tx_carrier_errors", stats.tncrs),
  59	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  60	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  61	E1000_STAT("tx_window_errors", stats.latecol),
  62	E1000_STAT("tx_abort_late_coll", stats.latecol),
  63	E1000_STAT("tx_deferred_ok", stats.dc),
  64	E1000_STAT("tx_single_coll_ok", stats.scc),
  65	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  66	E1000_STAT("tx_timeout_count", tx_timeout_count),
  67	E1000_STAT("tx_restart_queue", restart_queue),
  68	E1000_STAT("rx_long_length_errors", stats.roc),
  69	E1000_STAT("rx_short_length_errors", stats.ruc),
  70	E1000_STAT("rx_align_errors", stats.algnerrc),
  71	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  72	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  73	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  74	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  75	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  76	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  77	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  78	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  79	E1000_STAT("rx_header_split", rx_hdr_split),
  80	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  81	E1000_STAT("tx_smbus", stats.mgptc),
  82	E1000_STAT("rx_smbus", stats.mgprc),
  83	E1000_STAT("dropped_smbus", stats.mgpdc),
  84	E1000_STAT("rx_dma_failed", rx_dma_failed),
  85	E1000_STAT("tx_dma_failed", tx_dma_failed),
  86	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  87	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  88	E1000_STAT("corr_ecc_errors", corr_errors),
  89	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  90	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  91};
  92
  93#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
  94#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
  95static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  96	"Register test  (offline)", "Eeprom test    (offline)",
  97	"Interrupt test (offline)", "Loopback test  (offline)",
  98	"Link test   (on/offline)"
  99};
 100
 101#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 102
 103static int e1000_get_link_ksettings(struct net_device *netdev,
 104				    struct ethtool_link_ksettings *cmd)
 105{
 106	struct e1000_adapter *adapter = netdev_priv(netdev);
 107	struct e1000_hw *hw = &adapter->hw;
 108	u32 speed, supported, advertising;
 109
 110	if (hw->phy.media_type == e1000_media_type_copper) {
 111		supported = (SUPPORTED_10baseT_Half |
 112			     SUPPORTED_10baseT_Full |
 113			     SUPPORTED_100baseT_Half |
 114			     SUPPORTED_100baseT_Full |
 115			     SUPPORTED_1000baseT_Full |
 116			     SUPPORTED_Autoneg |
 117			     SUPPORTED_TP);
 118		if (hw->phy.type == e1000_phy_ife)
 119			supported &= ~SUPPORTED_1000baseT_Full;
 120		advertising = ADVERTISED_TP;
 121
 122		if (hw->mac.autoneg == 1) {
 123			advertising |= ADVERTISED_Autoneg;
 124			/* the e1000 autoneg seems to match ethtool nicely */
 125			advertising |= hw->phy.autoneg_advertised;
 126		}
 127
 128		cmd->base.port = PORT_TP;
 129		cmd->base.phy_address = hw->phy.addr;
 130	} else {
 131		supported   = (SUPPORTED_1000baseT_Full |
 132			       SUPPORTED_FIBRE |
 133			       SUPPORTED_Autoneg);
 134
 135		advertising = (ADVERTISED_1000baseT_Full |
 136			       ADVERTISED_FIBRE |
 137			       ADVERTISED_Autoneg);
 138
 139		cmd->base.port = PORT_FIBRE;
 140	}
 141
 142	speed = SPEED_UNKNOWN;
 143	cmd->base.duplex = DUPLEX_UNKNOWN;
 144
 145	if (netif_running(netdev)) {
 146		if (netif_carrier_ok(netdev)) {
 147			speed = adapter->link_speed;
 148			cmd->base.duplex = adapter->link_duplex - 1;
 149		}
 150	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 151		u32 status = er32(STATUS);
 152
 153		if (status & E1000_STATUS_LU) {
 154			if (status & E1000_STATUS_SPEED_1000)
 155				speed = SPEED_1000;
 156			else if (status & E1000_STATUS_SPEED_100)
 157				speed = SPEED_100;
 158			else
 159				speed = SPEED_10;
 160
 161			if (status & E1000_STATUS_FD)
 162				cmd->base.duplex = DUPLEX_FULL;
 163			else
 164				cmd->base.duplex = DUPLEX_HALF;
 165		}
 166	}
 167
 168	cmd->base.speed = speed;
 169	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 170			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 171
 172	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 173	if ((hw->phy.media_type == e1000_media_type_copper) &&
 174	    netif_carrier_ok(netdev))
 175		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 176			ETH_TP_MDI_X : ETH_TP_MDI;
 177	else
 178		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 179
 180	if (hw->phy.mdix == AUTO_ALL_MODES)
 181		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 182	else
 183		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 184
 185	if (hw->phy.media_type != e1000_media_type_copper)
 186		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 187
 188	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 189						supported);
 190	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 191						advertising);
 192
 193	return 0;
 194}
 195
 196static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 197{
 198	struct e1000_mac_info *mac = &adapter->hw.mac;
 199
 200	mac->autoneg = 0;
 201
 202	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 203	 * for the switch() below to work
 204	 */
 205	if ((spd & 1) || (dplx & ~1))
 206		goto err_inval;
 207
 208	/* Fiber NICs only allow 1000 gbps Full duplex */
 209	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 210	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 211		goto err_inval;
 212	}
 213
 214	switch (spd + dplx) {
 215	case SPEED_10 + DUPLEX_HALF:
 216		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 217		break;
 218	case SPEED_10 + DUPLEX_FULL:
 219		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 220		break;
 221	case SPEED_100 + DUPLEX_HALF:
 222		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 223		break;
 224	case SPEED_100 + DUPLEX_FULL:
 225		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 226		break;
 227	case SPEED_1000 + DUPLEX_FULL:
 228		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 229			mac->autoneg = 1;
 230			adapter->hw.phy.autoneg_advertised =
 231				ADVERTISE_1000_FULL;
 232		} else {
 233			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 234		}
 235		break;
 236	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 237	default:
 238		goto err_inval;
 239	}
 240
 241	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 242	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 243
 244	return 0;
 245
 246err_inval:
 247	e_err("Unsupported Speed/Duplex configuration\n");
 248	return -EINVAL;
 249}
 250
 251static int e1000_set_link_ksettings(struct net_device *netdev,
 252				    const struct ethtool_link_ksettings *cmd)
 253{
 254	struct e1000_adapter *adapter = netdev_priv(netdev);
 255	struct e1000_hw *hw = &adapter->hw;
 256	int ret_val = 0;
 257	u32 advertising;
 258
 259	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 260						cmd->link_modes.advertising);
 261
 262	pm_runtime_get_sync(netdev->dev.parent);
 263
 264	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 265	 * cannot be changed
 266	 */
 267	if (hw->phy.ops.check_reset_block &&
 268	    hw->phy.ops.check_reset_block(hw)) {
 269		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 270		ret_val = -EINVAL;
 271		goto out;
 272	}
 273
 274	/* MDI setting is only allowed when autoneg enabled because
 275	 * some hardware doesn't allow MDI setting when speed or
 276	 * duplex is forced.
 277	 */
 278	if (cmd->base.eth_tp_mdix_ctrl) {
 279		if (hw->phy.media_type != e1000_media_type_copper) {
 280			ret_val = -EOPNOTSUPP;
 281			goto out;
 282		}
 283
 284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 286			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 287			ret_val = -EINVAL;
 288			goto out;
 289		}
 290	}
 291
 292	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 293		usleep_range(1000, 2000);
 294
 295	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 296		hw->mac.autoneg = 1;
 297		if (hw->phy.media_type == e1000_media_type_fiber)
 298			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 299			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 300		else
 301			hw->phy.autoneg_advertised = advertising |
 302			    ADVERTISED_TP | ADVERTISED_Autoneg;
 303		advertising = hw->phy.autoneg_advertised;
 304		if (adapter->fc_autoneg)
 305			hw->fc.requested_mode = e1000_fc_default;
 306	} else {
 307		u32 speed = cmd->base.speed;
 308		/* calling this overrides forced MDI setting */
 309		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 310			ret_val = -EINVAL;
 311			goto out;
 312		}
 313	}
 314
 315	/* MDI-X => 2; MDI => 1; Auto => 3 */
 316	if (cmd->base.eth_tp_mdix_ctrl) {
 317		/* fix up the value for auto (3 => 0) as zero is mapped
 318		 * internally to auto
 319		 */
 320		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 321			hw->phy.mdix = AUTO_ALL_MODES;
 322		else
 323			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 324	}
 325
 326	/* reset the link */
 327	if (netif_running(adapter->netdev)) {
 328		e1000e_down(adapter, true);
 329		e1000e_up(adapter);
 330	} else {
 331		e1000e_reset(adapter);
 332	}
 333
 334out:
 335	pm_runtime_put_sync(netdev->dev.parent);
 336	clear_bit(__E1000_RESETTING, &adapter->state);
 337	return ret_val;
 338}
 339
 340static void e1000_get_pauseparam(struct net_device *netdev,
 341				 struct ethtool_pauseparam *pause)
 342{
 343	struct e1000_adapter *adapter = netdev_priv(netdev);
 344	struct e1000_hw *hw = &adapter->hw;
 345
 346	pause->autoneg =
 347	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 348
 349	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 350		pause->rx_pause = 1;
 351	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 352		pause->tx_pause = 1;
 353	} else if (hw->fc.current_mode == e1000_fc_full) {
 354		pause->rx_pause = 1;
 355		pause->tx_pause = 1;
 356	}
 357}
 358
 359static int e1000_set_pauseparam(struct net_device *netdev,
 360				struct ethtool_pauseparam *pause)
 361{
 362	struct e1000_adapter *adapter = netdev_priv(netdev);
 363	struct e1000_hw *hw = &adapter->hw;
 364	int retval = 0;
 365
 366	adapter->fc_autoneg = pause->autoneg;
 367
 368	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 369		usleep_range(1000, 2000);
 370
 371	pm_runtime_get_sync(netdev->dev.parent);
 372
 373	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 374		hw->fc.requested_mode = e1000_fc_default;
 375		if (netif_running(adapter->netdev)) {
 376			e1000e_down(adapter, true);
 377			e1000e_up(adapter);
 378		} else {
 379			e1000e_reset(adapter);
 380		}
 381	} else {
 382		if (pause->rx_pause && pause->tx_pause)
 383			hw->fc.requested_mode = e1000_fc_full;
 384		else if (pause->rx_pause && !pause->tx_pause)
 385			hw->fc.requested_mode = e1000_fc_rx_pause;
 386		else if (!pause->rx_pause && pause->tx_pause)
 387			hw->fc.requested_mode = e1000_fc_tx_pause;
 388		else if (!pause->rx_pause && !pause->tx_pause)
 389			hw->fc.requested_mode = e1000_fc_none;
 390
 391		hw->fc.current_mode = hw->fc.requested_mode;
 392
 393		if (hw->phy.media_type == e1000_media_type_fiber) {
 394			retval = hw->mac.ops.setup_link(hw);
 395			/* implicit goto out */
 396		} else {
 397			retval = e1000e_force_mac_fc(hw);
 398			if (retval)
 399				goto out;
 400			e1000e_set_fc_watermarks(hw);
 401		}
 402	}
 403
 404out:
 405	pm_runtime_put_sync(netdev->dev.parent);
 406	clear_bit(__E1000_RESETTING, &adapter->state);
 407	return retval;
 408}
 409
 410static u32 e1000_get_msglevel(struct net_device *netdev)
 411{
 412	struct e1000_adapter *adapter = netdev_priv(netdev);
 413	return adapter->msg_enable;
 414}
 415
 416static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 417{
 418	struct e1000_adapter *adapter = netdev_priv(netdev);
 419	adapter->msg_enable = data;
 420}
 421
 422static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 423{
 424#define E1000_REGS_LEN 32	/* overestimate */
 425	return E1000_REGS_LEN * sizeof(u32);
 426}
 427
 428static void e1000_get_regs(struct net_device *netdev,
 429			   struct ethtool_regs *regs, void *p)
 430{
 431	struct e1000_adapter *adapter = netdev_priv(netdev);
 432	struct e1000_hw *hw = &adapter->hw;
 433	u32 *regs_buff = p;
 434	u16 phy_data;
 435
 436	pm_runtime_get_sync(netdev->dev.parent);
 437
 438	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 439
 440	regs->version = (1u << 24) |
 441			(adapter->pdev->revision << 16) |
 442			adapter->pdev->device;
 443
 444	regs_buff[0] = er32(CTRL);
 445	regs_buff[1] = er32(STATUS);
 446
 447	regs_buff[2] = er32(RCTL);
 448	regs_buff[3] = er32(RDLEN(0));
 449	regs_buff[4] = er32(RDH(0));
 450	regs_buff[5] = er32(RDT(0));
 451	regs_buff[6] = er32(RDTR);
 452
 453	regs_buff[7] = er32(TCTL);
 454	regs_buff[8] = er32(TDLEN(0));
 455	regs_buff[9] = er32(TDH(0));
 456	regs_buff[10] = er32(TDT(0));
 457	regs_buff[11] = er32(TIDV);
 458
 459	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 460
 461	/* ethtool doesn't use anything past this point, so all this
 462	 * code is likely legacy junk for apps that may or may not exist
 463	 */
 464	if (hw->phy.type == e1000_phy_m88) {
 465		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 466		regs_buff[13] = (u32)phy_data; /* cable length */
 467		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 468		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 469		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 470		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 471		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 472		regs_buff[18] = regs_buff[13]; /* cable polarity */
 473		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 474		regs_buff[20] = regs_buff[17]; /* polarity correction */
 475		/* phy receive errors */
 476		regs_buff[22] = adapter->phy_stats.receive_errors;
 477		regs_buff[23] = regs_buff[13]; /* mdix mode */
 478	}
 479	regs_buff[21] = 0;	/* was idle_errors */
 480	e1e_rphy(hw, MII_STAT1000, &phy_data);
 481	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 482	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 483
 484	pm_runtime_put_sync(netdev->dev.parent);
 485}
 486
 487static int e1000_get_eeprom_len(struct net_device *netdev)
 488{
 489	struct e1000_adapter *adapter = netdev_priv(netdev);
 490	return adapter->hw.nvm.word_size * 2;
 491}
 492
 493static int e1000_get_eeprom(struct net_device *netdev,
 494			    struct ethtool_eeprom *eeprom, u8 *bytes)
 495{
 496	struct e1000_adapter *adapter = netdev_priv(netdev);
 497	struct e1000_hw *hw = &adapter->hw;
 498	u16 *eeprom_buff;
 499	int first_word;
 500	int last_word;
 501	int ret_val = 0;
 502	u16 i;
 503
 504	if (eeprom->len == 0)
 505		return -EINVAL;
 506
 507	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 508
 509	first_word = eeprom->offset >> 1;
 510	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 511
 512	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 513				    GFP_KERNEL);
 514	if (!eeprom_buff)
 515		return -ENOMEM;
 516
 517	pm_runtime_get_sync(netdev->dev.parent);
 518
 519	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 520		ret_val = e1000_read_nvm(hw, first_word,
 521					 last_word - first_word + 1,
 522					 eeprom_buff);
 523	} else {
 524		for (i = 0; i < last_word - first_word + 1; i++) {
 525			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 526						 &eeprom_buff[i]);
 527			if (ret_val)
 528				break;
 529		}
 530	}
 531
 532	pm_runtime_put_sync(netdev->dev.parent);
 533
 534	if (ret_val) {
 535		/* a read error occurred, throw away the result */
 536		memset(eeprom_buff, 0xff, sizeof(u16) *
 537		       (last_word - first_word + 1));
 538	} else {
 539		/* Device's eeprom is always little-endian, word addressable */
 540		for (i = 0; i < last_word - first_word + 1; i++)
 541			le16_to_cpus(&eeprom_buff[i]);
 542	}
 543
 544	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 545	kfree(eeprom_buff);
 546
 547	return ret_val;
 548}
 549
 550static int e1000_set_eeprom(struct net_device *netdev,
 551			    struct ethtool_eeprom *eeprom, u8 *bytes)
 552{
 553	struct e1000_adapter *adapter = netdev_priv(netdev);
 554	struct e1000_hw *hw = &adapter->hw;
 555	u16 *eeprom_buff;
 556	void *ptr;
 557	int max_len;
 558	int first_word;
 559	int last_word;
 560	int ret_val = 0;
 561	u16 i;
 562
 563	if (eeprom->len == 0)
 564		return -EOPNOTSUPP;
 565
 566	if (eeprom->magic !=
 567	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 568		return -EFAULT;
 569
 570	if (adapter->flags & FLAG_READ_ONLY_NVM)
 571		return -EINVAL;
 572
 573	max_len = hw->nvm.word_size * 2;
 574
 575	first_word = eeprom->offset >> 1;
 576	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 577	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 578	if (!eeprom_buff)
 579		return -ENOMEM;
 580
 581	ptr = (void *)eeprom_buff;
 582
 583	pm_runtime_get_sync(netdev->dev.parent);
 584
 585	if (eeprom->offset & 1) {
 586		/* need read/modify/write of first changed EEPROM word */
 587		/* only the second byte of the word is being modified */
 588		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 589		ptr++;
 590	}
 591	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 592		/* need read/modify/write of last changed EEPROM word */
 593		/* only the first byte of the word is being modified */
 594		ret_val = e1000_read_nvm(hw, last_word, 1,
 595					 &eeprom_buff[last_word - first_word]);
 596
 597	if (ret_val)
 598		goto out;
 599
 600	/* Device's eeprom is always little-endian, word addressable */
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		le16_to_cpus(&eeprom_buff[i]);
 603
 604	memcpy(ptr, bytes, eeprom->len);
 605
 606	for (i = 0; i < last_word - first_word + 1; i++)
 607		cpu_to_le16s(&eeprom_buff[i]);
 608
 609	ret_val = e1000_write_nvm(hw, first_word,
 610				  last_word - first_word + 1, eeprom_buff);
 611
 612	if (ret_val)
 613		goto out;
 614
 615	/* Update the checksum over the first part of the EEPROM if needed
 616	 * and flush shadow RAM for applicable controllers
 617	 */
 618	if ((first_word <= NVM_CHECKSUM_REG) ||
 619	    (hw->mac.type == e1000_82583) ||
 620	    (hw->mac.type == e1000_82574) ||
 621	    (hw->mac.type == e1000_82573))
 622		ret_val = e1000e_update_nvm_checksum(hw);
 623
 624out:
 625	pm_runtime_put_sync(netdev->dev.parent);
 626	kfree(eeprom_buff);
 627	return ret_val;
 628}
 629
 630static void e1000_get_drvinfo(struct net_device *netdev,
 631			      struct ethtool_drvinfo *drvinfo)
 632{
 633	struct e1000_adapter *adapter = netdev_priv(netdev);
 634
 635	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 636	strlcpy(drvinfo->version, e1000e_driver_version,
 637		sizeof(drvinfo->version));
 638
 639	/* EEPROM image version # is reported as firmware version # for
 640	 * PCI-E controllers
 641	 */
 642	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 643		 "%d.%d-%d",
 644		 (adapter->eeprom_vers & 0xF000) >> 12,
 645		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 646		 (adapter->eeprom_vers & 0x000F));
 647
 648	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 649		sizeof(drvinfo->bus_info));
 650}
 651
 652static void e1000_get_ringparam(struct net_device *netdev,
 653				struct ethtool_ringparam *ring)
 654{
 655	struct e1000_adapter *adapter = netdev_priv(netdev);
 656
 657	ring->rx_max_pending = E1000_MAX_RXD;
 658	ring->tx_max_pending = E1000_MAX_TXD;
 659	ring->rx_pending = adapter->rx_ring_count;
 660	ring->tx_pending = adapter->tx_ring_count;
 661}
 662
 663static int e1000_set_ringparam(struct net_device *netdev,
 664			       struct ethtool_ringparam *ring)
 665{
 666	struct e1000_adapter *adapter = netdev_priv(netdev);
 667	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 668	int err = 0, size = sizeof(struct e1000_ring);
 669	bool set_tx = false, set_rx = false;
 670	u16 new_rx_count, new_tx_count;
 671
 672	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 673		return -EINVAL;
 674
 675	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 676			       E1000_MAX_RXD);
 677	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 678
 679	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 680			       E1000_MAX_TXD);
 681	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 682
 683	if ((new_tx_count == adapter->tx_ring_count) &&
 684	    (new_rx_count == adapter->rx_ring_count))
 685		/* nothing to do */
 686		return 0;
 687
 688	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 689		usleep_range(1000, 2000);
 690
 691	if (!netif_running(adapter->netdev)) {
 692		/* Set counts now and allocate resources during open() */
 693		adapter->tx_ring->count = new_tx_count;
 694		adapter->rx_ring->count = new_rx_count;
 695		adapter->tx_ring_count = new_tx_count;
 696		adapter->rx_ring_count = new_rx_count;
 697		goto clear_reset;
 698	}
 699
 700	set_tx = (new_tx_count != adapter->tx_ring_count);
 701	set_rx = (new_rx_count != adapter->rx_ring_count);
 702
 703	/* Allocate temporary storage for ring updates */
 704	if (set_tx) {
 705		temp_tx = vmalloc(size);
 706		if (!temp_tx) {
 707			err = -ENOMEM;
 708			goto free_temp;
 709		}
 710	}
 711	if (set_rx) {
 712		temp_rx = vmalloc(size);
 713		if (!temp_rx) {
 714			err = -ENOMEM;
 715			goto free_temp;
 716		}
 717	}
 718
 719	pm_runtime_get_sync(netdev->dev.parent);
 720
 721	e1000e_down(adapter, true);
 722
 723	/* We can't just free everything and then setup again, because the
 724	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 725	 * structs.  First, attempt to allocate new resources...
 726	 */
 727	if (set_tx) {
 728		memcpy(temp_tx, adapter->tx_ring, size);
 729		temp_tx->count = new_tx_count;
 730		err = e1000e_setup_tx_resources(temp_tx);
 731		if (err)
 732			goto err_setup;
 733	}
 734	if (set_rx) {
 735		memcpy(temp_rx, adapter->rx_ring, size);
 736		temp_rx->count = new_rx_count;
 737		err = e1000e_setup_rx_resources(temp_rx);
 738		if (err)
 739			goto err_setup_rx;
 740	}
 741
 742	/* ...then free the old resources and copy back any new ring data */
 743	if (set_tx) {
 744		e1000e_free_tx_resources(adapter->tx_ring);
 745		memcpy(adapter->tx_ring, temp_tx, size);
 746		adapter->tx_ring_count = new_tx_count;
 747	}
 748	if (set_rx) {
 749		e1000e_free_rx_resources(adapter->rx_ring);
 750		memcpy(adapter->rx_ring, temp_rx, size);
 751		adapter->rx_ring_count = new_rx_count;
 752	}
 753
 754err_setup_rx:
 755	if (err && set_tx)
 756		e1000e_free_tx_resources(temp_tx);
 757err_setup:
 758	e1000e_up(adapter);
 759	pm_runtime_put_sync(netdev->dev.parent);
 760free_temp:
 761	vfree(temp_tx);
 762	vfree(temp_rx);
 763clear_reset:
 764	clear_bit(__E1000_RESETTING, &adapter->state);
 765	return err;
 766}
 767
 768static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 769			     int reg, int offset, u32 mask, u32 write)
 770{
 771	u32 pat, val;
 772	static const u32 test[] = {
 773		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 774	};
 775	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 776		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 777				      (test[pat] & write));
 778		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 779		if (val != (test[pat] & write & mask)) {
 780			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 781			      reg + (offset << 2), val,
 782			      (test[pat] & write & mask));
 783			*data = reg;
 784			return true;
 785		}
 786	}
 787	return false;
 788}
 789
 790static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 791			      int reg, u32 mask, u32 write)
 792{
 793	u32 val;
 794
 795	__ew32(&adapter->hw, reg, write & mask);
 796	val = __er32(&adapter->hw, reg);
 797	if ((write & mask) != (val & mask)) {
 798		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 799		      reg, (val & mask), (write & mask));
 800		*data = reg;
 801		return true;
 802	}
 803	return false;
 804}
 805
 806#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 807	do {                                                                   \
 808		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 809			return 1;                                              \
 810	} while (0)
 811#define REG_PATTERN_TEST(reg, mask, write)                                     \
 812	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 813
 814#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 815	do {                                                                   \
 816		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 817			return 1;                                              \
 818	} while (0)
 819
 820static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 821{
 822	struct e1000_hw *hw = &adapter->hw;
 823	struct e1000_mac_info *mac = &adapter->hw.mac;
 824	u32 value;
 825	u32 before;
 826	u32 after;
 827	u32 i;
 828	u32 toggle;
 829	u32 mask;
 830	u32 wlock_mac = 0;
 831
 832	/* The status register is Read Only, so a write should fail.
 833	 * Some bits that get toggled are ignored.  There are several bits
 834	 * on newer hardware that are r/w.
 835	 */
 836	switch (mac->type) {
 837	case e1000_82571:
 838	case e1000_82572:
 839	case e1000_80003es2lan:
 840		toggle = 0x7FFFF3FF;
 841		break;
 842	default:
 843		toggle = 0x7FFFF033;
 844		break;
 845	}
 846
 847	before = er32(STATUS);
 848	value = (er32(STATUS) & toggle);
 849	ew32(STATUS, toggle);
 850	after = er32(STATUS) & toggle;
 851	if (value != after) {
 852		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 853		      after, value);
 854		*data = 1;
 855		return 1;
 856	}
 857	/* restore previous status */
 858	ew32(STATUS, before);
 859
 860	if (!(adapter->flags & FLAG_IS_ICH)) {
 861		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 862		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 863		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 864		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 865	}
 866
 867	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 868	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 870	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 871	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 872	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 873	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 874	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 875	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 876	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 877
 878	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 879
 880	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 881	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 882	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 883
 884	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 885	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 886	if (!(adapter->flags & FLAG_IS_ICH))
 887		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 888	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 889	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 890	mask = 0x8003FFFF;
 891	switch (mac->type) {
 892	case e1000_ich10lan:
 893	case e1000_pchlan:
 894	case e1000_pch2lan:
 895	case e1000_pch_lpt:
 896	case e1000_pch_spt:
 897	case e1000_pch_cnp:
 898		/* fall through */
 899	case e1000_pch_tgp:
 900	case e1000_pch_adp:
 901		mask |= BIT(18);
 902		break;
 903	default:
 904		break;
 905	}
 906
 907	if (mac->type >= e1000_pch_lpt)
 908		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 909		    E1000_FWSM_WLOCK_MAC_SHIFT;
 910
 911	for (i = 0; i < mac->rar_entry_count; i++) {
 912		if (mac->type >= e1000_pch_lpt) {
 913			/* Cannot test write-protected SHRAL[n] registers */
 914			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 915				continue;
 916
 917			/* SHRAH[9] different than the others */
 918			if (i == 10)
 919				mask |= BIT(30);
 920			else
 921				mask &= ~BIT(30);
 922		}
 923		if (mac->type == e1000_pch2lan) {
 924			/* SHRAH[0,1,2] different than previous */
 925			if (i == 1)
 926				mask &= 0xFFF4FFFF;
 927			/* SHRAH[3] different than SHRAH[0,1,2] */
 928			if (i == 4)
 929				mask |= BIT(30);
 930			/* RAR[1-6] owned by management engine - skipping */
 931			if (i > 0)
 932				i += 6;
 933		}
 934
 935		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 936				       0xFFFFFFFF);
 937		/* reset index to actual value */
 938		if ((mac->type == e1000_pch2lan) && (i > 6))
 939			i -= 6;
 940	}
 941
 942	for (i = 0; i < mac->mta_reg_count; i++)
 943		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 944
 945	*data = 0;
 946
 947	return 0;
 948}
 949
 950static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 951{
 952	u16 temp;
 953	u16 checksum = 0;
 954	u16 i;
 955
 956	*data = 0;
 957	/* Read and add up the contents of the EEPROM */
 958	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 959		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 960			*data = 1;
 961			return *data;
 962		}
 963		checksum += temp;
 964	}
 965
 966	/* If Checksum is not Correct return error else test passed */
 967	if ((checksum != (u16)NVM_SUM) && !(*data))
 968		*data = 2;
 969
 970	return *data;
 971}
 972
 973static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 974{
 975	struct net_device *netdev = (struct net_device *)data;
 976	struct e1000_adapter *adapter = netdev_priv(netdev);
 977	struct e1000_hw *hw = &adapter->hw;
 978
 979	adapter->test_icr |= er32(ICR);
 980
 981	return IRQ_HANDLED;
 982}
 983
 984static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 985{
 986	struct net_device *netdev = adapter->netdev;
 987	struct e1000_hw *hw = &adapter->hw;
 988	u32 mask;
 989	u32 shared_int = 1;
 990	u32 irq = adapter->pdev->irq;
 991	int i;
 992	int ret_val = 0;
 993	int int_mode = E1000E_INT_MODE_LEGACY;
 994
 995	*data = 0;
 996
 997	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 998	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 999		int_mode = adapter->int_mode;
1000		e1000e_reset_interrupt_capability(adapter);
1001		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1002		e1000e_set_interrupt_capability(adapter);
1003	}
1004	/* Hook up test interrupt handler just for this test */
1005	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1006			 netdev)) {
1007		shared_int = 0;
1008	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1009			       netdev)) {
1010		*data = 1;
1011		ret_val = -1;
1012		goto out;
1013	}
1014	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1015
1016	/* Disable all the interrupts */
1017	ew32(IMC, 0xFFFFFFFF);
1018	e1e_flush();
1019	usleep_range(10000, 11000);
1020
1021	/* Test each interrupt */
1022	for (i = 0; i < 10; i++) {
1023		/* Interrupt to test */
1024		mask = BIT(i);
1025
1026		if (adapter->flags & FLAG_IS_ICH) {
1027			switch (mask) {
1028			case E1000_ICR_RXSEQ:
1029				continue;
1030			case 0x00000100:
1031				if (adapter->hw.mac.type == e1000_ich8lan ||
1032				    adapter->hw.mac.type == e1000_ich9lan)
1033					continue;
1034				break;
1035			default:
1036				break;
1037			}
1038		}
1039
1040		if (!shared_int) {
1041			/* Disable the interrupt to be reported in
1042			 * the cause register and then force the same
1043			 * interrupt and see if one gets posted.  If
1044			 * an interrupt was posted to the bus, the
1045			 * test failed.
1046			 */
1047			adapter->test_icr = 0;
1048			ew32(IMC, mask);
1049			ew32(ICS, mask);
1050			e1e_flush();
1051			usleep_range(10000, 11000);
1052
1053			if (adapter->test_icr & mask) {
1054				*data = 3;
1055				break;
1056			}
1057		}
1058
1059		/* Enable the interrupt to be reported in
1060		 * the cause register and then force the same
1061		 * interrupt and see if one gets posted.  If
1062		 * an interrupt was not posted to the bus, the
1063		 * test failed.
1064		 */
1065		adapter->test_icr = 0;
1066		ew32(IMS, mask);
1067		ew32(ICS, mask);
1068		e1e_flush();
1069		usleep_range(10000, 11000);
1070
1071		if (!(adapter->test_icr & mask)) {
1072			*data = 4;
1073			break;
1074		}
1075
1076		if (!shared_int) {
1077			/* Disable the other interrupts to be reported in
1078			 * the cause register and then force the other
1079			 * interrupts and see if any get posted.  If
1080			 * an interrupt was posted to the bus, the
1081			 * test failed.
1082			 */
1083			adapter->test_icr = 0;
1084			ew32(IMC, ~mask & 0x00007FFF);
1085			ew32(ICS, ~mask & 0x00007FFF);
1086			e1e_flush();
1087			usleep_range(10000, 11000);
1088
1089			if (adapter->test_icr) {
1090				*data = 5;
1091				break;
1092			}
1093		}
1094	}
1095
1096	/* Disable all the interrupts */
1097	ew32(IMC, 0xFFFFFFFF);
1098	e1e_flush();
1099	usleep_range(10000, 11000);
1100
1101	/* Unhook test interrupt handler */
1102	free_irq(irq, netdev);
1103
1104out:
1105	if (int_mode == E1000E_INT_MODE_MSIX) {
1106		e1000e_reset_interrupt_capability(adapter);
1107		adapter->int_mode = int_mode;
1108		e1000e_set_interrupt_capability(adapter);
1109	}
1110
1111	return ret_val;
1112}
1113
1114static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1115{
1116	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1117	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1118	struct pci_dev *pdev = adapter->pdev;
1119	struct e1000_buffer *buffer_info;
1120	int i;
1121
1122	if (tx_ring->desc && tx_ring->buffer_info) {
1123		for (i = 0; i < tx_ring->count; i++) {
1124			buffer_info = &tx_ring->buffer_info[i];
1125
1126			if (buffer_info->dma)
1127				dma_unmap_single(&pdev->dev,
1128						 buffer_info->dma,
1129						 buffer_info->length,
1130						 DMA_TO_DEVICE);
1131			dev_kfree_skb(buffer_info->skb);
1132		}
1133	}
1134
1135	if (rx_ring->desc && rx_ring->buffer_info) {
1136		for (i = 0; i < rx_ring->count; i++) {
1137			buffer_info = &rx_ring->buffer_info[i];
1138
1139			if (buffer_info->dma)
1140				dma_unmap_single(&pdev->dev,
1141						 buffer_info->dma,
1142						 2048, DMA_FROM_DEVICE);
1143			dev_kfree_skb(buffer_info->skb);
1144		}
1145	}
1146
1147	if (tx_ring->desc) {
1148		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1149				  tx_ring->dma);
1150		tx_ring->desc = NULL;
1151	}
1152	if (rx_ring->desc) {
1153		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1154				  rx_ring->dma);
1155		rx_ring->desc = NULL;
1156	}
1157
1158	kfree(tx_ring->buffer_info);
1159	tx_ring->buffer_info = NULL;
1160	kfree(rx_ring->buffer_info);
1161	rx_ring->buffer_info = NULL;
1162}
1163
1164static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1165{
1166	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1167	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1168	struct pci_dev *pdev = adapter->pdev;
1169	struct e1000_hw *hw = &adapter->hw;
1170	u32 rctl;
1171	int i;
1172	int ret_val;
1173
1174	/* Setup Tx descriptor ring and Tx buffers */
1175
1176	if (!tx_ring->count)
1177		tx_ring->count = E1000_DEFAULT_TXD;
1178
1179	tx_ring->buffer_info = kcalloc(tx_ring->count,
1180				       sizeof(struct e1000_buffer), GFP_KERNEL);
1181	if (!tx_ring->buffer_info) {
1182		ret_val = 1;
1183		goto err_nomem;
1184	}
1185
1186	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1187	tx_ring->size = ALIGN(tx_ring->size, 4096);
1188	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1189					   &tx_ring->dma, GFP_KERNEL);
1190	if (!tx_ring->desc) {
1191		ret_val = 2;
1192		goto err_nomem;
1193	}
1194	tx_ring->next_to_use = 0;
1195	tx_ring->next_to_clean = 0;
1196
1197	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1198	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1199	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1200	ew32(TDH(0), 0);
1201	ew32(TDT(0), 0);
1202	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1203	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1204	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1205
1206	for (i = 0; i < tx_ring->count; i++) {
1207		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1208		struct sk_buff *skb;
1209		unsigned int skb_size = 1024;
1210
1211		skb = alloc_skb(skb_size, GFP_KERNEL);
1212		if (!skb) {
1213			ret_val = 3;
1214			goto err_nomem;
1215		}
1216		skb_put(skb, skb_size);
1217		tx_ring->buffer_info[i].skb = skb;
1218		tx_ring->buffer_info[i].length = skb->len;
1219		tx_ring->buffer_info[i].dma =
1220		    dma_map_single(&pdev->dev, skb->data, skb->len,
1221				   DMA_TO_DEVICE);
1222		if (dma_mapping_error(&pdev->dev,
1223				      tx_ring->buffer_info[i].dma)) {
1224			ret_val = 4;
1225			goto err_nomem;
1226		}
1227		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1228		tx_desc->lower.data = cpu_to_le32(skb->len);
1229		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1230						   E1000_TXD_CMD_IFCS |
1231						   E1000_TXD_CMD_RS);
1232		tx_desc->upper.data = 0;
1233	}
1234
1235	/* Setup Rx descriptor ring and Rx buffers */
1236
1237	if (!rx_ring->count)
1238		rx_ring->count = E1000_DEFAULT_RXD;
1239
1240	rx_ring->buffer_info = kcalloc(rx_ring->count,
1241				       sizeof(struct e1000_buffer), GFP_KERNEL);
1242	if (!rx_ring->buffer_info) {
1243		ret_val = 5;
1244		goto err_nomem;
1245	}
1246
1247	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1248	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1249					   &rx_ring->dma, GFP_KERNEL);
1250	if (!rx_ring->desc) {
1251		ret_val = 6;
1252		goto err_nomem;
1253	}
1254	rx_ring->next_to_use = 0;
1255	rx_ring->next_to_clean = 0;
1256
1257	rctl = er32(RCTL);
1258	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1259		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1260	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1261	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1262	ew32(RDLEN(0), rx_ring->size);
1263	ew32(RDH(0), 0);
1264	ew32(RDT(0), 0);
1265	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1266	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1267	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1268	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1269	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1270	ew32(RCTL, rctl);
1271
1272	for (i = 0; i < rx_ring->count; i++) {
1273		union e1000_rx_desc_extended *rx_desc;
1274		struct sk_buff *skb;
1275
1276		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1277		if (!skb) {
1278			ret_val = 7;
1279			goto err_nomem;
1280		}
1281		skb_reserve(skb, NET_IP_ALIGN);
1282		rx_ring->buffer_info[i].skb = skb;
1283		rx_ring->buffer_info[i].dma =
1284		    dma_map_single(&pdev->dev, skb->data, 2048,
1285				   DMA_FROM_DEVICE);
1286		if (dma_mapping_error(&pdev->dev,
1287				      rx_ring->buffer_info[i].dma)) {
1288			ret_val = 8;
1289			goto err_nomem;
1290		}
1291		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1292		rx_desc->read.buffer_addr =
1293		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1294		memset(skb->data, 0x00, skb->len);
1295	}
1296
1297	return 0;
1298
1299err_nomem:
1300	e1000_free_desc_rings(adapter);
1301	return ret_val;
1302}
1303
1304static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1305{
1306	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1307	e1e_wphy(&adapter->hw, 29, 0x001F);
1308	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1309	e1e_wphy(&adapter->hw, 29, 0x001A);
1310	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1311}
1312
1313static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1314{
1315	struct e1000_hw *hw = &adapter->hw;
1316	u32 ctrl_reg = 0;
1317	u16 phy_reg = 0;
1318	s32 ret_val = 0;
1319
1320	hw->mac.autoneg = 0;
1321
1322	if (hw->phy.type == e1000_phy_ife) {
1323		/* force 100, set loopback */
1324		e1e_wphy(hw, MII_BMCR, 0x6100);
1325
1326		/* Now set up the MAC to the same speed/duplex as the PHY. */
1327		ctrl_reg = er32(CTRL);
1328		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1329		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1330			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1331			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1332			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1333
1334		ew32(CTRL, ctrl_reg);
1335		e1e_flush();
1336		usleep_range(500, 1000);
1337
1338		return 0;
1339	}
1340
1341	/* Specific PHY configuration for loopback */
1342	switch (hw->phy.type) {
1343	case e1000_phy_m88:
1344		/* Auto-MDI/MDIX Off */
1345		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346		/* reset to update Auto-MDI/MDIX */
1347		e1e_wphy(hw, MII_BMCR, 0x9140);
1348		/* autoneg off */
1349		e1e_wphy(hw, MII_BMCR, 0x8140);
1350		break;
1351	case e1000_phy_gg82563:
1352		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1353		break;
1354	case e1000_phy_bm:
1355		/* Set Default MAC Interface speed to 1GB */
1356		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1357		phy_reg &= ~0x0007;
1358		phy_reg |= 0x006;
1359		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1360		/* Assert SW reset for above settings to take effect */
1361		hw->phy.ops.commit(hw);
1362		usleep_range(1000, 2000);
1363		/* Force Full Duplex */
1364		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1365		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1366		/* Set Link Up (in force link) */
1367		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1368		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1369		/* Force Link */
1370		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1371		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1372		/* Set Early Link Enable */
1373		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1374		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1375		break;
1376	case e1000_phy_82577:
1377	case e1000_phy_82578:
1378		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1379		ret_val = hw->phy.ops.acquire(hw);
1380		if (ret_val) {
1381			e_err("Cannot setup 1Gbps loopback.\n");
1382			return ret_val;
1383		}
1384		e1000_configure_k1_ich8lan(hw, false);
1385		hw->phy.ops.release(hw);
1386		break;
1387	case e1000_phy_82579:
1388		/* Disable PHY energy detect power down */
1389		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1390		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1391		/* Disable full chip energy detect */
1392		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1393		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1394		/* Enable loopback on the PHY */
1395		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1396		break;
1397	default:
1398		break;
1399	}
1400
1401	/* force 1000, set loopback */
1402	e1e_wphy(hw, MII_BMCR, 0x4140);
1403	msleep(250);
1404
1405	/* Now set up the MAC to the same speed/duplex as the PHY. */
1406	ctrl_reg = er32(CTRL);
1407	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1408	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1409		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1410		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1411		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1412
1413	if (adapter->flags & FLAG_IS_ICH)
1414		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1415
1416	if (hw->phy.media_type == e1000_media_type_copper &&
1417	    hw->phy.type == e1000_phy_m88) {
1418		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1419	} else {
1420		/* Set the ILOS bit on the fiber Nic if half duplex link is
1421		 * detected.
1422		 */
1423		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1424			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1425	}
1426
1427	ew32(CTRL, ctrl_reg);
1428
1429	/* Disable the receiver on the PHY so when a cable is plugged in, the
1430	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1431	 */
1432	if (hw->phy.type == e1000_phy_m88)
1433		e1000_phy_disable_receiver(adapter);
1434
1435	usleep_range(500, 1000);
1436
1437	return 0;
1438}
1439
1440static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1441{
1442	struct e1000_hw *hw = &adapter->hw;
1443	u32 ctrl = er32(CTRL);
1444	int link;
1445
1446	/* special requirements for 82571/82572 fiber adapters */
1447
1448	/* jump through hoops to make sure link is up because serdes
1449	 * link is hardwired up
1450	 */
1451	ctrl |= E1000_CTRL_SLU;
1452	ew32(CTRL, ctrl);
1453
1454	/* disable autoneg */
1455	ctrl = er32(TXCW);
1456	ctrl &= ~BIT(31);
1457	ew32(TXCW, ctrl);
1458
1459	link = (er32(STATUS) & E1000_STATUS_LU);
1460
1461	if (!link) {
1462		/* set invert loss of signal */
1463		ctrl = er32(CTRL);
1464		ctrl |= E1000_CTRL_ILOS;
1465		ew32(CTRL, ctrl);
1466	}
1467
1468	/* special write to serdes control register to enable SerDes analog
1469	 * loopback
1470	 */
1471	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1472	e1e_flush();
1473	usleep_range(10000, 11000);
1474
1475	return 0;
1476}
1477
1478/* only call this for fiber/serdes connections to es2lan */
1479static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1480{
1481	struct e1000_hw *hw = &adapter->hw;
1482	u32 ctrlext = er32(CTRL_EXT);
1483	u32 ctrl = er32(CTRL);
1484
1485	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1486	 * on mac_type 80003es2lan)
1487	 */
1488	adapter->tx_fifo_head = ctrlext;
1489
1490	/* clear the serdes mode bits, putting the device into mac loopback */
1491	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1492	ew32(CTRL_EXT, ctrlext);
1493
1494	/* force speed to 1000/FD, link up */
1495	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1496	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1497		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1498	ew32(CTRL, ctrl);
1499
1500	/* set mac loopback */
1501	ctrl = er32(RCTL);
1502	ctrl |= E1000_RCTL_LBM_MAC;
1503	ew32(RCTL, ctrl);
1504
1505	/* set testing mode parameters (no need to reset later) */
1506#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1507#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1508	ew32(KMRNCTRLSTA,
1509	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1510
1511	return 0;
1512}
1513
1514static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1515{
1516	struct e1000_hw *hw = &adapter->hw;
1517	u32 rctl, fext_nvm11, tarc0;
1518
1519	if (hw->mac.type >= e1000_pch_spt) {
1520		fext_nvm11 = er32(FEXTNVM11);
1521		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1522		ew32(FEXTNVM11, fext_nvm11);
1523		tarc0 = er32(TARC(0));
1524		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1525		tarc0 &= 0xcfffffff;
1526		/* set bit 29 (value of MULR requests is now 2) */
1527		tarc0 |= 0x20000000;
1528		ew32(TARC(0), tarc0);
1529	}
1530	if (hw->phy.media_type == e1000_media_type_fiber ||
1531	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1532		switch (hw->mac.type) {
1533		case e1000_80003es2lan:
1534			return e1000_set_es2lan_mac_loopback(adapter);
1535		case e1000_82571:
1536		case e1000_82572:
1537			return e1000_set_82571_fiber_loopback(adapter);
1538		default:
1539			rctl = er32(RCTL);
1540			rctl |= E1000_RCTL_LBM_TCVR;
1541			ew32(RCTL, rctl);
1542			return 0;
1543		}
1544	} else if (hw->phy.media_type == e1000_media_type_copper) {
1545		return e1000_integrated_phy_loopback(adapter);
1546	}
1547
1548	return 7;
1549}
1550
1551static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1552{
1553	struct e1000_hw *hw = &adapter->hw;
1554	u32 rctl, fext_nvm11, tarc0;
1555	u16 phy_reg;
1556
1557	rctl = er32(RCTL);
1558	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1559	ew32(RCTL, rctl);
1560
1561	switch (hw->mac.type) {
1562	case e1000_pch_spt:
1563	case e1000_pch_cnp:
1564	case e1000_pch_tgp:
1565	case e1000_pch_adp:
1566		fext_nvm11 = er32(FEXTNVM11);
1567		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1568		ew32(FEXTNVM11, fext_nvm11);
1569		tarc0 = er32(TARC(0));
1570		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1571		/* set bit 29 (value of MULR requests is now 0) */
1572		tarc0 &= 0xcfffffff;
1573		ew32(TARC(0), tarc0);
1574		/* fall through */
1575	case e1000_80003es2lan:
1576		if (hw->phy.media_type == e1000_media_type_fiber ||
1577		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1578			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1579			ew32(CTRL_EXT, adapter->tx_fifo_head);
1580			adapter->tx_fifo_head = 0;
1581		}
1582		/* fall through */
1583	case e1000_82571:
1584	case e1000_82572:
1585		if (hw->phy.media_type == e1000_media_type_fiber ||
1586		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1587			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1588			e1e_flush();
1589			usleep_range(10000, 11000);
1590			break;
1591		}
1592		/* Fall Through */
1593	default:
1594		hw->mac.autoneg = 1;
1595		if (hw->phy.type == e1000_phy_gg82563)
1596			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1597		e1e_rphy(hw, MII_BMCR, &phy_reg);
1598		if (phy_reg & BMCR_LOOPBACK) {
1599			phy_reg &= ~BMCR_LOOPBACK;
1600			e1e_wphy(hw, MII_BMCR, phy_reg);
1601			if (hw->phy.ops.commit)
1602				hw->phy.ops.commit(hw);
1603		}
1604		break;
1605	}
1606}
1607
1608static void e1000_create_lbtest_frame(struct sk_buff *skb,
1609				      unsigned int frame_size)
1610{
1611	memset(skb->data, 0xFF, frame_size);
1612	frame_size &= ~1;
1613	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1614	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1615	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1616}
1617
1618static int e1000_check_lbtest_frame(struct sk_buff *skb,
1619				    unsigned int frame_size)
1620{
1621	frame_size &= ~1;
1622	if (*(skb->data + 3) == 0xFF)
1623		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1624		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1625			return 0;
1626	return 13;
1627}
1628
1629static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1630{
1631	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1632	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1633	struct pci_dev *pdev = adapter->pdev;
1634	struct e1000_hw *hw = &adapter->hw;
1635	struct e1000_buffer *buffer_info;
1636	int i, j, k, l;
1637	int lc;
1638	int good_cnt;
1639	int ret_val = 0;
1640	unsigned long time;
1641
1642	ew32(RDT(0), rx_ring->count - 1);
1643
1644	/* Calculate the loop count based on the largest descriptor ring
1645	 * The idea is to wrap the largest ring a number of times using 64
1646	 * send/receive pairs during each loop
1647	 */
1648
1649	if (rx_ring->count <= tx_ring->count)
1650		lc = ((tx_ring->count / 64) * 2) + 1;
1651	else
1652		lc = ((rx_ring->count / 64) * 2) + 1;
1653
1654	k = 0;
1655	l = 0;
1656	/* loop count loop */
1657	for (j = 0; j <= lc; j++) {
1658		/* send the packets */
1659		for (i = 0; i < 64; i++) {
1660			buffer_info = &tx_ring->buffer_info[k];
1661
1662			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1663			dma_sync_single_for_device(&pdev->dev,
1664						   buffer_info->dma,
1665						   buffer_info->length,
1666						   DMA_TO_DEVICE);
1667			k++;
1668			if (k == tx_ring->count)
1669				k = 0;
1670		}
1671		ew32(TDT(0), k);
1672		e1e_flush();
1673		msleep(200);
1674		time = jiffies;	/* set the start time for the receive */
1675		good_cnt = 0;
1676		/* receive the sent packets */
1677		do {
1678			buffer_info = &rx_ring->buffer_info[l];
1679
1680			dma_sync_single_for_cpu(&pdev->dev,
1681						buffer_info->dma, 2048,
1682						DMA_FROM_DEVICE);
1683
1684			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1685							   1024);
1686			if (!ret_val)
1687				good_cnt++;
1688			l++;
1689			if (l == rx_ring->count)
1690				l = 0;
1691			/* time + 20 msecs (200 msecs on 2.4) is more than
1692			 * enough time to complete the receives, if it's
1693			 * exceeded, break and error off
1694			 */
1695		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1696		if (good_cnt != 64) {
1697			ret_val = 13;	/* ret_val is the same as mis-compare */
1698			break;
1699		}
1700		if (time_after(jiffies, time + 20)) {
1701			ret_val = 14;	/* error code for time out error */
1702			break;
1703		}
1704	}
1705	return ret_val;
1706}
1707
1708static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1709{
1710	struct e1000_hw *hw = &adapter->hw;
1711
1712	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1713	if (hw->phy.ops.check_reset_block &&
1714	    hw->phy.ops.check_reset_block(hw)) {
1715		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1716		*data = 0;
1717		goto out;
1718	}
1719
1720	*data = e1000_setup_desc_rings(adapter);
1721	if (*data)
1722		goto out;
1723
1724	*data = e1000_setup_loopback_test(adapter);
1725	if (*data)
1726		goto err_loopback;
1727
1728	*data = e1000_run_loopback_test(adapter);
1729	e1000_loopback_cleanup(adapter);
1730
1731err_loopback:
1732	e1000_free_desc_rings(adapter);
1733out:
1734	return *data;
1735}
1736
1737static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1738{
1739	struct e1000_hw *hw = &adapter->hw;
1740
1741	*data = 0;
1742	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1743		int i = 0;
1744
1745		hw->mac.serdes_has_link = false;
1746
1747		/* On some blade server designs, link establishment
1748		 * could take as long as 2-3 minutes
1749		 */
1750		do {
1751			hw->mac.ops.check_for_link(hw);
1752			if (hw->mac.serdes_has_link)
1753				return *data;
1754			msleep(20);
1755		} while (i++ < 3750);
1756
1757		*data = 1;
1758	} else {
1759		hw->mac.ops.check_for_link(hw);
1760		if (hw->mac.autoneg)
1761			/* On some Phy/switch combinations, link establishment
1762			 * can take a few seconds more than expected.
1763			 */
1764			msleep_interruptible(5000);
1765
1766		if (!(er32(STATUS) & E1000_STATUS_LU))
1767			*data = 1;
1768	}
1769	return *data;
1770}
1771
1772static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1773				 int sset)
1774{
1775	switch (sset) {
1776	case ETH_SS_TEST:
1777		return E1000_TEST_LEN;
1778	case ETH_SS_STATS:
1779		return E1000_STATS_LEN;
1780	default:
1781		return -EOPNOTSUPP;
1782	}
1783}
1784
1785static void e1000_diag_test(struct net_device *netdev,
1786			    struct ethtool_test *eth_test, u64 *data)
1787{
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	u16 autoneg_advertised;
1790	u8 forced_speed_duplex;
1791	u8 autoneg;
1792	bool if_running = netif_running(netdev);
1793
1794	pm_runtime_get_sync(netdev->dev.parent);
1795
1796	set_bit(__E1000_TESTING, &adapter->state);
1797
1798	if (!if_running) {
1799		/* Get control of and reset hardware */
1800		if (adapter->flags & FLAG_HAS_AMT)
1801			e1000e_ge

Large files files are truncated, but you can click here to view the full file