/drivers/hwmon/ibmaem.c

http://github.com/mirrors/linux · C · 1103 lines · 820 code · 191 blank · 92 comment · 65 complexity · 53385fcd9fdd23b01c4c14a791c7dc94 MD5 · raw file

  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * A hwmon driver for the IBM System Director Active Energy Manager (AEM)
  4. * temperature/power/energy sensors and capping functionality.
  5. * Copyright (C) 2008 IBM
  6. *
  7. * Author: Darrick J. Wong <darrick.wong@oracle.com>
  8. */
  9. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10. #include <linux/ipmi.h>
  11. #include <linux/module.h>
  12. #include <linux/hwmon.h>
  13. #include <linux/hwmon-sysfs.h>
  14. #include <linux/jiffies.h>
  15. #include <linux/mutex.h>
  16. #include <linux/kdev_t.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/idr.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/math64.h>
  23. #include <linux/time.h>
  24. #include <linux/err.h>
  25. #define REFRESH_INTERVAL (HZ)
  26. #define IPMI_TIMEOUT (30 * HZ)
  27. #define DRVNAME "aem"
  28. #define AEM_NETFN 0x2E
  29. #define AEM_FIND_FW_CMD 0x80
  30. #define AEM_ELEMENT_CMD 0x81
  31. #define AEM_FW_INSTANCE_CMD 0x82
  32. #define AEM_READ_ELEMENT_CFG 0x80
  33. #define AEM_READ_BUFFER 0x81
  34. #define AEM_READ_REGISTER 0x82
  35. #define AEM_WRITE_REGISTER 0x83
  36. #define AEM_SET_REG_MASK 0x84
  37. #define AEM_CLEAR_REG_MASK 0x85
  38. #define AEM_READ_ELEMENT_CFG2 0x86
  39. #define AEM_CONTROL_ELEMENT 0
  40. #define AEM_ENERGY_ELEMENT 1
  41. #define AEM_CLOCK_ELEMENT 4
  42. #define AEM_POWER_CAP_ELEMENT 7
  43. #define AEM_EXHAUST_ELEMENT 9
  44. #define AEM_POWER_ELEMENT 10
  45. #define AEM_MODULE_TYPE_ID 0x0001
  46. #define AEM2_NUM_ENERGY_REGS 2
  47. #define AEM2_NUM_PCAP_REGS 6
  48. #define AEM2_NUM_TEMP_REGS 2
  49. #define AEM2_NUM_SENSORS 14
  50. #define AEM1_NUM_ENERGY_REGS 1
  51. #define AEM1_NUM_SENSORS 3
  52. /* AEM 2.x has more energy registers */
  53. #define AEM_NUM_ENERGY_REGS AEM2_NUM_ENERGY_REGS
  54. /* AEM 2.x needs more sensor files */
  55. #define AEM_NUM_SENSORS AEM2_NUM_SENSORS
  56. #define POWER_CAP 0
  57. #define POWER_CAP_MAX_HOTPLUG 1
  58. #define POWER_CAP_MAX 2
  59. #define POWER_CAP_MIN_WARNING 3
  60. #define POWER_CAP_MIN 4
  61. #define POWER_AUX 5
  62. #define AEM_DEFAULT_POWER_INTERVAL 1000
  63. #define AEM_MIN_POWER_INTERVAL 200
  64. #define UJ_PER_MJ 1000L
  65. static DEFINE_IDA(aem_ida);
  66. static struct platform_driver aem_driver = {
  67. .driver = {
  68. .name = DRVNAME,
  69. .bus = &platform_bus_type,
  70. }
  71. };
  72. struct aem_ipmi_data {
  73. struct completion read_complete;
  74. struct ipmi_addr address;
  75. struct ipmi_user *user;
  76. int interface;
  77. struct kernel_ipmi_msg tx_message;
  78. long tx_msgid;
  79. void *rx_msg_data;
  80. unsigned short rx_msg_len;
  81. unsigned char rx_result;
  82. int rx_recv_type;
  83. struct device *bmc_device;
  84. };
  85. struct aem_ro_sensor_template {
  86. char *label;
  87. ssize_t (*show)(struct device *dev,
  88. struct device_attribute *devattr,
  89. char *buf);
  90. int index;
  91. };
  92. struct aem_rw_sensor_template {
  93. char *label;
  94. ssize_t (*show)(struct device *dev,
  95. struct device_attribute *devattr,
  96. char *buf);
  97. ssize_t (*set)(struct device *dev,
  98. struct device_attribute *devattr,
  99. const char *buf, size_t count);
  100. int index;
  101. };
  102. struct aem_data {
  103. struct list_head list;
  104. struct device *hwmon_dev;
  105. struct platform_device *pdev;
  106. struct mutex lock;
  107. char valid;
  108. unsigned long last_updated; /* In jiffies */
  109. u8 ver_major;
  110. u8 ver_minor;
  111. u8 module_handle;
  112. int id;
  113. struct aem_ipmi_data ipmi;
  114. /* Function and buffer to update sensors */
  115. void (*update)(struct aem_data *data);
  116. struct aem_read_sensor_resp *rs_resp;
  117. /*
  118. * AEM 1.x sensors:
  119. * Available sensors:
  120. * Energy meter
  121. * Power meter
  122. *
  123. * AEM 2.x sensors:
  124. * Two energy meters
  125. * Two power meters
  126. * Two temperature sensors
  127. * Six power cap registers
  128. */
  129. /* sysfs attrs */
  130. struct sensor_device_attribute sensors[AEM_NUM_SENSORS];
  131. /* energy use in mJ */
  132. u64 energy[AEM_NUM_ENERGY_REGS];
  133. /* power sampling interval in ms */
  134. unsigned long power_period[AEM_NUM_ENERGY_REGS];
  135. /* Everything past here is for AEM2 only */
  136. /* power caps in dW */
  137. u16 pcap[AEM2_NUM_PCAP_REGS];
  138. /* exhaust temperature in C */
  139. u8 temp[AEM2_NUM_TEMP_REGS];
  140. };
  141. /* Data structures returned by the AEM firmware */
  142. struct aem_iana_id {
  143. u8 bytes[3];
  144. };
  145. static struct aem_iana_id system_x_id = {
  146. .bytes = {0x4D, 0x4F, 0x00}
  147. };
  148. /* These are used to find AEM1 instances */
  149. struct aem_find_firmware_req {
  150. struct aem_iana_id id;
  151. u8 rsvd;
  152. __be16 index;
  153. __be16 module_type_id;
  154. } __packed;
  155. struct aem_find_firmware_resp {
  156. struct aem_iana_id id;
  157. u8 num_instances;
  158. } __packed;
  159. /* These are used to find AEM2 instances */
  160. struct aem_find_instance_req {
  161. struct aem_iana_id id;
  162. u8 instance_number;
  163. __be16 module_type_id;
  164. } __packed;
  165. struct aem_find_instance_resp {
  166. struct aem_iana_id id;
  167. u8 num_instances;
  168. u8 major;
  169. u8 minor;
  170. u8 module_handle;
  171. u16 record_id;
  172. } __packed;
  173. /* These are used to query sensors */
  174. struct aem_read_sensor_req {
  175. struct aem_iana_id id;
  176. u8 module_handle;
  177. u8 element;
  178. u8 subcommand;
  179. u8 reg;
  180. u8 rx_buf_size;
  181. } __packed;
  182. struct aem_read_sensor_resp {
  183. struct aem_iana_id id;
  184. u8 bytes[];
  185. } __packed;
  186. /* Data structures to talk to the IPMI layer */
  187. struct aem_driver_data {
  188. struct list_head aem_devices;
  189. struct ipmi_smi_watcher bmc_events;
  190. struct ipmi_user_hndl ipmi_hndlrs;
  191. };
  192. static void aem_register_bmc(int iface, struct device *dev);
  193. static void aem_bmc_gone(int iface);
  194. static void aem_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data);
  195. static void aem_remove_sensors(struct aem_data *data);
  196. static int aem1_find_sensors(struct aem_data *data);
  197. static int aem2_find_sensors(struct aem_data *data);
  198. static void update_aem1_sensors(struct aem_data *data);
  199. static void update_aem2_sensors(struct aem_data *data);
  200. static struct aem_driver_data driver_data = {
  201. .aem_devices = LIST_HEAD_INIT(driver_data.aem_devices),
  202. .bmc_events = {
  203. .owner = THIS_MODULE,
  204. .new_smi = aem_register_bmc,
  205. .smi_gone = aem_bmc_gone,
  206. },
  207. .ipmi_hndlrs = {
  208. .ipmi_recv_hndl = aem_msg_handler,
  209. },
  210. };
  211. /* Functions to talk to the IPMI layer */
  212. /* Initialize IPMI address, message buffers and user data */
  213. static int aem_init_ipmi_data(struct aem_ipmi_data *data, int iface,
  214. struct device *bmc)
  215. {
  216. int err;
  217. init_completion(&data->read_complete);
  218. data->bmc_device = bmc;
  219. /* Initialize IPMI address */
  220. data->address.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
  221. data->address.channel = IPMI_BMC_CHANNEL;
  222. data->address.data[0] = 0;
  223. data->interface = iface;
  224. /* Initialize message buffers */
  225. data->tx_msgid = 0;
  226. data->tx_message.netfn = AEM_NETFN;
  227. /* Create IPMI messaging interface user */
  228. err = ipmi_create_user(data->interface, &driver_data.ipmi_hndlrs,
  229. data, &data->user);
  230. if (err < 0) {
  231. dev_err(bmc,
  232. "Unable to register user with IPMI interface %d\n",
  233. data->interface);
  234. return err;
  235. }
  236. return 0;
  237. }
  238. /* Send an IPMI command */
  239. static int aem_send_message(struct aem_ipmi_data *data)
  240. {
  241. int err;
  242. err = ipmi_validate_addr(&data->address, sizeof(data->address));
  243. if (err)
  244. goto out;
  245. data->tx_msgid++;
  246. err = ipmi_request_settime(data->user, &data->address, data->tx_msgid,
  247. &data->tx_message, data, 0, 0, 0);
  248. if (err)
  249. goto out1;
  250. return 0;
  251. out1:
  252. dev_err(data->bmc_device, "request_settime=%x\n", err);
  253. return err;
  254. out:
  255. dev_err(data->bmc_device, "validate_addr=%x\n", err);
  256. return err;
  257. }
  258. /* Dispatch IPMI messages to callers */
  259. static void aem_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data)
  260. {
  261. unsigned short rx_len;
  262. struct aem_ipmi_data *data = user_msg_data;
  263. if (msg->msgid != data->tx_msgid) {
  264. dev_err(data->bmc_device,
  265. "Mismatch between received msgid (%02x) and transmitted msgid (%02x)!\n",
  266. (int)msg->msgid,
  267. (int)data->tx_msgid);
  268. ipmi_free_recv_msg(msg);
  269. return;
  270. }
  271. data->rx_recv_type = msg->recv_type;
  272. if (msg->msg.data_len > 0)
  273. data->rx_result = msg->msg.data[0];
  274. else
  275. data->rx_result = IPMI_UNKNOWN_ERR_COMPLETION_CODE;
  276. if (msg->msg.data_len > 1) {
  277. rx_len = msg->msg.data_len - 1;
  278. if (data->rx_msg_len < rx_len)
  279. rx_len = data->rx_msg_len;
  280. data->rx_msg_len = rx_len;
  281. memcpy(data->rx_msg_data, msg->msg.data + 1, data->rx_msg_len);
  282. } else
  283. data->rx_msg_len = 0;
  284. ipmi_free_recv_msg(msg);
  285. complete(&data->read_complete);
  286. }
  287. /* Sensor support functions */
  288. /* Read a sensor value; must be called with data->lock held */
  289. static int aem_read_sensor(struct aem_data *data, u8 elt, u8 reg,
  290. void *buf, size_t size)
  291. {
  292. int rs_size, res;
  293. struct aem_read_sensor_req rs_req;
  294. /* Use preallocated rx buffer */
  295. struct aem_read_sensor_resp *rs_resp = data->rs_resp;
  296. struct aem_ipmi_data *ipmi = &data->ipmi;
  297. /* AEM registers are 1, 2, 4 or 8 bytes */
  298. switch (size) {
  299. case 1:
  300. case 2:
  301. case 4:
  302. case 8:
  303. break;
  304. default:
  305. return -EINVAL;
  306. }
  307. rs_req.id = system_x_id;
  308. rs_req.module_handle = data->module_handle;
  309. rs_req.element = elt;
  310. rs_req.subcommand = AEM_READ_REGISTER;
  311. rs_req.reg = reg;
  312. rs_req.rx_buf_size = size;
  313. ipmi->tx_message.cmd = AEM_ELEMENT_CMD;
  314. ipmi->tx_message.data = (char *)&rs_req;
  315. ipmi->tx_message.data_len = sizeof(rs_req);
  316. rs_size = sizeof(*rs_resp) + size;
  317. ipmi->rx_msg_data = rs_resp;
  318. ipmi->rx_msg_len = rs_size;
  319. aem_send_message(ipmi);
  320. res = wait_for_completion_timeout(&ipmi->read_complete, IPMI_TIMEOUT);
  321. if (!res) {
  322. res = -ETIMEDOUT;
  323. goto out;
  324. }
  325. if (ipmi->rx_result || ipmi->rx_msg_len != rs_size ||
  326. memcmp(&rs_resp->id, &system_x_id, sizeof(system_x_id))) {
  327. res = -ENOENT;
  328. goto out;
  329. }
  330. switch (size) {
  331. case 1: {
  332. u8 *x = buf;
  333. *x = rs_resp->bytes[0];
  334. break;
  335. }
  336. case 2: {
  337. u16 *x = buf;
  338. *x = be16_to_cpup((__be16 *)rs_resp->bytes);
  339. break;
  340. }
  341. case 4: {
  342. u32 *x = buf;
  343. *x = be32_to_cpup((__be32 *)rs_resp->bytes);
  344. break;
  345. }
  346. case 8: {
  347. u64 *x = buf;
  348. *x = be64_to_cpup((__be64 *)rs_resp->bytes);
  349. break;
  350. }
  351. }
  352. res = 0;
  353. out:
  354. return res;
  355. }
  356. /* Update AEM energy registers */
  357. static void update_aem_energy_one(struct aem_data *data, int which)
  358. {
  359. aem_read_sensor(data, AEM_ENERGY_ELEMENT, which,
  360. &data->energy[which], 8);
  361. }
  362. static void update_aem_energy(struct aem_data *data)
  363. {
  364. update_aem_energy_one(data, 0);
  365. if (data->ver_major < 2)
  366. return;
  367. update_aem_energy_one(data, 1);
  368. }
  369. /* Update all AEM1 sensors */
  370. static void update_aem1_sensors(struct aem_data *data)
  371. {
  372. mutex_lock(&data->lock);
  373. if (time_before(jiffies, data->last_updated + REFRESH_INTERVAL) &&
  374. data->valid)
  375. goto out;
  376. update_aem_energy(data);
  377. out:
  378. mutex_unlock(&data->lock);
  379. }
  380. /* Update all AEM2 sensors */
  381. static void update_aem2_sensors(struct aem_data *data)
  382. {
  383. int i;
  384. mutex_lock(&data->lock);
  385. if (time_before(jiffies, data->last_updated + REFRESH_INTERVAL) &&
  386. data->valid)
  387. goto out;
  388. update_aem_energy(data);
  389. aem_read_sensor(data, AEM_EXHAUST_ELEMENT, 0, &data->temp[0], 1);
  390. aem_read_sensor(data, AEM_EXHAUST_ELEMENT, 1, &data->temp[1], 1);
  391. for (i = POWER_CAP; i <= POWER_AUX; i++)
  392. aem_read_sensor(data, AEM_POWER_CAP_ELEMENT, i,
  393. &data->pcap[i], 2);
  394. out:
  395. mutex_unlock(&data->lock);
  396. }
  397. /* Delete an AEM instance */
  398. static void aem_delete(struct aem_data *data)
  399. {
  400. list_del(&data->list);
  401. aem_remove_sensors(data);
  402. kfree(data->rs_resp);
  403. hwmon_device_unregister(data->hwmon_dev);
  404. ipmi_destroy_user(data->ipmi.user);
  405. platform_set_drvdata(data->pdev, NULL);
  406. platform_device_unregister(data->pdev);
  407. ida_simple_remove(&aem_ida, data->id);
  408. kfree(data);
  409. }
  410. /* Probe functions for AEM1 devices */
  411. /* Retrieve version and module handle for an AEM1 instance */
  412. static int aem_find_aem1_count(struct aem_ipmi_data *data)
  413. {
  414. int res;
  415. struct aem_find_firmware_req ff_req;
  416. struct aem_find_firmware_resp ff_resp;
  417. ff_req.id = system_x_id;
  418. ff_req.index = 0;
  419. ff_req.module_type_id = cpu_to_be16(AEM_MODULE_TYPE_ID);
  420. data->tx_message.cmd = AEM_FIND_FW_CMD;
  421. data->tx_message.data = (char *)&ff_req;
  422. data->tx_message.data_len = sizeof(ff_req);
  423. data->rx_msg_data = &ff_resp;
  424. data->rx_msg_len = sizeof(ff_resp);
  425. aem_send_message(data);
  426. res = wait_for_completion_timeout(&data->read_complete, IPMI_TIMEOUT);
  427. if (!res)
  428. return -ETIMEDOUT;
  429. if (data->rx_result || data->rx_msg_len != sizeof(ff_resp) ||
  430. memcmp(&ff_resp.id, &system_x_id, sizeof(system_x_id)))
  431. return -ENOENT;
  432. return ff_resp.num_instances;
  433. }
  434. /* Find and initialize one AEM1 instance */
  435. static int aem_init_aem1_inst(struct aem_ipmi_data *probe, u8 module_handle)
  436. {
  437. struct aem_data *data;
  438. int i;
  439. int res = -ENOMEM;
  440. data = kzalloc(sizeof(*data), GFP_KERNEL);
  441. if (!data)
  442. return res;
  443. mutex_init(&data->lock);
  444. /* Copy instance data */
  445. data->ver_major = 1;
  446. data->ver_minor = 0;
  447. data->module_handle = module_handle;
  448. for (i = 0; i < AEM1_NUM_ENERGY_REGS; i++)
  449. data->power_period[i] = AEM_DEFAULT_POWER_INTERVAL;
  450. /* Create sub-device for this fw instance */
  451. data->id = ida_simple_get(&aem_ida, 0, 0, GFP_KERNEL);
  452. if (data->id < 0)
  453. goto id_err;
  454. data->pdev = platform_device_alloc(DRVNAME, data->id);
  455. if (!data->pdev)
  456. goto dev_err;
  457. data->pdev->dev.driver = &aem_driver.driver;
  458. res = platform_device_add(data->pdev);
  459. if (res)
  460. goto ipmi_err;
  461. platform_set_drvdata(data->pdev, data);
  462. /* Set up IPMI interface */
  463. res = aem_init_ipmi_data(&data->ipmi, probe->interface,
  464. probe->bmc_device);
  465. if (res)
  466. goto ipmi_err;
  467. /* Register with hwmon */
  468. data->hwmon_dev = hwmon_device_register(&data->pdev->dev);
  469. if (IS_ERR(data->hwmon_dev)) {
  470. dev_err(&data->pdev->dev,
  471. "Unable to register hwmon device for IPMI interface %d\n",
  472. probe->interface);
  473. res = PTR_ERR(data->hwmon_dev);
  474. goto hwmon_reg_err;
  475. }
  476. data->update = update_aem1_sensors;
  477. data->rs_resp = kzalloc(sizeof(*(data->rs_resp)) + 8, GFP_KERNEL);
  478. if (!data->rs_resp) {
  479. res = -ENOMEM;
  480. goto alloc_resp_err;
  481. }
  482. /* Find sensors */
  483. res = aem1_find_sensors(data);
  484. if (res)
  485. goto sensor_err;
  486. /* Add to our list of AEM devices */
  487. list_add_tail(&data->list, &driver_data.aem_devices);
  488. dev_info(data->ipmi.bmc_device, "Found AEM v%d.%d at 0x%X\n",
  489. data->ver_major, data->ver_minor,
  490. data->module_handle);
  491. return 0;
  492. sensor_err:
  493. kfree(data->rs_resp);
  494. alloc_resp_err:
  495. hwmon_device_unregister(data->hwmon_dev);
  496. hwmon_reg_err:
  497. ipmi_destroy_user(data->ipmi.user);
  498. ipmi_err:
  499. platform_set_drvdata(data->pdev, NULL);
  500. platform_device_unregister(data->pdev);
  501. dev_err:
  502. ida_simple_remove(&aem_ida, data->id);
  503. id_err:
  504. kfree(data);
  505. return res;
  506. }
  507. /* Find and initialize all AEM1 instances */
  508. static void aem_init_aem1(struct aem_ipmi_data *probe)
  509. {
  510. int num, i, err;
  511. num = aem_find_aem1_count(probe);
  512. for (i = 0; i < num; i++) {
  513. err = aem_init_aem1_inst(probe, i);
  514. if (err) {
  515. dev_err(probe->bmc_device,
  516. "Error %d initializing AEM1 0x%X\n",
  517. err, i);
  518. }
  519. }
  520. }
  521. /* Probe functions for AEM2 devices */
  522. /* Retrieve version and module handle for an AEM2 instance */
  523. static int aem_find_aem2(struct aem_ipmi_data *data,
  524. struct aem_find_instance_resp *fi_resp,
  525. int instance_num)
  526. {
  527. int res;
  528. struct aem_find_instance_req fi_req;
  529. fi_req.id = system_x_id;
  530. fi_req.instance_number = instance_num;
  531. fi_req.module_type_id = cpu_to_be16(AEM_MODULE_TYPE_ID);
  532. data->tx_message.cmd = AEM_FW_INSTANCE_CMD;
  533. data->tx_message.data = (char *)&fi_req;
  534. data->tx_message.data_len = sizeof(fi_req);
  535. data->rx_msg_data = fi_resp;
  536. data->rx_msg_len = sizeof(*fi_resp);
  537. aem_send_message(data);
  538. res = wait_for_completion_timeout(&data->read_complete, IPMI_TIMEOUT);
  539. if (!res)
  540. return -ETIMEDOUT;
  541. if (data->rx_result || data->rx_msg_len != sizeof(*fi_resp) ||
  542. memcmp(&fi_resp->id, &system_x_id, sizeof(system_x_id)) ||
  543. fi_resp->num_instances <= instance_num)
  544. return -ENOENT;
  545. return 0;
  546. }
  547. /* Find and initialize one AEM2 instance */
  548. static int aem_init_aem2_inst(struct aem_ipmi_data *probe,
  549. struct aem_find_instance_resp *fi_resp)
  550. {
  551. struct aem_data *data;
  552. int i;
  553. int res = -ENOMEM;
  554. data = kzalloc(sizeof(*data), GFP_KERNEL);
  555. if (!data)
  556. return res;
  557. mutex_init(&data->lock);
  558. /* Copy instance data */
  559. data->ver_major = fi_resp->major;
  560. data->ver_minor = fi_resp->minor;
  561. data->module_handle = fi_resp->module_handle;
  562. for (i = 0; i < AEM2_NUM_ENERGY_REGS; i++)
  563. data->power_period[i] = AEM_DEFAULT_POWER_INTERVAL;
  564. /* Create sub-device for this fw instance */
  565. data->id = ida_simple_get(&aem_ida, 0, 0, GFP_KERNEL);
  566. if (data->id < 0)
  567. goto id_err;
  568. data->pdev = platform_device_alloc(DRVNAME, data->id);
  569. if (!data->pdev)
  570. goto dev_err;
  571. data->pdev->dev.driver = &aem_driver.driver;
  572. res = platform_device_add(data->pdev);
  573. if (res)
  574. goto ipmi_err;
  575. platform_set_drvdata(data->pdev, data);
  576. /* Set up IPMI interface */
  577. res = aem_init_ipmi_data(&data->ipmi, probe->interface,
  578. probe->bmc_device);
  579. if (res)
  580. goto ipmi_err;
  581. /* Register with hwmon */
  582. data->hwmon_dev = hwmon_device_register(&data->pdev->dev);
  583. if (IS_ERR(data->hwmon_dev)) {
  584. dev_err(&data->pdev->dev,
  585. "Unable to register hwmon device for IPMI interface %d\n",
  586. probe->interface);
  587. res = PTR_ERR(data->hwmon_dev);
  588. goto hwmon_reg_err;
  589. }
  590. data->update = update_aem2_sensors;
  591. data->rs_resp = kzalloc(sizeof(*(data->rs_resp)) + 8, GFP_KERNEL);
  592. if (!data->rs_resp) {
  593. res = -ENOMEM;
  594. goto alloc_resp_err;
  595. }
  596. /* Find sensors */
  597. res = aem2_find_sensors(data);
  598. if (res)
  599. goto sensor_err;
  600. /* Add to our list of AEM devices */
  601. list_add_tail(&data->list, &driver_data.aem_devices);
  602. dev_info(data->ipmi.bmc_device, "Found AEM v%d.%d at 0x%X\n",
  603. data->ver_major, data->ver_minor,
  604. data->module_handle);
  605. return 0;
  606. sensor_err:
  607. kfree(data->rs_resp);
  608. alloc_resp_err:
  609. hwmon_device_unregister(data->hwmon_dev);
  610. hwmon_reg_err:
  611. ipmi_destroy_user(data->ipmi.user);
  612. ipmi_err:
  613. platform_set_drvdata(data->pdev, NULL);
  614. platform_device_unregister(data->pdev);
  615. dev_err:
  616. ida_simple_remove(&aem_ida, data->id);
  617. id_err:
  618. kfree(data);
  619. return res;
  620. }
  621. /* Find and initialize all AEM2 instances */
  622. static void aem_init_aem2(struct aem_ipmi_data *probe)
  623. {
  624. struct aem_find_instance_resp fi_resp;
  625. int err;
  626. int i = 0;
  627. while (!aem_find_aem2(probe, &fi_resp, i)) {
  628. if (fi_resp.major != 2) {
  629. dev_err(probe->bmc_device,
  630. "Unknown AEM v%d; please report this to the maintainer.\n",
  631. fi_resp.major);
  632. i++;
  633. continue;
  634. }
  635. err = aem_init_aem2_inst(probe, &fi_resp);
  636. if (err) {
  637. dev_err(probe->bmc_device,
  638. "Error %d initializing AEM2 0x%X\n",
  639. err, fi_resp.module_handle);
  640. }
  641. i++;
  642. }
  643. }
  644. /* Probe a BMC for AEM firmware instances */
  645. static void aem_register_bmc(int iface, struct device *dev)
  646. {
  647. struct aem_ipmi_data probe;
  648. if (aem_init_ipmi_data(&probe, iface, dev))
  649. return;
  650. /* Ignore probe errors; they won't cause problems */
  651. aem_init_aem1(&probe);
  652. aem_init_aem2(&probe);
  653. ipmi_destroy_user(probe.user);
  654. }
  655. /* Handle BMC deletion */
  656. static void aem_bmc_gone(int iface)
  657. {
  658. struct aem_data *p1, *next1;
  659. list_for_each_entry_safe(p1, next1, &driver_data.aem_devices, list)
  660. if (p1->ipmi.interface == iface)
  661. aem_delete(p1);
  662. }
  663. /* sysfs support functions */
  664. /* AEM device name */
  665. static ssize_t name_show(struct device *dev, struct device_attribute *devattr,
  666. char *buf)
  667. {
  668. struct aem_data *data = dev_get_drvdata(dev);
  669. return sprintf(buf, "%s%d\n", DRVNAME, data->ver_major);
  670. }
  671. static SENSOR_DEVICE_ATTR_RO(name, name, 0);
  672. /* AEM device version */
  673. static ssize_t version_show(struct device *dev,
  674. struct device_attribute *devattr, char *buf)
  675. {
  676. struct aem_data *data = dev_get_drvdata(dev);
  677. return sprintf(buf, "%d.%d\n", data->ver_major, data->ver_minor);
  678. }
  679. static SENSOR_DEVICE_ATTR_RO(version, version, 0);
  680. /* Display power use */
  681. static ssize_t aem_show_power(struct device *dev,
  682. struct device_attribute *devattr,
  683. char *buf)
  684. {
  685. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  686. struct aem_data *data = dev_get_drvdata(dev);
  687. u64 before, after, delta, time;
  688. signed long leftover;
  689. mutex_lock(&data->lock);
  690. update_aem_energy_one(data, attr->index);
  691. time = ktime_get_ns();
  692. before = data->energy[attr->index];
  693. leftover = schedule_timeout_interruptible(
  694. msecs_to_jiffies(data->power_period[attr->index])
  695. );
  696. if (leftover) {
  697. mutex_unlock(&data->lock);
  698. return 0;
  699. }
  700. update_aem_energy_one(data, attr->index);
  701. time = ktime_get_ns() - time;
  702. after = data->energy[attr->index];
  703. mutex_unlock(&data->lock);
  704. delta = (after - before) * UJ_PER_MJ;
  705. return sprintf(buf, "%llu\n",
  706. (unsigned long long)div64_u64(delta * NSEC_PER_SEC, time));
  707. }
  708. /* Display energy use */
  709. static ssize_t aem_show_energy(struct device *dev,
  710. struct device_attribute *devattr,
  711. char *buf)
  712. {
  713. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  714. struct aem_data *a = dev_get_drvdata(dev);
  715. mutex_lock(&a->lock);
  716. update_aem_energy_one(a, attr->index);
  717. mutex_unlock(&a->lock);
  718. return sprintf(buf, "%llu\n",
  719. (unsigned long long)a->energy[attr->index] * 1000);
  720. }
  721. /* Display power interval registers */
  722. static ssize_t aem_show_power_period(struct device *dev,
  723. struct device_attribute *devattr,
  724. char *buf)
  725. {
  726. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  727. struct aem_data *a = dev_get_drvdata(dev);
  728. a->update(a);
  729. return sprintf(buf, "%lu\n", a->power_period[attr->index]);
  730. }
  731. /* Set power interval registers */
  732. static ssize_t aem_set_power_period(struct device *dev,
  733. struct device_attribute *devattr,
  734. const char *buf, size_t count)
  735. {
  736. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  737. struct aem_data *a = dev_get_drvdata(dev);
  738. unsigned long temp;
  739. int res;
  740. res = kstrtoul(buf, 10, &temp);
  741. if (res)
  742. return res;
  743. if (temp < AEM_MIN_POWER_INTERVAL)
  744. return -EINVAL;
  745. mutex_lock(&a->lock);
  746. a->power_period[attr->index] = temp;
  747. mutex_unlock(&a->lock);
  748. return count;
  749. }
  750. /* Discover sensors on an AEM device */
  751. static int aem_register_sensors(struct aem_data *data,
  752. const struct aem_ro_sensor_template *ro,
  753. const struct aem_rw_sensor_template *rw)
  754. {
  755. struct device *dev = &data->pdev->dev;
  756. struct sensor_device_attribute *sensors = data->sensors;
  757. int err;
  758. /* Set up read-only sensors */
  759. while (ro->label) {
  760. sysfs_attr_init(&sensors->dev_attr.attr);
  761. sensors->dev_attr.attr.name = ro->label;
  762. sensors->dev_attr.attr.mode = 0444;
  763. sensors->dev_attr.show = ro->show;
  764. sensors->index = ro->index;
  765. err = device_create_file(dev, &sensors->dev_attr);
  766. if (err) {
  767. sensors->dev_attr.attr.name = NULL;
  768. goto error;
  769. }
  770. sensors++;
  771. ro++;
  772. }
  773. /* Set up read-write sensors */
  774. while (rw->label) {
  775. sysfs_attr_init(&sensors->dev_attr.attr);
  776. sensors->dev_attr.attr.name = rw->label;
  777. sensors->dev_attr.attr.mode = 0644;
  778. sensors->dev_attr.show = rw->show;
  779. sensors->dev_attr.store = rw->set;
  780. sensors->index = rw->index;
  781. err = device_create_file(dev, &sensors->dev_attr);
  782. if (err) {
  783. sensors->dev_attr.attr.name = NULL;
  784. goto error;
  785. }
  786. sensors++;
  787. rw++;
  788. }
  789. err = device_create_file(dev, &sensor_dev_attr_name.dev_attr);
  790. if (err)
  791. goto error;
  792. err = device_create_file(dev, &sensor_dev_attr_version.dev_attr);
  793. return err;
  794. error:
  795. aem_remove_sensors(data);
  796. return err;
  797. }
  798. /* sysfs support functions for AEM2 sensors */
  799. /* Display temperature use */
  800. static ssize_t aem2_show_temp(struct device *dev,
  801. struct device_attribute *devattr,
  802. char *buf)
  803. {
  804. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  805. struct aem_data *a = dev_get_drvdata(dev);
  806. a->update(a);
  807. return sprintf(buf, "%u\n", a->temp[attr->index] * 1000);
  808. }
  809. /* Display power-capping registers */
  810. static ssize_t aem2_show_pcap_value(struct device *dev,
  811. struct device_attribute *devattr,
  812. char *buf)
  813. {
  814. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  815. struct aem_data *a = dev_get_drvdata(dev);
  816. a->update(a);
  817. return sprintf(buf, "%u\n", a->pcap[attr->index] * 100000);
  818. }
  819. /* Remove sensors attached to an AEM device */
  820. static void aem_remove_sensors(struct aem_data *data)
  821. {
  822. int i;
  823. for (i = 0; i < AEM_NUM_SENSORS; i++) {
  824. if (!data->sensors[i].dev_attr.attr.name)
  825. continue;
  826. device_remove_file(&data->pdev->dev,
  827. &data->sensors[i].dev_attr);
  828. }
  829. device_remove_file(&data->pdev->dev,
  830. &sensor_dev_attr_name.dev_attr);
  831. device_remove_file(&data->pdev->dev,
  832. &sensor_dev_attr_version.dev_attr);
  833. }
  834. /* Sensor probe functions */
  835. /* Description of AEM1 sensors */
  836. static const struct aem_ro_sensor_template aem1_ro_sensors[] = {
  837. {"energy1_input", aem_show_energy, 0},
  838. {"power1_average", aem_show_power, 0},
  839. {NULL, NULL, 0},
  840. };
  841. static const struct aem_rw_sensor_template aem1_rw_sensors[] = {
  842. {"power1_average_interval", aem_show_power_period, aem_set_power_period, 0},
  843. {NULL, NULL, NULL, 0},
  844. };
  845. /* Description of AEM2 sensors */
  846. static const struct aem_ro_sensor_template aem2_ro_sensors[] = {
  847. {"energy1_input", aem_show_energy, 0},
  848. {"energy2_input", aem_show_energy, 1},
  849. {"power1_average", aem_show_power, 0},
  850. {"power2_average", aem_show_power, 1},
  851. {"temp1_input", aem2_show_temp, 0},
  852. {"temp2_input", aem2_show_temp, 1},
  853. {"power4_average", aem2_show_pcap_value, POWER_CAP_MAX_HOTPLUG},
  854. {"power5_average", aem2_show_pcap_value, POWER_CAP_MAX},
  855. {"power6_average", aem2_show_pcap_value, POWER_CAP_MIN_WARNING},
  856. {"power7_average", aem2_show_pcap_value, POWER_CAP_MIN},
  857. {"power3_average", aem2_show_pcap_value, POWER_AUX},
  858. {"power_cap", aem2_show_pcap_value, POWER_CAP},
  859. {NULL, NULL, 0},
  860. };
  861. static const struct aem_rw_sensor_template aem2_rw_sensors[] = {
  862. {"power1_average_interval", aem_show_power_period, aem_set_power_period, 0},
  863. {"power2_average_interval", aem_show_power_period, aem_set_power_period, 1},
  864. {NULL, NULL, NULL, 0},
  865. };
  866. /* Set up AEM1 sensor attrs */
  867. static int aem1_find_sensors(struct aem_data *data)
  868. {
  869. return aem_register_sensors(data, aem1_ro_sensors, aem1_rw_sensors);
  870. }
  871. /* Set up AEM2 sensor attrs */
  872. static int aem2_find_sensors(struct aem_data *data)
  873. {
  874. return aem_register_sensors(data, aem2_ro_sensors, aem2_rw_sensors);
  875. }
  876. /* Module init/exit routines */
  877. static int __init aem_init(void)
  878. {
  879. int res;
  880. res = driver_register(&aem_driver.driver);
  881. if (res) {
  882. pr_err("Can't register aem driver\n");
  883. return res;
  884. }
  885. res = ipmi_smi_watcher_register(&driver_data.bmc_events);
  886. if (res)
  887. goto ipmi_reg_err;
  888. return 0;
  889. ipmi_reg_err:
  890. driver_unregister(&aem_driver.driver);
  891. return res;
  892. }
  893. static void __exit aem_exit(void)
  894. {
  895. struct aem_data *p1, *next1;
  896. ipmi_smi_watcher_unregister(&driver_data.bmc_events);
  897. driver_unregister(&aem_driver.driver);
  898. list_for_each_entry_safe(p1, next1, &driver_data.aem_devices, list)
  899. aem_delete(p1);
  900. }
  901. MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>");
  902. MODULE_DESCRIPTION("IBM AEM power/temp/energy sensor driver");
  903. MODULE_LICENSE("GPL");
  904. module_init(aem_init);
  905. module_exit(aem_exit);
  906. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3350-*");
  907. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3550-*");
  908. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3650-*");
  909. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3655-*");
  910. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3755-*");
  911. MODULE_ALIAS("dmi:bvnIBM:*:pnIBM3850M2/x3950M2-*");
  912. MODULE_ALIAS("dmi:bvnIBM:*:pnIBMBladeHC10-*");