/Lib/test/decimaltestdata/dqFMA.decTest
http://unladen-swallow.googlecode.com/ · Unknown · 1786 lines · 1650 code · 136 blank · 0 comment · 0 complexity · 2bba117e3d5607d08283ca76d56f62c3 MD5 · raw file
Large files are truncated click here to view the full file
- ------------------------------------------------------------------------
- -- dqFMA.decTest -- decQuad Fused Multiply Add --
- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
- ------------------------------------------------------------------------
- -- Please see the document "General Decimal Arithmetic Testcases" --
- -- at http://www2.hursley.ibm.com/decimal for the description of --
- -- these testcases. --
- -- --
- -- These testcases are experimental ('beta' versions), and they --
- -- may contain errors. They are offered on an as-is basis. In --
- -- particular, achieving the same results as the tests here is not --
- -- a guarantee that an implementation complies with any Standard --
- -- or specification. The tests are not exhaustive. --
- -- --
- -- Please send comments, suggestions, and corrections to the author: --
- -- Mike Cowlishaw, IBM Fellow --
- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
- -- mfc@uk.ibm.com --
- ------------------------------------------------------------------------
- version: 2.58
-
- extended: 1
- clamp: 1
- precision: 34
- maxExponent: 6144
- minExponent: -6143
- rounding: half_even
-
- -- These tests comprese three parts:
- -- 1. Sanity checks and other three-operand tests (especially those
- -- where the fused operation makes a difference)
- -- 2. Multiply tests (third operand is neutral zero [0E+emax])
- -- 3. Addition tests (first operand is 1)
- -- The multiply and addition tests are extensive because FMA may have
- -- its own dedicated multiplication or addition routine(s), and they
- -- also inherently check the left-to-right properties.
-
- -- Sanity checks
- dqfma0001 fma 1 1 1 -> 2
- dqfma0002 fma 1 1 2 -> 3
- dqfma0003 fma 2 2 3 -> 7
- dqfma0004 fma 9 9 9 -> 90
- dqfma0005 fma -1 1 1 -> 0
- dqfma0006 fma -1 1 2 -> 1
- dqfma0007 fma -2 2 3 -> -1
- dqfma0008 fma -9 9 9 -> -72
- dqfma0011 fma 1 -1 1 -> 0
- dqfma0012 fma 1 -1 2 -> 1
- dqfma0013 fma 2 -2 3 -> -1
- dqfma0014 fma 9 -9 9 -> -72
- dqfma0015 fma 1 1 -1 -> 0
- dqfma0016 fma 1 1 -2 -> -1
- dqfma0017 fma 2 2 -3 -> 1
- dqfma0018 fma 9 9 -9 -> 72
-
- -- non-integer exacts
- dqfma0100 fma 25.2 63.6 -438 -> 1164.72
- dqfma0101 fma 0.301 0.380 334 -> 334.114380
- dqfma0102 fma 49.2 -4.8 23.3 -> -212.86
- dqfma0103 fma 4.22 0.079 -94.6 -> -94.26662
- dqfma0104 fma 903 0.797 0.887 -> 720.578
- dqfma0105 fma 6.13 -161 65.9 -> -921.03
- dqfma0106 fma 28.2 727 5.45 -> 20506.85
- dqfma0107 fma 4 605 688 -> 3108
- dqfma0108 fma 93.3 0.19 0.226 -> 17.953
- dqfma0109 fma 0.169 -341 5.61 -> -52.019
- dqfma0110 fma -72.2 30 -51.2 -> -2217.2
- dqfma0111 fma -0.409 13 20.4 -> 15.083
- dqfma0112 fma 317 77.0 19.0 -> 24428.0
- dqfma0113 fma 47 6.58 1.62 -> 310.88
- dqfma0114 fma 1.36 0.984 0.493 -> 1.83124
- dqfma0115 fma 72.7 274 1.56 -> 19921.36
- dqfma0116 fma 335 847 83 -> 283828
- dqfma0117 fma 666 0.247 25.4 -> 189.902
- dqfma0118 fma -3.87 3.06 78.0 -> 66.1578
- dqfma0119 fma 0.742 192 35.6 -> 178.064
- dqfma0120 fma -91.6 5.29 0.153 -> -484.411
-
- -- cases where result is different from separate multiply + add; each
- -- is preceded by the result of unfused multiply and add
- -- [this is about 20% of all similar cases in general]
- -- -> 4.500119002100000209469729375698778E+38
- dqfma0202 fma 68537985861355864457.5694 6565875762972086605.85969 35892634447236753.172812 -> 4.500119002100000209469729375698779E+38 Inexact Rounded
- -- -> 5.996248469584594346858881620185514E+41
- dqfma0208 fma 89261822344727628571.9 6717595845654131383336.89 5061036497288796076266.11 -> 5.996248469584594346858881620185513E+41 Inexact Rounded
- -- -> 1.899242968678256924021594770874070E+34
- dqfma0210 fma 320506237232448685.495971 59257597764017967.984448 3205615239077711589912.85 -> 1.899242968678256924021594770874071E+34 Inexact Rounded
- -- -> 7.078596978842809537929699954860309E+37
- dqfma0215 fma 220247843259112263.17995 321392340287987979002.80 47533279819997167655440 -> 7.078596978842809537929699954860308E+37 Inexact Rounded
- -- -> 1.224955667581427559754106862350743E+37
- dqfma0226 fma 23880729790368880412.1449 512947333827064719.55407 217117438419590824502.963 -> 1.224955667581427559754106862350744E+37 Inexact Rounded
- -- -> -2.530094043253148806272276368579144E+42
- dqfma0229 fma 2539892357016099706.4126 -996142232667504817717435 53682082598315949425.937 -> -2.530094043253148806272276368579143E+42 Inexact Rounded
- -- -> 1.713387085759711954319391412788454E+37
- dqfma0233 fma 4546339491341624464.0804 3768717864169205581 83578980278690395184.620 -> 1.713387085759711954319391412788453E+37 Inexact Rounded
- -- -> 4.062275663405823716411579117771547E+35
- dqfma0235 fma 409242119433816131.42253 992633815166741501.477249 70179636544416756129546 -> 4.062275663405823716411579117771548E+35 Inexact Rounded
- -- -> 6.002604327732568490562249875306823E+47
- dqfma0258 fma 817941336593541742159684 733867339769310729266598 78563844650942419311830.8 -> 6.002604327732568490562249875306822E+47 Inexact Rounded
- -- -> -2.027022514381452197510103395283874E+39
- dqfma0264 fma 387617310169161270.737532 -5229442703414956061216.62 57665666816652967150473.5 -> -2.027022514381452197510103395283873E+39 Inexact Rounded
- -- -> -7.856525039803554001144089842730361E+37
- dqfma0267 fma -847655845720565274701.210 92685316564117739.83984 22780950041376424429.5686 -> -7.856525039803554001144089842730360E+37 Inexact Rounded
- -- -> 1.695515562011520746125607502237559E+38
- dqfma0268 fma 21590290365127685.3675 7853139227576541379426.8 -3275859437236180.761544 -> 1.695515562011520746125607502237558E+38 Inexact Rounded
- -- -> -8.448422935783289219748115038014710E+38
- dqfma0269 fma -974320636272862697.971586 867109103641860247440.756 -9775170775902454762.98 -> -8.448422935783289219748115038014709E+38 Inexact Rounded
-
- -- Cases where multiply would overflow or underflow if separate
- dqfma0300 fma 9e+6144 10 0 -> Infinity Overflow Inexact Rounded
- dqfma0301 fma 1e+6144 10 0 -> Infinity Overflow Inexact Rounded
- dqfma0302 fma 1e+6144 10 -1e+6144 -> 9.000000000000000000000000000000000E+6144 Clamped
- dqfma0303 fma 1e+6144 10 -9e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
- -- subnormal etc.
- dqfma0305 fma 1e-6176 0.1 0 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma0306 fma 1e-6176 0.1 1 -> 1.000000000000000000000000000000000 Inexact Rounded
- dqfma0307 fma 1e-6176 0.1 1e-6176 -> 1E-6176 Underflow Subnormal Inexact Rounded
-
- -- Infinite combinations
- dqfma0800 fma Inf Inf Inf -> Infinity
- dqfma0801 fma Inf Inf -Inf -> NaN Invalid_operation
- dqfma0802 fma Inf -Inf Inf -> NaN Invalid_operation
- dqfma0803 fma Inf -Inf -Inf -> -Infinity
- dqfma0804 fma -Inf Inf Inf -> NaN Invalid_operation
- dqfma0805 fma -Inf Inf -Inf -> -Infinity
- dqfma0806 fma -Inf -Inf Inf -> Infinity
- dqfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation
-
- -- Triple NaN propagation
- dqfma0900 fma NaN2 NaN3 NaN5 -> NaN2
- dqfma0901 fma 0 NaN3 NaN5 -> NaN3
- dqfma0902 fma 0 0 NaN5 -> NaN5
- -- first sNaN wins (consider qNaN from earlier sNaN being
- -- overridden by an sNaN in third operand)
- dqfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
- dqfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation
- dqfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation
- dqfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
- dqfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
- dqfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
-
- -- MULTIPLICATION TESTS ------------------------------------------------
- rounding: half_even
-
- -- sanity checks
- dqfma2000 fma 2 2 0e+6144 -> 4
- dqfma2001 fma 2 3 0e+6144 -> 6
- dqfma2002 fma 5 1 0e+6144 -> 5
- dqfma2003 fma 5 2 0e+6144 -> 10
- dqfma2004 fma 1.20 2 0e+6144 -> 2.40
- dqfma2005 fma 1.20 0 0e+6144 -> 0.00
- dqfma2006 fma 1.20 -2 0e+6144 -> -2.40
- dqfma2007 fma -1.20 2 0e+6144 -> -2.40
- dqfma2008 fma -1.20 0 0e+6144 -> 0.00
- dqfma2009 fma -1.20 -2 0e+6144 -> 2.40
- dqfma2010 fma 5.09 7.1 0e+6144 -> 36.139
- dqfma2011 fma 2.5 4 0e+6144 -> 10.0
- dqfma2012 fma 2.50 4 0e+6144 -> 10.00
- dqfma2013 fma 1.23456789 1.0000000000000000000000000000 0e+6144 -> 1.234567890000000000000000000000000 Rounded
- dqfma2015 fma 2.50 4 0e+6144 -> 10.00
- dqfma2016 fma 9.99999999999999999 9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
- dqfma2017 fma 9.99999999999999999 -9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
- dqfma2018 fma -9.99999999999999999 9.99999999999999999 0e+6144 -> -99.99999999999999980000000000000000 Inexact Rounded
- dqfma2019 fma -9.99999999999999999 -9.99999999999999999 0e+6144 -> 99.99999999999999980000000000000000 Inexact Rounded
-
- -- zeros, etc.
- dqfma2021 fma 0 0 0e+6144 -> 0
- dqfma2022 fma 0 -0 0e+6144 -> 0
- dqfma2023 fma -0 0 0e+6144 -> 0
- dqfma2024 fma -0 -0 0e+6144 -> 0
- dqfma2025 fma -0.0 -0.0 0e+6144 -> 0.00
- dqfma2026 fma -0.0 -0.0 0e+6144 -> 0.00
- dqfma2027 fma -0.0 -0.0 0e+6144 -> 0.00
- dqfma2028 fma -0.0 -0.0 0e+6144 -> 0.00
- dqfma2030 fma 5.00 1E-3 0e+6144 -> 0.00500
- dqfma2031 fma 00.00 0.000 0e+6144 -> 0.00000
- dqfma2032 fma 00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
- dqfma2033 fma 0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
- dqfma2034 fma -5.00 1E-3 0e+6144 -> -0.00500
- dqfma2035 fma -00.00 0.000 0e+6144 -> 0.00000
- dqfma2036 fma -00.00 0E-3 0e+6144 -> 0.00000 -- rhs is 0
- dqfma2037 fma -0E-3 00.00 0e+6144 -> 0.00000 -- lhs is 0
- dqfma2038 fma 5.00 -1E-3 0e+6144 -> -0.00500
- dqfma2039 fma 00.00 -0.000 0e+6144 -> 0.00000
- dqfma2040 fma 00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
- dqfma2041 fma 0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
- dqfma2042 fma -5.00 -1E-3 0e+6144 -> 0.00500
- dqfma2043 fma -00.00 -0.000 0e+6144 -> 0.00000
- dqfma2044 fma -00.00 -0E-3 0e+6144 -> 0.00000 -- rhs is 0
- dqfma2045 fma -0E-3 -00.00 0e+6144 -> 0.00000 -- lhs is 0
-
- -- examples from decarith
- dqfma2050 fma 1.20 3 0e+6144 -> 3.60
- dqfma2051 fma 7 3 0e+6144 -> 21
- dqfma2052 fma 0.9 0.8 0e+6144 -> 0.72
- dqfma2053 fma 0.9 -0 0e+6144 -> 0.0
- dqfma2054 fma 654321 654321 0e+6144 -> 428135971041
-
- dqfma2060 fma 123.45 1e7 0e+6144 -> 1.2345E+9
- dqfma2061 fma 123.45 1e8 0e+6144 -> 1.2345E+10
- dqfma2062 fma 123.45 1e+9 0e+6144 -> 1.2345E+11
- dqfma2063 fma 123.45 1e10 0e+6144 -> 1.2345E+12
- dqfma2064 fma 123.45 1e11 0e+6144 -> 1.2345E+13
- dqfma2065 fma 123.45 1e12 0e+6144 -> 1.2345E+14
- dqfma2066 fma 123.45 1e13 0e+6144 -> 1.2345E+15
-
-
- -- test some intermediate lengths
- -- 1234567890123456
- dqfma2080 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
- dqfma2084 fma 0.1 1230123456456789 0e+6144 -> 123012345645678.9
- dqfma2090 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
- dqfma2094 fma 1230123456456789 0.1 0e+6144 -> 123012345645678.9
-
- -- test some more edge cases and carries
- dqfma2101 fma 9 9 0e+6144 -> 81
- dqfma2102 fma 9 90 0e+6144 -> 810
- dqfma2103 fma 9 900 0e+6144 -> 8100
- dqfma2104 fma 9 9000 0e+6144 -> 81000
- dqfma2105 fma 9 90000 0e+6144 -> 810000
- dqfma2106 fma 9 900000 0e+6144 -> 8100000
- dqfma2107 fma 9 9000000 0e+6144 -> 81000000
- dqfma2108 fma 9 90000000 0e+6144 -> 810000000
- dqfma2109 fma 9 900000000 0e+6144 -> 8100000000
- dqfma2110 fma 9 9000000000 0e+6144 -> 81000000000
- dqfma2111 fma 9 90000000000 0e+6144 -> 810000000000
- dqfma2112 fma 9 900000000000 0e+6144 -> 8100000000000
- dqfma2113 fma 9 9000000000000 0e+6144 -> 81000000000000
- dqfma2114 fma 9 90000000000000 0e+6144 -> 810000000000000
- dqfma2115 fma 9 900000000000000 0e+6144 -> 8100000000000000
- --dqfma2116 fma 9 9000000000000000 0e+6144 -> 81000000000000000
- --dqfma2117 fma 9 90000000000000000 0e+6144 -> 810000000000000000
- --dqfma2118 fma 9 900000000000000000 0e+6144 -> 8100000000000000000
- --dqfma2119 fma 9 9000000000000000000 0e+6144 -> 81000000000000000000
- --dqfma2120 fma 9 90000000000000000000 0e+6144 -> 810000000000000000000
- --dqfma2121 fma 9 900000000000000000000 0e+6144 -> 8100000000000000000000
- --dqfma2122 fma 9 9000000000000000000000 0e+6144 -> 81000000000000000000000
- --dqfma2123 fma 9 90000000000000000000000 0e+6144 -> 810000000000000000000000
- -- test some more edge cases without carries
- dqfma2131 fma 3 3 0e+6144 -> 9
- dqfma2132 fma 3 30 0e+6144 -> 90
- dqfma2133 fma 3 300 0e+6144 -> 900
- dqfma2134 fma 3 3000 0e+6144 -> 9000
- dqfma2135 fma 3 30000 0e+6144 -> 90000
- dqfma2136 fma 3 300000 0e+6144 -> 900000
- dqfma2137 fma 3 3000000 0e+6144 -> 9000000
- dqfma2138 fma 3 30000000 0e+6144 -> 90000000
- dqfma2139 fma 3 300000000 0e+6144 -> 900000000
- dqfma2140 fma 3 3000000000 0e+6144 -> 9000000000
- dqfma2141 fma 3 30000000000 0e+6144 -> 90000000000
- dqfma2142 fma 3 300000000000 0e+6144 -> 900000000000
- dqfma2143 fma 3 3000000000000 0e+6144 -> 9000000000000
- dqfma2144 fma 3 30000000000000 0e+6144 -> 90000000000000
- dqfma2145 fma 3 300000000000000 0e+6144 -> 900000000000000
- dqfma2146 fma 3 3000000000000000 0e+6144 -> 9000000000000000
- dqfma2147 fma 3 30000000000000000 0e+6144 -> 90000000000000000
- dqfma2148 fma 3 300000000000000000 0e+6144 -> 900000000000000000
- dqfma2149 fma 3 3000000000000000000 0e+6144 -> 9000000000000000000
- dqfma2150 fma 3 30000000000000000000 0e+6144 -> 90000000000000000000
- dqfma2151 fma 3 300000000000000000000 0e+6144 -> 900000000000000000000
- dqfma2152 fma 3 3000000000000000000000 0e+6144 -> 9000000000000000000000
- dqfma2153 fma 3 30000000000000000000000 0e+6144 -> 90000000000000000000000
-
- dqfma2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0e+6144 -> 145433.2908011933696719165119928296 Inexact Rounded
-
- -- test some edge cases with exact rounding
- dqfma2301 fma 900000000000000000 9 0e+6144 -> 8100000000000000000
- dqfma2302 fma 900000000000000000 90 0e+6144 -> 81000000000000000000
- dqfma2303 fma 900000000000000000 900 0e+6144 -> 810000000000000000000
- dqfma2304 fma 900000000000000000 9000 0e+6144 -> 8100000000000000000000
- dqfma2305 fma 900000000000000000 90000 0e+6144 -> 81000000000000000000000
- dqfma2306 fma 900000000000000000 900000 0e+6144 -> 810000000000000000000000
- dqfma2307 fma 900000000000000000 9000000 0e+6144 -> 8100000000000000000000000
- dqfma2308 fma 900000000000000000 90000000 0e+6144 -> 81000000000000000000000000
- dqfma2309 fma 900000000000000000 900000000 0e+6144 -> 810000000000000000000000000
- dqfma2310 fma 900000000000000000 9000000000 0e+6144 -> 8100000000000000000000000000
- dqfma2311 fma 900000000000000000 90000000000 0e+6144 -> 81000000000000000000000000000
- dqfma2312 fma 900000000000000000 900000000000 0e+6144 -> 810000000000000000000000000000
- dqfma2313 fma 900000000000000000 9000000000000 0e+6144 -> 8100000000000000000000000000000
- dqfma2314 fma 900000000000000000 90000000000000 0e+6144 -> 81000000000000000000000000000000
- dqfma2315 fma 900000000000000000 900000000000000 0e+6144 -> 810000000000000000000000000000000
- dqfma2316 fma 900000000000000000 9000000000000000 0e+6144 -> 8100000000000000000000000000000000
- dqfma2317 fma 9000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+34 Rounded
- dqfma2318 fma 90000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+35 Rounded
- dqfma2319 fma 900000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+36 Rounded
- dqfma2320 fma 9000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+37 Rounded
- dqfma2321 fma 90000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+38 Rounded
- dqfma2322 fma 900000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+39 Rounded
- dqfma2323 fma 9000000000000000000000000 9000000000000000 0e+6144 -> 8.100000000000000000000000000000000E+40 Rounded
-
- -- tryzeros cases
- dqfma2504 fma 0E-4260 1000E-4260 0e+6144 -> 0E-6176 Clamped
- dqfma2505 fma 100E+4260 0E+4260 0e+6144 -> 0E+6111 Clamped
-
- -- mixed with zeros
- dqfma2541 fma 0 -1 0e+6144 -> 0
- dqfma2542 fma -0 -1 0e+6144 -> 0
- dqfma2543 fma 0 1 0e+6144 -> 0
- dqfma2544 fma -0 1 0e+6144 -> 0
- dqfma2545 fma -1 0 0e+6144 -> 0
- dqfma2546 fma -1 -0 0e+6144 -> 0
- dqfma2547 fma 1 0 0e+6144 -> 0
- dqfma2548 fma 1 -0 0e+6144 -> 0
-
- dqfma2551 fma 0.0 -1 0e+6144 -> 0.0
- dqfma2552 fma -0.0 -1 0e+6144 -> 0.0
- dqfma2553 fma 0.0 1 0e+6144 -> 0.0
- dqfma2554 fma -0.0 1 0e+6144 -> 0.0
- dqfma2555 fma -1.0 0 0e+6144 -> 0.0
- dqfma2556 fma -1.0 -0 0e+6144 -> 0.0
- dqfma2557 fma 1.0 0 0e+6144 -> 0.0
- dqfma2558 fma 1.0 -0 0e+6144 -> 0.0
-
- dqfma2561 fma 0 -1.0 0e+6144 -> 0.0
- dqfma2562 fma -0 -1.0 0e+6144 -> 0.0
- dqfma2563 fma 0 1.0 0e+6144 -> 0.0
- dqfma2564 fma -0 1.0 0e+6144 -> 0.0
- dqfma2565 fma -1 0.0 0e+6144 -> 0.0
- dqfma2566 fma -1 -0.0 0e+6144 -> 0.0
- dqfma2567 fma 1 0.0 0e+6144 -> 0.0
- dqfma2568 fma 1 -0.0 0e+6144 -> 0.0
-
- dqfma2571 fma 0.0 -1.0 0e+6144 -> 0.00
- dqfma2572 fma -0.0 -1.0 0e+6144 -> 0.00
- dqfma2573 fma 0.0 1.0 0e+6144 -> 0.00
- dqfma2574 fma -0.0 1.0 0e+6144 -> 0.00
- dqfma2575 fma -1.0 0.0 0e+6144 -> 0.00
- dqfma2576 fma -1.0 -0.0 0e+6144 -> 0.00
- dqfma2577 fma 1.0 0.0 0e+6144 -> 0.00
- dqfma2578 fma 1.0 -0.0 0e+6144 -> 0.00
- dqfma2579 fma 1.0 0.0 0e+6144 -> 0.00
- dqfma2530 fma -1.0 -0.0 0e+6144 -> 0.00
- dqfma2531 fma -1.0 0.0 0e+6144 -> 0.00
- dqfma2532 fma 1.0 -0.0 -0e+6144 -> -0.00
- dqfma2533 fma 1.0 0.0 -0e+6144 -> 0.00
- dqfma2534 fma -1.0 -0.0 -0e+6144 -> 0.00
- dqfma2535 fma -1.0 0.0 -0e+6144 -> -0.00
-
-
- -- Specials
- dqfma2580 fma Inf -Inf 0e+6144 -> -Infinity
- dqfma2581 fma Inf -1000 0e+6144 -> -Infinity
- dqfma2582 fma Inf -1 0e+6144 -> -Infinity
- dqfma2583 fma Inf -0 0e+6144 -> NaN Invalid_operation
- dqfma2584 fma Inf 0 0e+6144 -> NaN Invalid_operation
- dqfma2585 fma Inf 1 0e+6144 -> Infinity
- dqfma2586 fma Inf 1000 0e+6144 -> Infinity
- dqfma2587 fma Inf Inf 0e+6144 -> Infinity
- dqfma2588 fma -1000 Inf 0e+6144 -> -Infinity
- dqfma2589 fma -Inf Inf 0e+6144 -> -Infinity
- dqfma2590 fma -1 Inf 0e+6144 -> -Infinity
- dqfma2591 fma -0 Inf 0e+6144 -> NaN Invalid_operation
- dqfma2592 fma 0 Inf 0e+6144 -> NaN Invalid_operation
- dqfma2593 fma 1 Inf 0e+6144 -> Infinity
- dqfma2594 fma 1000 Inf 0e+6144 -> Infinity
- dqfma2595 fma Inf Inf 0e+6144 -> Infinity
-
- dqfma2600 fma -Inf -Inf 0e+6144 -> Infinity
- dqfma2601 fma -Inf -1000 0e+6144 -> Infinity
- dqfma2602 fma -Inf -1 0e+6144 -> Infinity
- dqfma2603 fma -Inf -0 0e+6144 -> NaN Invalid_operation
- dqfma2604 fma -Inf 0 0e+6144 -> NaN Invalid_operation
- dqfma2605 fma -Inf 1 0e+6144 -> -Infinity
- dqfma2606 fma -Inf 1000 0e+6144 -> -Infinity
- dqfma2607 fma -Inf Inf 0e+6144 -> -Infinity
- dqfma2608 fma -1000 Inf 0e+6144 -> -Infinity
- dqfma2609 fma -Inf -Inf 0e+6144 -> Infinity
- dqfma2610 fma -1 -Inf 0e+6144 -> Infinity
- dqfma2611 fma -0 -Inf 0e+6144 -> NaN Invalid_operation
- dqfma2612 fma 0 -Inf 0e+6144 -> NaN Invalid_operation
- dqfma2613 fma 1 -Inf 0e+6144 -> -Infinity
- dqfma2614 fma 1000 -Inf 0e+6144 -> -Infinity
- dqfma2615 fma Inf -Inf 0e+6144 -> -Infinity
-
- dqfma2621 fma NaN -Inf 0e+6144 -> NaN
- dqfma2622 fma NaN -1000 0e+6144 -> NaN
- dqfma2623 fma NaN -1 0e+6144 -> NaN
- dqfma2624 fma NaN -0 0e+6144 -> NaN
- dqfma2625 fma NaN 0 0e+6144 -> NaN
- dqfma2626 fma NaN 1 0e+6144 -> NaN
- dqfma2627 fma NaN 1000 0e+6144 -> NaN
- dqfma2628 fma NaN Inf 0e+6144 -> NaN
- dqfma2629 fma NaN NaN 0e+6144 -> NaN
- dqfma2630 fma -Inf NaN 0e+6144 -> NaN
- dqfma2631 fma -1000 NaN 0e+6144 -> NaN
- dqfma2632 fma -1 NaN 0e+6144 -> NaN
- dqfma2633 fma -0 NaN 0e+6144 -> NaN
- dqfma2634 fma 0 NaN 0e+6144 -> NaN
- dqfma2635 fma 1 NaN 0e+6144 -> NaN
- dqfma2636 fma 1000 NaN 0e+6144 -> NaN
- dqfma2637 fma Inf NaN 0e+6144 -> NaN
-
- dqfma2641 fma sNaN -Inf 0e+6144 -> NaN Invalid_operation
- dqfma2642 fma sNaN -1000 0e+6144 -> NaN Invalid_operation
- dqfma2643 fma sNaN -1 0e+6144 -> NaN Invalid_operation
- dqfma2644 fma sNaN -0 0e+6144 -> NaN Invalid_operation
- dqfma2645 fma sNaN 0 0e+6144 -> NaN Invalid_operation
- dqfma2646 fma sNaN 1 0e+6144 -> NaN Invalid_operation
- dqfma2647 fma sNaN 1000 0e+6144 -> NaN Invalid_operation
- dqfma2648 fma sNaN NaN 0e+6144 -> NaN Invalid_operation
- dqfma2649 fma sNaN sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2650 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2651 fma -Inf sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2652 fma -1000 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2653 fma -1 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2654 fma -0 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2655 fma 0 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2656 fma 1 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2657 fma 1000 sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2658 fma Inf sNaN 0e+6144 -> NaN Invalid_operation
- dqfma2659 fma NaN sNaN 0e+6144 -> NaN Invalid_operation
-
- -- propagating NaNs
- dqfma2661 fma NaN9 -Inf 0e+6144 -> NaN9
- dqfma2662 fma NaN8 999 0e+6144 -> NaN8
- dqfma2663 fma NaN71 Inf 0e+6144 -> NaN71
- dqfma2664 fma NaN6 NaN5 0e+6144 -> NaN6
- dqfma2665 fma -Inf NaN4 0e+6144 -> NaN4
- dqfma2666 fma -999 NaN33 0e+6144 -> NaN33
- dqfma2667 fma Inf NaN2 0e+6144 -> NaN2
-
- dqfma2671 fma sNaN99 -Inf 0e+6144 -> NaN99 Invalid_operation
- dqfma2672 fma sNaN98 -11 0e+6144 -> NaN98 Invalid_operation
- dqfma2673 fma sNaN97 NaN 0e+6144 -> NaN97 Invalid_operation
- dqfma2674 fma sNaN16 sNaN94 0e+6144 -> NaN16 Invalid_operation
- dqfma2675 fma NaN95 sNaN93 0e+6144 -> NaN93 Invalid_operation
- dqfma2676 fma -Inf sNaN92 0e+6144 -> NaN92 Invalid_operation
- dqfma2677 fma 088 sNaN91 0e+6144 -> NaN91 Invalid_operation
- dqfma2678 fma Inf sNaN90 0e+6144 -> NaN90 Invalid_operation
- dqfma2679 fma NaN sNaN89 0e+6144 -> NaN89 Invalid_operation
-
- dqfma2681 fma -NaN9 -Inf 0e+6144 -> -NaN9
- dqfma2682 fma -NaN8 999 0e+6144 -> -NaN8
- dqfma2683 fma -NaN71 Inf 0e+6144 -> -NaN71
- dqfma2684 fma -NaN6 -NaN5 0e+6144 -> -NaN6
- dqfma2685 fma -Inf -NaN4 0e+6144 -> -NaN4
- dqfma2686 fma -999 -NaN33 0e+6144 -> -NaN33
- dqfma2687 fma Inf -NaN2 0e+6144 -> -NaN2
-
- dqfma2691 fma -sNaN99 -Inf 0e+6144 -> -NaN99 Invalid_operation
- dqfma2692 fma -sNaN98 -11 0e+6144 -> -NaN98 Invalid_operation
- dqfma2693 fma -sNaN97 NaN 0e+6144 -> -NaN97 Invalid_operation
- dqfma2694 fma -sNaN16 -sNaN94 0e+6144 -> -NaN16 Invalid_operation
- dqfma2695 fma -NaN95 -sNaN93 0e+6144 -> -NaN93 Invalid_operation
- dqfma2696 fma -Inf -sNaN92 0e+6144 -> -NaN92 Invalid_operation
- dqfma2697 fma 088 -sNaN91 0e+6144 -> -NaN91 Invalid_operation
- dqfma2698 fma Inf -sNaN90 0e+6144 -> -NaN90 Invalid_operation
- dqfma2699 fma -NaN -sNaN89 0e+6144 -> -NaN89 Invalid_operation
-
- dqfma2701 fma -NaN -Inf 0e+6144 -> -NaN
- dqfma2702 fma -NaN 999 0e+6144 -> -NaN
- dqfma2703 fma -NaN Inf 0e+6144 -> -NaN
- dqfma2704 fma -NaN -NaN 0e+6144 -> -NaN
- dqfma2705 fma -Inf -NaN0 0e+6144 -> -NaN
- dqfma2706 fma -999 -NaN 0e+6144 -> -NaN
- dqfma2707 fma Inf -NaN 0e+6144 -> -NaN
-
- dqfma2711 fma -sNaN -Inf 0e+6144 -> -NaN Invalid_operation
- dqfma2712 fma -sNaN -11 0e+6144 -> -NaN Invalid_operation
- dqfma2713 fma -sNaN00 NaN 0e+6144 -> -NaN Invalid_operation
- dqfma2714 fma -sNaN -sNaN 0e+6144 -> -NaN Invalid_operation
- dqfma2715 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
- dqfma2716 fma -Inf -sNaN 0e+6144 -> -NaN Invalid_operation
- dqfma2717 fma 088 -sNaN 0e+6144 -> -NaN Invalid_operation
- dqfma2718 fma Inf -sNaN 0e+6144 -> -NaN Invalid_operation
- dqfma2719 fma -NaN -sNaN 0e+6144 -> -NaN Invalid_operation
-
- -- overflow and underflow tests .. note subnormal results
- -- signs
- dqfma2751 fma 1e+4277 1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2752 fma 1e+4277 -1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
- dqfma2753 fma -1e+4277 1e+3311 0e+6144 -> -Infinity Overflow Inexact Rounded
- dqfma2754 fma -1e+4277 -1e+3311 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2755 fma 1e-4277 1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2756 fma 1e-4277 -1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2757 fma -1e-4277 1e-3311 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2758 fma -1e-4277 -1e-3311 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
-
- -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic)
- dqfma2760 fma 1e-6069 1e-101 0e+6144 -> 1E-6170 Subnormal
- dqfma2761 fma 1e-6069 1e-102 0e+6144 -> 1E-6171 Subnormal
- dqfma2762 fma 1e-6069 1e-103 0e+6144 -> 1E-6172 Subnormal
- dqfma2763 fma 1e-6069 1e-104 0e+6144 -> 1E-6173 Subnormal
- dqfma2764 fma 1e-6069 1e-105 0e+6144 -> 1E-6174 Subnormal
- dqfma2765 fma 1e-6069 1e-106 0e+6144 -> 1E-6175 Subnormal
- dqfma2766 fma 1e-6069 1e-107 0e+6144 -> 1E-6176 Subnormal
- dqfma2767 fma 1e-6069 1e-108 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2768 fma 1e-6069 1e-109 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2769 fma 1e-6069 1e-110 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- -- [no equivalent of 'subnormal' for overflow]
- dqfma2770 fma 1e+40 1e+6101 0e+6144 -> 1.000000000000000000000000000000E+6141 Clamped
- dqfma2771 fma 1e+40 1e+6102 0e+6144 -> 1.0000000000000000000000000000000E+6142 Clamped
- dqfma2772 fma 1e+40 1e+6103 0e+6144 -> 1.00000000000000000000000000000000E+6143 Clamped
- dqfma2773 fma 1e+40 1e+6104 0e+6144 -> 1.000000000000000000000000000000000E+6144 Clamped
- dqfma2774 fma 1e+40 1e+6105 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2775 fma 1e+40 1e+6106 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2776 fma 1e+40 1e+6107 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2777 fma 1e+40 1e+6108 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2778 fma 1e+40 1e+6109 0e+6144 -> Infinity Overflow Inexact Rounded
- dqfma2779 fma 1e+40 1e+6110 0e+6144 -> Infinity Overflow Inexact Rounded
-
- dqfma2801 fma 1.0000E-6172 1 0e+6144 -> 1.0000E-6172 Subnormal
- dqfma2802 fma 1.000E-6172 1e-1 0e+6144 -> 1.000E-6173 Subnormal
- dqfma2803 fma 1.00E-6172 1e-2 0e+6144 -> 1.00E-6174 Subnormal
- dqfma2804 fma 1.0E-6172 1e-3 0e+6144 -> 1.0E-6175 Subnormal
- dqfma2805 fma 1.0E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal Rounded
- dqfma2806 fma 1.3E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2807 fma 1.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2808 fma 1.7E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2809 fma 2.3E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2810 fma 2.5E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2811 fma 2.7E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
- dqfma2812 fma 1.49E-6172 1e-4 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2813 fma 1.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2814 fma 1.51E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2815 fma 2.49E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2816 fma 2.50E-6172 1e-4 0e+6144 -> 2E-6176 Underflow Subnormal Inexact Rounded
- dqfma2817 fma 2.51E-6172 1e-4 0e+6144 -> 3E-6176 Underflow Subnormal Inexact Rounded
-
- dqfma2818 fma 1E-6172 1e-4 0e+6144 -> 1E-6176 Subnormal
- dqfma2819 fma 3E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2820 fma 5E-6172 1e-5 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2821 fma 7E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2822 fma 9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2823 fma 9.9E-6172 1e-5 0e+6144 -> 1E-6176 Underflow Subnormal Inexact Rounded
-
- dqfma2824 fma 1E-6172 -1e-4 0e+6144 -> -1E-6176 Subnormal
- dqfma2825 fma 3E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2826 fma -5E-6172 1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2827 fma 7E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2828 fma -9E-6172 1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2829 fma 9.9E-6172 -1e-5 0e+6144 -> -1E-6176 Underflow Subnormal Inexact Rounded
- dqfma2830 fma 3.0E-6172 -1e-5 0e+6144 -> -0E-6176 Underflow Subnormal Inexact Rounded Clamped
-
- dqfma2831 fma 1.0E-5977 1e-200 0e+6144 -> 0E-6176 Underflow Subnormal Inexact Rounded Clamped
- dqfma2832 fma 1.0E-5977 1e-199 0e+6144 -> 1E-6176 Subnormal Rounded
- dqfma2833 fma 1.0E-5977 1e-198 0e+6144 -> 1.0E-6175 Subnormal
- dqfma2834 fma 2.0E-5977 2e-198 0e+6144 -> 4.0E-6175 Subnormal
- dqfma2835 fma 4.0E-5977 4e-198 0e+6144 -> 1.60E-6174 Subnormal
- dqfma2836 fma 10.0E-5977 10e-198 0e+6144 -> 1.000E-6173 Subnormal
- dqfma2837 fma 30.0E-5977 30e-198 0e+6144 -> 9.000E-6173 Subnormal
- dqfma2838 fma 40.0E-5982 40e-166 0e+6144 -> 1.6000E-6145 Subnormal
- dqfma2839 fma 40.0E-5982 40e-165 0e+6144 -> 1.6000E-6144 Subnormal
- dqfma2840 fma 40.0E-5982 40e-164 0e+6144 -> 1.6000E-6143
-
- -- Long operand overflow may be a different path
- dqfma2870 fma 100 9.999E+6143 0e+6144 -> Infinity Inexact Overflow Rounded
- dqfma2871 fma 100 -9.999E+6143 0e+6144 -> -Infinity Inexact Overflow Rounded
- dqfma2872 fma 9.999E+6143 100 0e+6144 -> Infinity Inexact Overflow Rounded
- dqfma2873 fma -9.999E+6143 100 0e+6144 -> -Infinity Inexact Overflow Rounded
-
- -- check for double-rounded subnormals
- dqfma2881 fma 1.2347E-6133 1.2347E-40 0e+6144 -> 1.524E-6173 Inexact Rounded Subnormal Underflow
- dqfma2882 fma 1.234E-6133 1.234E-40 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
- dqfma2883 fma 1.23E-6133 1.23E-40 0e+6144 -> 1.513E-6173 Inexact Rounded Subnormal Underflow
- dqfma2884 fma 1.2E-6133 1.2E-40 0e+6144 -> 1.44E-6173 Subnormal
- dqfma2885 fma 1.2E-6133 1.2E-41 0e+6144 -> 1.44E-6174 Subnormal
- dqfma2886 fma 1.2E-6133 1.2E-42 0e+6144 -> 1.4E-6175 Subnormal Inexact Rounded Underflow
- dqfma2887 fma 1.2E-6133 1.3E-42 0e+6144 -> 1.6E-6175 Subnormal Inexact Rounded Underflow
- dqfma2888 fma 1.3E-6133 1.3E-42 0e+6144 -> 1.7E-6175 Subnormal Inexact Rounded Underflow
- dqfma2889 fma 1.3E-6133 1.3E-43 0e+6144 -> 2E-6176 Subnormal Inexact Rounded Underflow
- dqfma2890 fma 1.3E-6134 1.3E-43 0e+6144 -> 0E-6176 Clamped Subnormal Inexact Rounded Underflow
-
- dqfma2891 fma 1.2345E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
- dqfma2892 fma 1.23456E-39 1.234E-6133 0e+6144 -> 1.5234E-6172 Inexact Rounded Subnormal Underflow
- dqfma2893 fma 1.2345E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
- dqfma2894 fma 1.23456E-40 1.234E-6133 0e+6144 -> 1.523E-6173 Inexact Rounded Subnormal Underflow
- dqfma2895 fma 1.2345E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
- dqfma2896 fma 1.23456E-41 1.234E-6133 0e+6144 -> 1.52E-6174 Inexact Rounded Subnormal Underflow
-
- -- Now explore the case where we get a normal result with Underflow
- -- prove operands are exact
- dqfma2906 fma 9.999999999999999999999999999999999E-6143 1 0e+6144 -> 9.999999999999999999999999999999999E-6143
- dqfma2907 fma 1 0.09999999999999999999999999999999999 0e+6144 -> 0.09999999999999999999999999999999999
- -- the next rounds to Nmin
- dqfma2908 fma 9.999999999999999999999999999999999E-6143 0.09999999999999999999999999999999999 0e+6144 -> 1.000000000000000000000000000000000E-6143 Underflow Inexact Subnormal Rounded
-
- -- hugest
- dqfma2909 fma 9999999999999999999999999999999999 9999999999999999999999999999999999 0e+6144 -> 9.999999999999999999999999999999998E+67 Inexact Rounded
-
- -- Examples from SQL proposal (Krishna Kulkarni)
- precision: 34
- rounding: half_up
- maxExponent: 6144
- minExponent: -6143
- dqfma21001 fma 130E-2 120E-2 0e+6144 -> 1.5600
- dqfma21002 fma 130E-2 12E-1 0e+6144 -> 1.560
- dqfma21003 fma 130E-2 1E0 0e+6144 -> 1.30
- dqfma21004 fma 1E2 1E4 0e+6144 -> 1E+6
-
- -- Null tests
- dqfma2990 fma 10 # 0e+6144 -> NaN Invalid_operation
- dqfma2991 fma # 10 0e+6144 -> NaN Invalid_operation
-
-
- -- ADDITION TESTS ------------------------------------------------------
- rounding: half_even
-
- -- [first group are 'quick confidence check']
- dqadd3001 fma 1 1 1 -> 2
- dqadd3002 fma 1 2 3 -> 5
- dqadd3003 fma 1 '5.75' '3.3' -> 9.05
- dqadd3004 fma 1 '5' '-3' -> 2
- dqadd3005 fma 1 '-5' '-3' -> -8
- dqadd3006 fma 1 '-7' '2.5' -> -4.5
- dqadd3007 fma 1 '0.7' '0.3' -> 1.0
- dqadd3008 fma 1 '1.25' '1.25' -> 2.50
- dqadd3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789'
- dqadd3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800'
-
- -- 1234567890123456 1234567890123456
- dqadd3011 fma 1 '0.4444444444444444444444444444444446' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Inexact Rounded
- dqadd3012 fma 1 '0.4444444444444444444444444444444445' '0.5555555555555555555555555555555555' -> '1.000000000000000000000000000000000' Rounded
- dqadd3013 fma 1 '0.4444444444444444444444444444444444' '0.5555555555555555555555555555555555' -> '0.9999999999999999999999999999999999'
- dqadd3014 fma 1 '4444444444444444444444444444444444' '0.49' -> '4444444444444444444444444444444444' Inexact Rounded
- dqadd3015 fma 1 '4444444444444444444444444444444444' '0.499' -> '4444444444444444444444444444444444' Inexact Rounded
- dqadd3016 fma 1 '4444444444444444444444444444444444' '0.4999' -> '4444444444444444444444444444444444' Inexact Rounded
- dqadd3017 fma 1 '4444444444444444444444444444444444' '0.5000' -> '4444444444444444444444444444444444' Inexact Rounded
- dqadd3018 fma 1 '4444444444444444444444444444444444' '0.5001' -> '4444444444444444444444444444444445' Inexact Rounded
- dqadd3019 fma 1 '4444444444444444444444444444444444' '0.501' -> '4444444444444444444444444444444445' Inexact Rounded
- dqadd3020 fma 1 '4444444444444444444444444444444444' '0.51' -> '4444444444444444444444444444444445' Inexact Rounded
-
- dqadd3021 fma 1 0 1 -> 1
- dqadd3022 fma 1 1 1 -> 2
- dqadd3023 fma 1 2 1 -> 3
- dqadd3024 fma 1 3 1 -> 4
- dqadd3025 fma 1 4 1 -> 5
- dqadd3026 fma 1 5 1 -> 6
- dqadd3027 fma 1 6 1 -> 7
- dqadd3028 fma 1 7 1 -> 8
- dqadd3029 fma 1 8 1 -> 9
- dqadd3030 fma 1 9 1 -> 10
-
- -- some carrying effects
- dqadd3031 fma 1 '0.9998' '0.0000' -> '0.9998'
- dqadd3032 fma 1 '0.9998' '0.0001' -> '0.9999'
- dqadd3033 fma 1 '0.9998' '0.0002' -> '1.0000'
- dqadd3034 fma 1 '0.9998' '0.0003' -> '1.0001'
-
- dqadd3035 fma 1 '70' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3036 fma 1 '700' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3037 fma 1 '7000' '10000e+34' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3038 fma 1 '70000' '10000e+34' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
- dqadd3039 fma 1 '700000' '10000e+34' -> '1.000000000000000000000000000000007E+38' Rounded
-
- -- symmetry:
- dqadd3040 fma 1 '10000e+34' '70' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3041 fma 1 '10000e+34' '700' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3042 fma 1 '10000e+34' '7000' -> '1.000000000000000000000000000000000E+38' Inexact Rounded
- dqadd3044 fma 1 '10000e+34' '70000' -> '1.000000000000000000000000000000001E+38' Inexact Rounded
- dqadd3045 fma 1 '10000e+34' '700000' -> '1.000000000000000000000000000000007E+38' Rounded
-
- -- same, without rounding
- dqadd3046 fma 1 '10000e+9' '7' -> '10000000000007'
- dqadd3047 fma 1 '10000e+9' '70' -> '10000000000070'
- dqadd3048 fma 1 '10000e+9' '700' -> '10000000000700'
- dqadd3049 fma 1 '10000e+9' '7000' -> '10000000007000'
- dqadd3050 fma 1 '10000e+9' '70000' -> '10000000070000'
- dqadd3051 fma 1 '10000e+9' '700000' -> '10000000700000'
- dqadd3052 fma 1 '10000e+9' '7000000' -> '10000007000000'
-
- -- examples from decarith
- dqadd3053 fma 1 '12' '7.00' -> '19.00'
- dqadd3054 fma 1 '1.3' '-1.07' -> '0.23'
- dqadd3055 fma 1 '1.3' '-1.30' -> '0.00'
- dqadd3056 fma 1 '1.3' '-2.07' -> '-0.77'
- dqadd3057 fma 1 '1E+2' '1E+4' -> '1.01E+4'
-
- -- leading zero preservation
- dqadd3061 fma 1 1 '0.0001' -> '1.0001'
- dqadd3062 fma 1 1 '0.00001' -> '1.00001'
- dqadd3063 fma 1 1 '0.000001' -> '1.000001'
- dqadd3064 fma 1 1 '0.0000001' -> '1.0000001'
- dqadd3065 fma 1 1 '0.00000001' -> '1.00000001'
-
- -- some funny zeros [in case of bad signum]
- dqadd3070 fma 1 1 0 -> 1
- dqadd3071 fma 1 1 0. -> 1
- dqadd3072 fma 1 1 .0 -> 1.0
- dqadd3073 fma 1 1 0.0 -> 1.0
- dqadd3074 fma 1 1 0.00 -> 1.00
- dqadd3075 fma 1 0 1 -> 1
- dqadd3076 fma 1 0. 1 -> 1
- dqadd3077 fma 1 .0 1 -> 1.0
- dqadd3078 fma 1 0.0 1 -> 1.0
- dqadd3079 fma 1 0.00 1 -> 1.00
-
- -- some carries
- dqadd3080 fma 1 999999998 1 -> 999999999
- dqadd3081 fma 1 999999999 1 -> 1000000000
- dqadd3082 fma 1 99999999 1 -> 100000000
- dqadd3083 fma 1 9999999 1 -> 10000000
- dqadd3084 fma 1 999999 1 -> 1000000
- dqadd3085 fma 1 99999 1 -> 100000
- dqadd3086 fma 1 9999 1 -> 10000
- dqadd3087 fma 1 999 1 -> 1000
- dqadd3088 fma 1 99 1 -> 100
- dqadd3089 fma 1 9 1 -> 10
-
-
- -- more LHS swaps
- dqadd3090 fma 1 '-56267E-10' 0 -> '-0.0000056267'
- dqadd3091 fma 1 '-56267E-6' 0 -> '-0.056267'
- dqadd3092 fma 1 '-56267E-5' 0 -> '-0.56267'
- dqadd3093 fma 1 '-56267E-4' 0 -> '-5.6267'
- dqadd3094 fma 1 '-56267E-3' 0 -> '-56.267'
- dqadd3095 fma 1 '-56267E-2' 0 -> '-562.67'
- dqadd3096 fma 1 '-56267E-1' 0 -> '-5626.7'
- dqadd3097 fma 1 '-56267E-0' 0 -> '-56267'
- dqadd3098 fma 1 '-5E-10' 0 -> '-5E-10'
- dqadd3099 fma 1 '-5E-7' 0 -> '-5E-7'
- dqadd3100 fma 1 '-5E-6' 0 -> '-0.000005'
- dqadd3101 fma 1 '-5E-5' 0 -> '-0.00005'
- dqadd3102 fma 1 '-5E-4' 0 -> '-0.0005'
- dqadd3103 fma 1 '-5E-1' 0 -> '-0.5'
- dqadd3104 fma 1 '-5E0' 0 -> '-5'
- dqadd3105 fma 1 '-5E1' 0 -> '-50'
- dqadd3106 fma 1 '-5E5' 0 -> '-500000'
- dqadd3107 fma 1 '-5E33' 0 -> '-5000000000000000000000000000000000'
- dqadd3108 fma 1 '-5E34' 0 -> '-5.000000000000000000000000000000000E+34' Rounded
- dqadd3109 fma 1 '-5E35' 0 -> '-5.000000000000000000000000000000000E+35' Rounded
- dqadd3110 fma 1 '-5E36' 0 -> '-5.000000000000000000000000000000000E+36' Rounded
- dqadd3111 fma 1 '-5E100' 0 -> '-5.000000000000000000000000000000000E+100' Rounded
-
- -- more RHS swaps
- dqadd3113 fma 1 0 '-56267E-10' -> '-0.0000056267'
- dqadd3114 fma 1 0 '-56267E-6' -> '-0.056267'
- dqadd3116 fma 1 0 '-56267E-5' -> '-0.56267'
- dqadd3117 fma 1 0 '-56267E-4' -> '-5.6267'
- dqadd3119 fma 1 0 '-56267E-3' -> '-56.267'
- dqadd3120 fma 1 0 '-56267E-2' -> '-562.67'
- dqadd3121 fma 1 0 '-56267E-1' -> '-5626.7'
- dqadd3122 fma 1 0 '-56267E-0' -> '-56267'
- dqadd3123 fma 1 0 '-5E-10' -> '-5E-10'
- dqadd3124 fma 1 0 '-5E-7' -> '-5E-7'
- dqadd3125 fma 1 0 '-5E-6' -> '-0.000005'
- dqadd3126 fma 1 0 '-5E-5' -> '-0.00005'
- dqadd3127 fma 1 0 '-5E-4' -> '-0.0005'
- dqadd3128 fma 1 0 '-5E-1' -> '-0.5'
- dqadd3129 fma 1 0 '-5E0' -> '-5'
- dqadd3130 fma 1 0 '-5E1' -> '-50'
- dqadd3131 fma 1 0 '-5E5' -> '-500000'
- dqadd3132 fma 1 0 '-5E33' -> '-5000000000000000000000000000000000'
- dqadd3133 fma 1 0 '-5E34' -> '-5.000000000000000000000000000000000E+34' Rounded
- dqadd3134 fma 1 0 '-5E35' -> '-5.000000000000000000000000000000000E+35' Rounded
- dqadd3135 fma 1 0 '-5E36' -> '-5.000000000000000000000000000000000E+36' Rounded
- dqadd3136 fma 1 0 '-5E100' -> '-5.000000000000000000000000000000000E+100' Rounded
-
- -- related
- dqadd3137 fma 1 1 '0E-39' -> '1.000000000000000000000000000000000' Rounded
- dqadd3138 fma 1 -1 '0E-39' -> '-1.000000000000000000000000000000000' Rounded
- dqadd3139 fma 1 '0E-39' 1 -> '1.000000000000000000000000000000000' Rounded
- dqadd3140 fma 1 '0E-39' -1 -> '-1.000000000000000000000000000000000' Rounded
- dqadd3141 fma 1 1E+29 0.0000 -> '100000000000000000000000000000.0000'
- dqadd3142 fma 1 1E+29 0.00000 -> '100000000000000000000000000000.0000' Rounded
- dqadd3143 fma 1 0.000 1E+30 -> '1000000000000000000000000000000.000'
- dqadd3144 fma 1 0.0000 1E+30 -> '1000000000000000000000000000000.000' Rounded
-
- -- [some of the next group are really constructor tests]
- dqadd3146 fma 1 '00.0' 0 -> '0.0'
- dqadd3147 fma 1 '0.00' 0 -> '0.00'
- dqadd3148 fma 1 0 '0.00' -> '0.00'
- dqadd3149 fma 1 0 '00.0' -> '0.0'
- dqadd3150 fma 1 '00.0' '0.00' -> '0.00'
- dqadd3151 fma 1 '0.00' '00.0' -> '0.00'
- dqadd3152 fma 1 '3' '.3' -> '3.3'
- dqadd3153 fma 1 '3.' '.3' -> '3.3'
- dqadd3154 fma 1 '3.0' '.3' -> '3.3'
- dqadd3155 fma 1 '3.00' '.3' -> '3.30'
- dqadd3156 fma 1 '3' '3' -> '6'
- dqadd3157 fma 1 '3' '+3' -> '6'
- dqadd3158 fma 1 '3' '-3' -> '0'
- dqadd3159 fma 1 '0.3' '-0.3' -> '0.0'
- dqadd3160 fma 1 '0.03' '-0.03' -> '0.00'
-
- -- try borderline precision, with carries, etc.
- dqadd3161 fma 1 '1E+12' '-1' -> '999999999999'
- dqadd3162 fma 1 '1E+12' '1.11' -> '1000000000001.11'
- dqadd3163 fma 1 '1.11' '1E+12' -> '1000000000001.11'
- dqadd3164 fma 1 '-1' '1E+12' -> '999999999999'
- dqadd3165 fma 1 '7E+12' '-1' -> '6999999999999'
- dqadd3166 fma 1 '7E+12' '1.11' -> '7000000000001.11'
- dqadd3167 fma 1 '1.11' '7E+12' -> '7000000000001.11'
- dqadd3168 fma 1 '-1' '7E+12' -> '6999999999999'
-
- rounding: half_up
- dqadd3170 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555567' -> '5.000000000000000000000000000000001' Inexact Rounded
- dqadd3171 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555566' -> '5.000000000000000000000000000000001' Inexact Rounded
- dqadd3172 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555565' -> '5.000000000000000000000000000000001' Inexact Rounded
- dqadd3173 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555564' -> '5.000000000000000000000000000000000' Inexact Rounded
- dqadd3174 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555553' -> '4.999999999999999999999999999999999' Inexact Rounded
- dqadd3175 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555552' -> '4.999999999999999999999999999999999' Inexact Rounded
- dqadd3176 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555551' -> '4.999999999999999999999999999999999' Inexact Rounded
- dqadd3177 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555550' -> '4.999999999999999999999999999999999' Rounded
- dqadd3178 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555545' -> '4.999999999999999999999999999999999' Inexact Rounded
- dqadd3179 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555544' -> '4.999999999999999999999999999999998' Inexact Rounded
- dqadd3180 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555543' -> '4.999999999999999999999999999999998' Inexact Rounded
- dqadd3181 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555542' -> '4.999999999999999999999999999999998' Inexact Rounded
- dqadd3182 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555541' -> '4.999999999999999999999999999999998' Inexact Rounded
- dqadd3183 fma 1 '4.444444444444444444444444444444444' '0.5555555555555555555555555555555540' -> '4.999999999999999999999999999999998' Rounded
-
- -- and some more, including residue effects and different roundings
- rounding: half_up
- dqadd3200 fma 1 '1231234567890123456784560123456789' 0 -> '1231234567890123456784560123456789'
- dqadd3201 fma 1 '1231234567890123456784560123456789' 0.000000001 -> '1231234567890123456784560123456789' Inexact Rounded
- dqadd3202 fma 1 '1231234567890123456784560123456789' 0.000001 -> '1231234567890123456784560123456789' Inexact Rounded
- dqadd3203 fma 1 '1231234567890123456784560123456789' 0.1 -> '1231234567890123456784560123456789' Inexact Rounded
- dqadd3204 fma 1 '1231234567890123456784560123456789' 0.4…