PageRenderTime 60ms CodeModel.GetById 16ms app.highlight 36ms RepoModel.GetById 1ms app.codeStats 0ms

/testlibs/gmock/include/gmock/gmock-actions.h

https://github.com/deltaforge/nebu-app-hadoop
C Header | 1076 lines | 561 code | 164 blank | 351 comment | 9 complexity | 5a9106df9a0cd144ccc52635201315c8 MD5 | raw file
   1// Copyright 2007, Google Inc.
   2// All rights reserved.
   3//
   4// Redistribution and use in source and binary forms, with or without
   5// modification, are permitted provided that the following conditions are
   6// met:
   7//
   8//     * Redistributions of source code must retain the above copyright
   9// notice, this list of conditions and the following disclaimer.
  10//     * Redistributions in binary form must reproduce the above
  11// copyright notice, this list of conditions and the following disclaimer
  12// in the documentation and/or other materials provided with the
  13// distribution.
  14//     * Neither the name of Google Inc. nor the names of its
  15// contributors may be used to endorse or promote products derived from
  16// this software without specific prior written permission.
  17//
  18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29//
  30// Author: wan@google.com (Zhanyong Wan)
  31
  32// Google Mock - a framework for writing C++ mock classes.
  33//
  34// This file implements some commonly used actions.
  35
  36#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
  37#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
  38
  39#include <algorithm>
  40#include <string>
  41
  42#ifndef _WIN32_WCE
  43# include <errno.h>
  44#endif
  45
  46#include "gmock/internal/gmock-internal-utils.h"
  47#include "gmock/internal/gmock-port.h"
  48
  49namespace testing {
  50
  51// To implement an action Foo, define:
  52//   1. a class FooAction that implements the ActionInterface interface, and
  53//   2. a factory function that creates an Action object from a
  54//      const FooAction*.
  55//
  56// The two-level delegation design follows that of Matcher, providing
  57// consistency for extension developers.  It also eases ownership
  58// management as Action objects can now be copied like plain values.
  59
  60namespace internal {
  61
  62template <typename F1, typename F2>
  63class ActionAdaptor;
  64
  65// BuiltInDefaultValue<T>::Get() returns the "built-in" default
  66// value for type T, which is NULL when T is a pointer type, 0 when T
  67// is a numeric type, false when T is bool, or "" when T is string or
  68// std::string.  For any other type T, this value is undefined and the
  69// function will abort the process.
  70template <typename T>
  71class BuiltInDefaultValue {
  72 public:
  73  // This function returns true iff type T has a built-in default value.
  74  static bool Exists() { return false; }
  75  static T Get() {
  76    Assert(false, __FILE__, __LINE__,
  77           "Default action undefined for the function return type.");
  78    return internal::Invalid<T>();
  79    // The above statement will never be reached, but is required in
  80    // order for this function to compile.
  81  }
  82};
  83
  84// This partial specialization says that we use the same built-in
  85// default value for T and const T.
  86template <typename T>
  87class BuiltInDefaultValue<const T> {
  88 public:
  89  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
  90  static T Get() { return BuiltInDefaultValue<T>::Get(); }
  91};
  92
  93// This partial specialization defines the default values for pointer
  94// types.
  95template <typename T>
  96class BuiltInDefaultValue<T*> {
  97 public:
  98  static bool Exists() { return true; }
  99  static T* Get() { return NULL; }
 100};
 101
 102// The following specializations define the default values for
 103// specific types we care about.
 104#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 105  template <> \
 106  class BuiltInDefaultValue<type> { \
 107   public: \
 108    static bool Exists() { return true; } \
 109    static type Get() { return value; } \
 110  }
 111
 112GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 113#if GTEST_HAS_GLOBAL_STRING
 114GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
 115#endif  // GTEST_HAS_GLOBAL_STRING
 116GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
 117GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
 118GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
 119GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
 120GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
 121
 122// There's no need for a default action for signed wchar_t, as that
 123// type is the same as wchar_t for gcc, and invalid for MSVC.
 124//
 125// There's also no need for a default action for unsigned wchar_t, as
 126// that type is the same as unsigned int for gcc, and invalid for
 127// MSVC.
 128#if GMOCK_WCHAR_T_IS_NATIVE_
 129GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 130#endif
 131
 132GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 133GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 134GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
 135GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
 136GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
 137GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
 138GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
 139GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
 140GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
 141GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
 142
 143#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 144
 145}  // namespace internal
 146
 147// When an unexpected function call is encountered, Google Mock will
 148// let it return a default value if the user has specified one for its
 149// return type, or if the return type has a built-in default value;
 150// otherwise Google Mock won't know what value to return and will have
 151// to abort the process.
 152//
 153// The DefaultValue<T> class allows a user to specify the
 154// default value for a type T that is both copyable and publicly
 155// destructible (i.e. anything that can be used as a function return
 156// type).  The usage is:
 157//
 158//   // Sets the default value for type T to be foo.
 159//   DefaultValue<T>::Set(foo);
 160template <typename T>
 161class DefaultValue {
 162 public:
 163  // Sets the default value for type T; requires T to be
 164  // copy-constructable and have a public destructor.
 165  static void Set(T x) {
 166    delete value_;
 167    value_ = new T(x);
 168  }
 169
 170  // Unsets the default value for type T.
 171  static void Clear() {
 172    delete value_;
 173    value_ = NULL;
 174  }
 175
 176  // Returns true iff the user has set the default value for type T.
 177  static bool IsSet() { return value_ != NULL; }
 178
 179  // Returns true if T has a default return value set by the user or there
 180  // exists a built-in default value.
 181  static bool Exists() {
 182    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
 183  }
 184
 185  // Returns the default value for type T if the user has set one;
 186  // otherwise returns the built-in default value if there is one;
 187  // otherwise aborts the process.
 188  static T Get() {
 189    return value_ == NULL ?
 190        internal::BuiltInDefaultValue<T>::Get() : *value_;
 191  }
 192 private:
 193  static const T* value_;
 194};
 195
 196// This partial specialization allows a user to set default values for
 197// reference types.
 198template <typename T>
 199class DefaultValue<T&> {
 200 public:
 201  // Sets the default value for type T&.
 202  static void Set(T& x) {  // NOLINT
 203    address_ = &x;
 204  }
 205
 206  // Unsets the default value for type T&.
 207  static void Clear() {
 208    address_ = NULL;
 209  }
 210
 211  // Returns true iff the user has set the default value for type T&.
 212  static bool IsSet() { return address_ != NULL; }
 213
 214  // Returns true if T has a default return value set by the user or there
 215  // exists a built-in default value.
 216  static bool Exists() {
 217    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
 218  }
 219
 220  // Returns the default value for type T& if the user has set one;
 221  // otherwise returns the built-in default value if there is one;
 222  // otherwise aborts the process.
 223  static T& Get() {
 224    return address_ == NULL ?
 225        internal::BuiltInDefaultValue<T&>::Get() : *address_;
 226  }
 227 private:
 228  static T* address_;
 229};
 230
 231// This specialization allows DefaultValue<void>::Get() to
 232// compile.
 233template <>
 234class DefaultValue<void> {
 235 public:
 236  static bool Exists() { return true; }
 237  static void Get() {}
 238};
 239
 240// Points to the user-set default value for type T.
 241template <typename T>
 242const T* DefaultValue<T>::value_ = NULL;
 243
 244// Points to the user-set default value for type T&.
 245template <typename T>
 246T* DefaultValue<T&>::address_ = NULL;
 247
 248// Implement this interface to define an action for function type F.
 249template <typename F>
 250class ActionInterface {
 251 public:
 252  typedef typename internal::Function<F>::Result Result;
 253  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 254
 255  ActionInterface() {}
 256  virtual ~ActionInterface() {}
 257
 258  // Performs the action.  This method is not const, as in general an
 259  // action can have side effects and be stateful.  For example, a
 260  // get-the-next-element-from-the-collection action will need to
 261  // remember the current element.
 262  virtual Result Perform(const ArgumentTuple& args) = 0;
 263
 264 private:
 265  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
 266};
 267
 268// An Action<F> is a copyable and IMMUTABLE (except by assignment)
 269// object that represents an action to be taken when a mock function
 270// of type F is called.  The implementation of Action<T> is just a
 271// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
 272// Don't inherit from Action!
 273//
 274// You can view an object implementing ActionInterface<F> as a
 275// concrete action (including its current state), and an Action<F>
 276// object as a handle to it.
 277template <typename F>
 278class Action {
 279 public:
 280  typedef typename internal::Function<F>::Result Result;
 281  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 282
 283  // Constructs a null Action.  Needed for storing Action objects in
 284  // STL containers.
 285  Action() : impl_(NULL) {}
 286
 287  // Constructs an Action from its implementation.  A NULL impl is
 288  // used to represent the "do-default" action.
 289  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
 290
 291  // Copy constructor.
 292  Action(const Action& action) : impl_(action.impl_) {}
 293
 294  // This constructor allows us to turn an Action<Func> object into an
 295  // Action<F>, as long as F's arguments can be implicitly converted
 296  // to Func's and Func's return type can be implicitly converted to
 297  // F's.
 298  template <typename Func>
 299  explicit Action(const Action<Func>& action);
 300
 301  // Returns true iff this is the DoDefault() action.
 302  bool IsDoDefault() const { return impl_.get() == NULL; }
 303
 304  // Performs the action.  Note that this method is const even though
 305  // the corresponding method in ActionInterface is not.  The reason
 306  // is that a const Action<F> means that it cannot be re-bound to
 307  // another concrete action, not that the concrete action it binds to
 308  // cannot change state.  (Think of the difference between a const
 309  // pointer and a pointer to const.)
 310  Result Perform(const ArgumentTuple& args) const {
 311    internal::Assert(
 312        !IsDoDefault(), __FILE__, __LINE__,
 313        "You are using DoDefault() inside a composite action like "
 314        "DoAll() or WithArgs().  This is not supported for technical "
 315        "reasons.  Please instead spell out the default action, or "
 316        "assign the default action to an Action variable and use "
 317        "the variable in various places.");
 318    return impl_->Perform(args);
 319  }
 320
 321 private:
 322  template <typename F1, typename F2>
 323  friend class internal::ActionAdaptor;
 324
 325  internal::linked_ptr<ActionInterface<F> > impl_;
 326};
 327
 328// The PolymorphicAction class template makes it easy to implement a
 329// polymorphic action (i.e. an action that can be used in mock
 330// functions of than one type, e.g. Return()).
 331//
 332// To define a polymorphic action, a user first provides a COPYABLE
 333// implementation class that has a Perform() method template:
 334//
 335//   class FooAction {
 336//    public:
 337//     template <typename Result, typename ArgumentTuple>
 338//     Result Perform(const ArgumentTuple& args) const {
 339//       // Processes the arguments and returns a result, using
 340//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
 341//     }
 342//     ...
 343//   };
 344//
 345// Then the user creates the polymorphic action using
 346// MakePolymorphicAction(object) where object has type FooAction.  See
 347// the definition of Return(void) and SetArgumentPointee<N>(value) for
 348// complete examples.
 349template <typename Impl>
 350class PolymorphicAction {
 351 public:
 352  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
 353
 354  template <typename F>
 355  operator Action<F>() const {
 356    return Action<F>(new MonomorphicImpl<F>(impl_));
 357  }
 358
 359 private:
 360  template <typename F>
 361  class MonomorphicImpl : public ActionInterface<F> {
 362   public:
 363    typedef typename internal::Function<F>::Result Result;
 364    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 365
 366    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
 367
 368    virtual Result Perform(const ArgumentTuple& args) {
 369      return impl_.template Perform<Result>(args);
 370    }
 371
 372   private:
 373    Impl impl_;
 374
 375    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
 376  };
 377
 378  Impl impl_;
 379
 380  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
 381};
 382
 383// Creates an Action from its implementation and returns it.  The
 384// created Action object owns the implementation.
 385template <typename F>
 386Action<F> MakeAction(ActionInterface<F>* impl) {
 387  return Action<F>(impl);
 388}
 389
 390// Creates a polymorphic action from its implementation.  This is
 391// easier to use than the PolymorphicAction<Impl> constructor as it
 392// doesn't require you to explicitly write the template argument, e.g.
 393//
 394//   MakePolymorphicAction(foo);
 395// vs
 396//   PolymorphicAction<TypeOfFoo>(foo);
 397template <typename Impl>
 398inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
 399  return PolymorphicAction<Impl>(impl);
 400}
 401
 402namespace internal {
 403
 404// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
 405// and F1 are compatible.
 406template <typename F1, typename F2>
 407class ActionAdaptor : public ActionInterface<F1> {
 408 public:
 409  typedef typename internal::Function<F1>::Result Result;
 410  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
 411
 412  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
 413
 414  virtual Result Perform(const ArgumentTuple& args) {
 415    return impl_->Perform(args);
 416  }
 417
 418 private:
 419  const internal::linked_ptr<ActionInterface<F2> > impl_;
 420
 421  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
 422};
 423
 424// Implements the polymorphic Return(x) action, which can be used in
 425// any function that returns the type of x, regardless of the argument
 426// types.
 427//
 428// Note: The value passed into Return must be converted into
 429// Function<F>::Result when this action is cast to Action<F> rather than
 430// when that action is performed. This is important in scenarios like
 431//
 432// MOCK_METHOD1(Method, T(U));
 433// ...
 434// {
 435//   Foo foo;
 436//   X x(&foo);
 437//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
 438// }
 439//
 440// In the example above the variable x holds reference to foo which leaves
 441// scope and gets destroyed.  If copying X just copies a reference to foo,
 442// that copy will be left with a hanging reference.  If conversion to T
 443// makes a copy of foo, the above code is safe. To support that scenario, we
 444// need to make sure that the type conversion happens inside the EXPECT_CALL
 445// statement, and conversion of the result of Return to Action<T(U)> is a
 446// good place for that.
 447//
 448template <typename R>
 449class ReturnAction {
 450 public:
 451  // Constructs a ReturnAction object from the value to be returned.
 452  // 'value' is passed by value instead of by const reference in order
 453  // to allow Return("string literal") to compile.
 454  explicit ReturnAction(R value) : value_(value) {}
 455
 456  // This template type conversion operator allows Return(x) to be
 457  // used in ANY function that returns x's type.
 458  template <typename F>
 459  operator Action<F>() const {
 460    // Assert statement belongs here because this is the best place to verify
 461    // conditions on F. It produces the clearest error messages
 462    // in most compilers.
 463    // Impl really belongs in this scope as a local class but can't
 464    // because MSVC produces duplicate symbols in different translation units
 465    // in this case. Until MS fixes that bug we put Impl into the class scope
 466    // and put the typedef both here (for use in assert statement) and
 467    // in the Impl class. But both definitions must be the same.
 468    typedef typename Function<F>::Result Result;
 469    GTEST_COMPILE_ASSERT_(
 470        !internal::is_reference<Result>::value,
 471        use_ReturnRef_instead_of_Return_to_return_a_reference);
 472    return Action<F>(new Impl<F>(value_));
 473  }
 474
 475 private:
 476  // Implements the Return(x) action for a particular function type F.
 477  template <typename F>
 478  class Impl : public ActionInterface<F> {
 479   public:
 480    typedef typename Function<F>::Result Result;
 481    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 482
 483    // The implicit cast is necessary when Result has more than one
 484    // single-argument constructor (e.g. Result is std::vector<int>) and R
 485    // has a type conversion operator template.  In that case, value_(value)
 486    // won't compile as the compiler doesn't known which constructor of
 487    // Result to call.  ImplicitCast_ forces the compiler to convert R to
 488    // Result without considering explicit constructors, thus resolving the
 489    // ambiguity. value_ is then initialized using its copy constructor.
 490    explicit Impl(R value)
 491        : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
 492
 493    virtual Result Perform(const ArgumentTuple&) { return value_; }
 494
 495   private:
 496    GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
 497                          Result_cannot_be_a_reference_type);
 498    Result value_;
 499
 500    GTEST_DISALLOW_ASSIGN_(Impl);
 501  };
 502
 503  R value_;
 504
 505  GTEST_DISALLOW_ASSIGN_(ReturnAction);
 506};
 507
 508// Implements the ReturnNull() action.
 509class ReturnNullAction {
 510 public:
 511  // Allows ReturnNull() to be used in any pointer-returning function.
 512  template <typename Result, typename ArgumentTuple>
 513  static Result Perform(const ArgumentTuple&) {
 514    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
 515                          ReturnNull_can_be_used_to_return_a_pointer_only);
 516    return NULL;
 517  }
 518};
 519
 520// Implements the Return() action.
 521class ReturnVoidAction {
 522 public:
 523  // Allows Return() to be used in any void-returning function.
 524  template <typename Result, typename ArgumentTuple>
 525  static void Perform(const ArgumentTuple&) {
 526    CompileAssertTypesEqual<void, Result>();
 527  }
 528};
 529
 530// Implements the polymorphic ReturnRef(x) action, which can be used
 531// in any function that returns a reference to the type of x,
 532// regardless of the argument types.
 533template <typename T>
 534class ReturnRefAction {
 535 public:
 536  // Constructs a ReturnRefAction object from the reference to be returned.
 537  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 538
 539  // This template type conversion operator allows ReturnRef(x) to be
 540  // used in ANY function that returns a reference to x's type.
 541  template <typename F>
 542  operator Action<F>() const {
 543    typedef typename Function<F>::Result Result;
 544    // Asserts that the function return type is a reference.  This
 545    // catches the user error of using ReturnRef(x) when Return(x)
 546    // should be used, and generates some helpful error message.
 547    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
 548                          use_Return_instead_of_ReturnRef_to_return_a_value);
 549    return Action<F>(new Impl<F>(ref_));
 550  }
 551
 552 private:
 553  // Implements the ReturnRef(x) action for a particular function type F.
 554  template <typename F>
 555  class Impl : public ActionInterface<F> {
 556   public:
 557    typedef typename Function<F>::Result Result;
 558    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 559
 560    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 561
 562    virtual Result Perform(const ArgumentTuple&) {
 563      return ref_;
 564    }
 565
 566   private:
 567    T& ref_;
 568
 569    GTEST_DISALLOW_ASSIGN_(Impl);
 570  };
 571
 572  T& ref_;
 573
 574  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
 575};
 576
 577// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
 578// used in any function that returns a reference to the type of x,
 579// regardless of the argument types.
 580template <typename T>
 581class ReturnRefOfCopyAction {
 582 public:
 583  // Constructs a ReturnRefOfCopyAction object from the reference to
 584  // be returned.
 585  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
 586
 587  // This template type conversion operator allows ReturnRefOfCopy(x) to be
 588  // used in ANY function that returns a reference to x's type.
 589  template <typename F>
 590  operator Action<F>() const {
 591    typedef typename Function<F>::Result Result;
 592    // Asserts that the function return type is a reference.  This
 593    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
 594    // should be used, and generates some helpful error message.
 595    GTEST_COMPILE_ASSERT_(
 596        internal::is_reference<Result>::value,
 597        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
 598    return Action<F>(new Impl<F>(value_));
 599  }
 600
 601 private:
 602  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
 603  template <typename F>
 604  class Impl : public ActionInterface<F> {
 605   public:
 606    typedef typename Function<F>::Result Result;
 607    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 608
 609    explicit Impl(const T& value) : value_(value) {}  // NOLINT
 610
 611    virtual Result Perform(const ArgumentTuple&) {
 612      return value_;
 613    }
 614
 615   private:
 616    T value_;
 617
 618    GTEST_DISALLOW_ASSIGN_(Impl);
 619  };
 620
 621  const T value_;
 622
 623  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
 624};
 625
 626// Implements the polymorphic DoDefault() action.
 627class DoDefaultAction {
 628 public:
 629  // This template type conversion operator allows DoDefault() to be
 630  // used in any function.
 631  template <typename F>
 632  operator Action<F>() const { return Action<F>(NULL); }
 633};
 634
 635// Implements the Assign action to set a given pointer referent to a
 636// particular value.
 637template <typename T1, typename T2>
 638class AssignAction {
 639 public:
 640  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
 641
 642  template <typename Result, typename ArgumentTuple>
 643  void Perform(const ArgumentTuple& /* args */) const {
 644    *ptr_ = value_;
 645  }
 646
 647 private:
 648  T1* const ptr_;
 649  const T2 value_;
 650
 651  GTEST_DISALLOW_ASSIGN_(AssignAction);
 652};
 653
 654#if !GTEST_OS_WINDOWS_MOBILE
 655
 656// Implements the SetErrnoAndReturn action to simulate return from
 657// various system calls and libc functions.
 658template <typename T>
 659class SetErrnoAndReturnAction {
 660 public:
 661  SetErrnoAndReturnAction(int errno_value, T result)
 662      : errno_(errno_value),
 663        result_(result) {}
 664  template <typename Result, typename ArgumentTuple>
 665  Result Perform(const ArgumentTuple& /* args */) const {
 666    errno = errno_;
 667    return result_;
 668  }
 669
 670 private:
 671  const int errno_;
 672  const T result_;
 673
 674  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
 675};
 676
 677#endif  // !GTEST_OS_WINDOWS_MOBILE
 678
 679// Implements the SetArgumentPointee<N>(x) action for any function
 680// whose N-th argument (0-based) is a pointer to x's type.  The
 681// template parameter kIsProto is true iff type A is ProtocolMessage,
 682// proto2::Message, or a sub-class of those.
 683template <size_t N, typename A, bool kIsProto>
 684class SetArgumentPointeeAction {
 685 public:
 686  // Constructs an action that sets the variable pointed to by the
 687  // N-th function argument to 'value'.
 688  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
 689
 690  template <typename Result, typename ArgumentTuple>
 691  void Perform(const ArgumentTuple& args) const {
 692    CompileAssertTypesEqual<void, Result>();
 693    *::std::tr1::get<N>(args) = value_;
 694  }
 695
 696 private:
 697  const A value_;
 698
 699  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
 700};
 701
 702template <size_t N, typename Proto>
 703class SetArgumentPointeeAction<N, Proto, true> {
 704 public:
 705  // Constructs an action that sets the variable pointed to by the
 706  // N-th function argument to 'proto'.  Both ProtocolMessage and
 707  // proto2::Message have the CopyFrom() method, so the same
 708  // implementation works for both.
 709  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
 710    proto_->CopyFrom(proto);
 711  }
 712
 713  template <typename Result, typename ArgumentTuple>
 714  void Perform(const ArgumentTuple& args) const {
 715    CompileAssertTypesEqual<void, Result>();
 716    ::std::tr1::get<N>(args)->CopyFrom(*proto_);
 717  }
 718
 719 private:
 720  const internal::linked_ptr<Proto> proto_;
 721
 722  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
 723};
 724
 725// Implements the InvokeWithoutArgs(f) action.  The template argument
 726// FunctionImpl is the implementation type of f, which can be either a
 727// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 728// Action<F> as long as f's type is compatible with F (i.e. f can be
 729// assigned to a tr1::function<F>).
 730template <typename FunctionImpl>
 731class InvokeWithoutArgsAction {
 732 public:
 733  // The c'tor makes a copy of function_impl (either a function
 734  // pointer or a functor).
 735  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
 736      : function_impl_(function_impl) {}
 737
 738  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 739  // compatible with f.
 740  template <typename Result, typename ArgumentTuple>
 741  Result Perform(const ArgumentTuple&) { return function_impl_(); }
 742
 743 private:
 744  FunctionImpl function_impl_;
 745
 746  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
 747};
 748
 749// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 750template <class Class, typename MethodPtr>
 751class InvokeMethodWithoutArgsAction {
 752 public:
 753  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
 754      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
 755
 756  template <typename Result, typename ArgumentTuple>
 757  Result Perform(const ArgumentTuple&) const {
 758    return (obj_ptr_->*method_ptr_)();
 759  }
 760
 761 private:
 762  Class* const obj_ptr_;
 763  const MethodPtr method_ptr_;
 764
 765  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
 766};
 767
 768// Implements the IgnoreResult(action) action.
 769template <typename A>
 770class IgnoreResultAction {
 771 public:
 772  explicit IgnoreResultAction(const A& action) : action_(action) {}
 773
 774  template <typename F>
 775  operator Action<F>() const {
 776    // Assert statement belongs here because this is the best place to verify
 777    // conditions on F. It produces the clearest error messages
 778    // in most compilers.
 779    // Impl really belongs in this scope as a local class but can't
 780    // because MSVC produces duplicate symbols in different translation units
 781    // in this case. Until MS fixes that bug we put Impl into the class scope
 782    // and put the typedef both here (for use in assert statement) and
 783    // in the Impl class. But both definitions must be the same.
 784    typedef typename internal::Function<F>::Result Result;
 785
 786    // Asserts at compile time that F returns void.
 787    CompileAssertTypesEqual<void, Result>();
 788
 789    return Action<F>(new Impl<F>(action_));
 790  }
 791
 792 private:
 793  template <typename F>
 794  class Impl : public ActionInterface<F> {
 795   public:
 796    typedef typename internal::Function<F>::Result Result;
 797    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 798
 799    explicit Impl(const A& action) : action_(action) {}
 800
 801    virtual void Perform(const ArgumentTuple& args) {
 802      // Performs the action and ignores its result.
 803      action_.Perform(args);
 804    }
 805
 806   private:
 807    // Type OriginalFunction is the same as F except that its return
 808    // type is IgnoredValue.
 809    typedef typename internal::Function<F>::MakeResultIgnoredValue
 810        OriginalFunction;
 811
 812    const Action<OriginalFunction> action_;
 813
 814    GTEST_DISALLOW_ASSIGN_(Impl);
 815  };
 816
 817  const A action_;
 818
 819  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
 820};
 821
 822// A ReferenceWrapper<T> object represents a reference to type T,
 823// which can be either const or not.  It can be explicitly converted
 824// from, and implicitly converted to, a T&.  Unlike a reference,
 825// ReferenceWrapper<T> can be copied and can survive template type
 826// inference.  This is used to support by-reference arguments in the
 827// InvokeArgument<N>(...) action.  The idea was from "reference
 828// wrappers" in tr1, which we don't have in our source tree yet.
 829template <typename T>
 830class ReferenceWrapper {
 831 public:
 832  // Constructs a ReferenceWrapper<T> object from a T&.
 833  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
 834
 835  // Allows a ReferenceWrapper<T> object to be implicitly converted to
 836  // a T&.
 837  operator T&() const { return *pointer_; }
 838 private:
 839  T* pointer_;
 840};
 841
 842// Allows the expression ByRef(x) to be printed as a reference to x.
 843template <typename T>
 844void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
 845  T& value = ref;
 846  UniversalPrinter<T&>::Print(value, os);
 847}
 848
 849// Does two actions sequentially.  Used for implementing the DoAll(a1,
 850// a2, ...) action.
 851template <typename Action1, typename Action2>
 852class DoBothAction {
 853 public:
 854  DoBothAction(Action1 action1, Action2 action2)
 855      : action1_(action1), action2_(action2) {}
 856
 857  // This template type conversion operator allows DoAll(a1, ..., a_n)
 858  // to be used in ANY function of compatible type.
 859  template <typename F>
 860  operator Action<F>() const {
 861    return Action<F>(new Impl<F>(action1_, action2_));
 862  }
 863
 864 private:
 865  // Implements the DoAll(...) action for a particular function type F.
 866  template <typename F>
 867  class Impl : public ActionInterface<F> {
 868   public:
 869    typedef typename Function<F>::Result Result;
 870    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 871    typedef typename Function<F>::MakeResultVoid VoidResult;
 872
 873    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
 874        : action1_(action1), action2_(action2) {}
 875
 876    virtual Result Perform(const ArgumentTuple& args) {
 877      action1_.Perform(args);
 878      return action2_.Perform(args);
 879    }
 880
 881   private:
 882    const Action<VoidResult> action1_;
 883    const Action<F> action2_;
 884
 885    GTEST_DISALLOW_ASSIGN_(Impl);
 886  };
 887
 888  Action1 action1_;
 889  Action2 action2_;
 890
 891  GTEST_DISALLOW_ASSIGN_(DoBothAction);
 892};
 893
 894}  // namespace internal
 895
 896// An Unused object can be implicitly constructed from ANY value.
 897// This is handy when defining actions that ignore some or all of the
 898// mock function arguments.  For example, given
 899//
 900//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 901//   MOCK_METHOD3(Bar, double(int index, double x, double y));
 902//
 903// instead of
 904//
 905//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 906//     return sqrt(x*x + y*y);
 907//   }
 908//   double DistanceToOriginWithIndex(int index, double x, double y) {
 909//     return sqrt(x*x + y*y);
 910//   }
 911//   ...
 912//   EXEPCT_CALL(mock, Foo("abc", _, _))
 913//       .WillOnce(Invoke(DistanceToOriginWithLabel));
 914//   EXEPCT_CALL(mock, Bar(5, _, _))
 915//       .WillOnce(Invoke(DistanceToOriginWithIndex));
 916//
 917// you could write
 918//
 919//   // We can declare any uninteresting argument as Unused.
 920//   double DistanceToOrigin(Unused, double x, double y) {
 921//     return sqrt(x*x + y*y);
 922//   }
 923//   ...
 924//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 925//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 926typedef internal::IgnoredValue Unused;
 927
 928// This constructor allows us to turn an Action<From> object into an
 929// Action<To>, as long as To's arguments can be implicitly converted
 930// to From's and From's return type cann be implicitly converted to
 931// To's.
 932template <typename To>
 933template <typename From>
 934Action<To>::Action(const Action<From>& from)
 935    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
 936
 937// Creates an action that returns 'value'.  'value' is passed by value
 938// instead of const reference - otherwise Return("string literal")
 939// will trigger a compiler error about using array as initializer.
 940template <typename R>
 941internal::ReturnAction<R> Return(R value) {
 942  return internal::ReturnAction<R>(value);
 943}
 944
 945// Creates an action that returns NULL.
 946inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
 947  return MakePolymorphicAction(internal::ReturnNullAction());
 948}
 949
 950// Creates an action that returns from a void function.
 951inline PolymorphicAction<internal::ReturnVoidAction> Return() {
 952  return MakePolymorphicAction(internal::ReturnVoidAction());
 953}
 954
 955// Creates an action that returns the reference to a variable.
 956template <typename R>
 957inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 958  return internal::ReturnRefAction<R>(x);
 959}
 960
 961// Creates an action that returns the reference to a copy of the
 962// argument.  The copy is created when the action is constructed and
 963// lives as long as the action.
 964template <typename R>
 965inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
 966  return internal::ReturnRefOfCopyAction<R>(x);
 967}
 968
 969// Creates an action that does the default action for the give mock function.
 970inline internal::DoDefaultAction DoDefault() {
 971  return internal::DoDefaultAction();
 972}
 973
 974// Creates an action that sets the variable pointed by the N-th
 975// (0-based) function argument to 'value'.
 976template <size_t N, typename T>
 977PolymorphicAction<
 978  internal::SetArgumentPointeeAction<
 979    N, T, internal::IsAProtocolMessage<T>::value> >
 980SetArgPointee(const T& x) {
 981  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 982      N, T, internal::IsAProtocolMessage<T>::value>(x));
 983}
 984
 985#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
 986// This overload allows SetArgPointee() to accept a string literal.
 987// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
 988// this overload from the templated version and emit a compile error.
 989template <size_t N>
 990PolymorphicAction<
 991  internal::SetArgumentPointeeAction<N, const char*, false> >
 992SetArgPointee(const char* p) {
 993  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 994      N, const char*, false>(p));
 995}
 996
 997template <size_t N>
 998PolymorphicAction<
 999  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1000SetArgPointee(const wchar_t* p) {
1001  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1002      N, const wchar_t*, false>(p));
1003}
1004#endif
1005
1006// The following version is DEPRECATED.
1007template <size_t N, typename T>
1008PolymorphicAction<
1009  internal::SetArgumentPointeeAction<
1010    N, T, internal::IsAProtocolMessage<T>::value> >
1011SetArgumentPointee(const T& x) {
1012  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1013      N, T, internal::IsAProtocolMessage<T>::value>(x));
1014}
1015
1016// Creates an action that sets a pointer referent to a given value.
1017template <typename T1, typename T2>
1018PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1019  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1020}
1021
1022#if !GTEST_OS_WINDOWS_MOBILE
1023
1024// Creates an action that sets errno and returns the appropriate error.
1025template <typename T>
1026PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1027SetErrnoAndReturn(int errval, T result) {
1028  return MakePolymorphicAction(
1029      internal::SetErrnoAndReturnAction<T>(errval, result));
1030}
1031
1032#endif  // !GTEST_OS_WINDOWS_MOBILE
1033
1034// Various overloads for InvokeWithoutArgs().
1035
1036// Creates an action that invokes 'function_impl' with no argument.
1037template <typename FunctionImpl>
1038PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1039InvokeWithoutArgs(FunctionImpl function_impl) {
1040  return MakePolymorphicAction(
1041      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1042}
1043
1044// Creates an action that invokes the given method on the given object
1045// with no argument.
1046template <class Class, typename MethodPtr>
1047PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1048InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1049  return MakePolymorphicAction(
1050      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1051          obj_ptr, method_ptr));
1052}
1053
1054// Creates an action that performs an_action and throws away its
1055// result.  In other words, it changes the return type of an_action to
1056// void.  an_action MUST NOT return void, or the code won't compile.
1057template <typename A>
1058inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1059  return internal::IgnoreResultAction<A>(an_action);
1060}
1061
1062// Creates a reference wrapper for the given L-value.  If necessary,
1063// you can explicitly specify the type of the reference.  For example,
1064// suppose 'derived' is an object of type Derived, ByRef(derived)
1065// would wrap a Derived&.  If you want to wrap a const Base& instead,
1066// where Base is a base class of Derived, just write:
1067//
1068//   ByRef<const Base>(derived)
1069template <typename T>
1070inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1071  return internal::ReferenceWrapper<T>(l_value);
1072}
1073
1074}  // namespace testing
1075
1076#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_