PageRenderTime 59ms CodeModel.GetById 23ms RepoModel.GetById 0ms app.codeStats 0ms

/net/sunrpc/svcsock.c

http://github.com/CyanogenMod/cm-kernel
C | 1319 lines | 958 code | 164 blank | 197 comment | 154 complexity | fa45e8e1af38c1fa09f98337dd2ce0d3 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_xprt_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/errno.h>
  24. #include <linux/fcntl.h>
  25. #include <linux/net.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/udp.h>
  29. #include <linux/tcp.h>
  30. #include <linux/unistd.h>
  31. #include <linux/slab.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/file.h>
  35. #include <linux/freezer.h>
  36. #include <net/sock.h>
  37. #include <net/checksum.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tcp.h>
  41. #include <net/tcp_states.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/ioctls.h>
  44. #include <linux/sunrpc/types.h>
  45. #include <linux/sunrpc/clnt.h>
  46. #include <linux/sunrpc/xdr.h>
  47. #include <linux/sunrpc/msg_prot.h>
  48. #include <linux/sunrpc/svcsock.h>
  49. #include <linux/sunrpc/stats.h>
  50. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  51. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  52. int *errp, int flags);
  53. static void svc_udp_data_ready(struct sock *, int);
  54. static int svc_udp_recvfrom(struct svc_rqst *);
  55. static int svc_udp_sendto(struct svc_rqst *);
  56. static void svc_sock_detach(struct svc_xprt *);
  57. static void svc_tcp_sock_detach(struct svc_xprt *);
  58. static void svc_sock_free(struct svc_xprt *);
  59. static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
  60. struct sockaddr *, int, int);
  61. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  62. static struct lock_class_key svc_key[2];
  63. static struct lock_class_key svc_slock_key[2];
  64. static void svc_reclassify_socket(struct socket *sock)
  65. {
  66. struct sock *sk = sock->sk;
  67. BUG_ON(sock_owned_by_user(sk));
  68. switch (sk->sk_family) {
  69. case AF_INET:
  70. sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
  71. &svc_slock_key[0],
  72. "sk_xprt.xpt_lock-AF_INET-NFSD",
  73. &svc_key[0]);
  74. break;
  75. case AF_INET6:
  76. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
  77. &svc_slock_key[1],
  78. "sk_xprt.xpt_lock-AF_INET6-NFSD",
  79. &svc_key[1]);
  80. break;
  81. default:
  82. BUG();
  83. }
  84. }
  85. #else
  86. static void svc_reclassify_socket(struct socket *sock)
  87. {
  88. }
  89. #endif
  90. /*
  91. * Release an skbuff after use
  92. */
  93. static void svc_release_skb(struct svc_rqst *rqstp)
  94. {
  95. struct sk_buff *skb = rqstp->rq_xprt_ctxt;
  96. if (skb) {
  97. struct svc_sock *svsk =
  98. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  99. rqstp->rq_xprt_ctxt = NULL;
  100. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  101. skb_free_datagram(svsk->sk_sk, skb);
  102. }
  103. }
  104. union svc_pktinfo_u {
  105. struct in_pktinfo pkti;
  106. struct in6_pktinfo pkti6;
  107. };
  108. #define SVC_PKTINFO_SPACE \
  109. CMSG_SPACE(sizeof(union svc_pktinfo_u))
  110. static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
  111. {
  112. struct svc_sock *svsk =
  113. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  114. switch (svsk->sk_sk->sk_family) {
  115. case AF_INET: {
  116. struct in_pktinfo *pki = CMSG_DATA(cmh);
  117. cmh->cmsg_level = SOL_IP;
  118. cmh->cmsg_type = IP_PKTINFO;
  119. pki->ipi_ifindex = 0;
  120. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
  121. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  122. }
  123. break;
  124. case AF_INET6: {
  125. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  126. cmh->cmsg_level = SOL_IPV6;
  127. cmh->cmsg_type = IPV6_PKTINFO;
  128. pki->ipi6_ifindex = 0;
  129. ipv6_addr_copy(&pki->ipi6_addr,
  130. &rqstp->rq_daddr.addr6);
  131. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  132. }
  133. break;
  134. }
  135. return;
  136. }
  137. /*
  138. * Generic sendto routine
  139. */
  140. static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  141. {
  142. struct svc_sock *svsk =
  143. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  144. struct socket *sock = svsk->sk_sock;
  145. int slen;
  146. union {
  147. struct cmsghdr hdr;
  148. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  149. } buffer;
  150. struct cmsghdr *cmh = &buffer.hdr;
  151. int len = 0;
  152. int result;
  153. int size;
  154. struct page **ppage = xdr->pages;
  155. size_t base = xdr->page_base;
  156. unsigned int pglen = xdr->page_len;
  157. unsigned int flags = MSG_MORE;
  158. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  159. slen = xdr->len;
  160. if (rqstp->rq_prot == IPPROTO_UDP) {
  161. struct msghdr msg = {
  162. .msg_name = &rqstp->rq_addr,
  163. .msg_namelen = rqstp->rq_addrlen,
  164. .msg_control = cmh,
  165. .msg_controllen = sizeof(buffer),
  166. .msg_flags = MSG_MORE,
  167. };
  168. svc_set_cmsg_data(rqstp, cmh);
  169. if (sock_sendmsg(sock, &msg, 0) < 0)
  170. goto out;
  171. }
  172. /* send head */
  173. if (slen == xdr->head[0].iov_len)
  174. flags = 0;
  175. len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
  176. xdr->head[0].iov_len, flags);
  177. if (len != xdr->head[0].iov_len)
  178. goto out;
  179. slen -= xdr->head[0].iov_len;
  180. if (slen == 0)
  181. goto out;
  182. /* send page data */
  183. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  184. while (pglen > 0) {
  185. if (slen == size)
  186. flags = 0;
  187. result = kernel_sendpage(sock, *ppage, base, size, flags);
  188. if (result > 0)
  189. len += result;
  190. if (result != size)
  191. goto out;
  192. slen -= size;
  193. pglen -= size;
  194. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  195. base = 0;
  196. ppage++;
  197. }
  198. /* send tail */
  199. if (xdr->tail[0].iov_len) {
  200. result = kernel_sendpage(sock, rqstp->rq_respages[0],
  201. ((unsigned long)xdr->tail[0].iov_base)
  202. & (PAGE_SIZE-1),
  203. xdr->tail[0].iov_len, 0);
  204. if (result > 0)
  205. len += result;
  206. }
  207. out:
  208. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
  209. svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
  210. xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
  211. return len;
  212. }
  213. /*
  214. * Report socket names for nfsdfs
  215. */
  216. static int one_sock_name(char *buf, struct svc_sock *svsk)
  217. {
  218. int len;
  219. switch(svsk->sk_sk->sk_family) {
  220. case AF_INET:
  221. len = sprintf(buf, "ipv4 %s %pI4 %d\n",
  222. svsk->sk_sk->sk_protocol == IPPROTO_UDP ?
  223. "udp" : "tcp",
  224. &inet_sk(svsk->sk_sk)->rcv_saddr,
  225. inet_sk(svsk->sk_sk)->num);
  226. break;
  227. default:
  228. len = sprintf(buf, "*unknown-%d*\n",
  229. svsk->sk_sk->sk_family);
  230. }
  231. return len;
  232. }
  233. int
  234. svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
  235. {
  236. struct svc_sock *svsk, *closesk = NULL;
  237. int len = 0;
  238. if (!serv)
  239. return 0;
  240. spin_lock_bh(&serv->sv_lock);
  241. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
  242. int onelen = one_sock_name(buf+len, svsk);
  243. if (toclose && strcmp(toclose, buf+len) == 0)
  244. closesk = svsk;
  245. else
  246. len += onelen;
  247. }
  248. spin_unlock_bh(&serv->sv_lock);
  249. if (closesk)
  250. /* Should unregister with portmap, but you cannot
  251. * unregister just one protocol...
  252. */
  253. svc_close_xprt(&closesk->sk_xprt);
  254. else if (toclose)
  255. return -ENOENT;
  256. return len;
  257. }
  258. EXPORT_SYMBOL_GPL(svc_sock_names);
  259. /*
  260. * Check input queue length
  261. */
  262. static int svc_recv_available(struct svc_sock *svsk)
  263. {
  264. struct socket *sock = svsk->sk_sock;
  265. int avail, err;
  266. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  267. return (err >= 0)? avail : err;
  268. }
  269. /*
  270. * Generic recvfrom routine.
  271. */
  272. static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
  273. int buflen)
  274. {
  275. struct svc_sock *svsk =
  276. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  277. struct msghdr msg = {
  278. .msg_flags = MSG_DONTWAIT,
  279. };
  280. int len;
  281. rqstp->rq_xprt_hlen = 0;
  282. len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
  283. msg.msg_flags);
  284. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  285. svsk, iov[0].iov_base, iov[0].iov_len, len);
  286. return len;
  287. }
  288. /*
  289. * Set socket snd and rcv buffer lengths
  290. */
  291. static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
  292. unsigned int rcv)
  293. {
  294. #if 0
  295. mm_segment_t oldfs;
  296. oldfs = get_fs(); set_fs(KERNEL_DS);
  297. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  298. (char*)&snd, sizeof(snd));
  299. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  300. (char*)&rcv, sizeof(rcv));
  301. #else
  302. /* sock_setsockopt limits use to sysctl_?mem_max,
  303. * which isn't acceptable. Until that is made conditional
  304. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  305. * DaveM said I could!
  306. */
  307. lock_sock(sock->sk);
  308. sock->sk->sk_sndbuf = snd * 2;
  309. sock->sk->sk_rcvbuf = rcv * 2;
  310. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  311. release_sock(sock->sk);
  312. #endif
  313. }
  314. /*
  315. * INET callback when data has been received on the socket.
  316. */
  317. static void svc_udp_data_ready(struct sock *sk, int count)
  318. {
  319. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  320. if (svsk) {
  321. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  322. svsk, sk, count,
  323. test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  324. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  325. svc_xprt_enqueue(&svsk->sk_xprt);
  326. }
  327. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  328. wake_up_interruptible(sk->sk_sleep);
  329. }
  330. /*
  331. * INET callback when space is newly available on the socket.
  332. */
  333. static void svc_write_space(struct sock *sk)
  334. {
  335. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  336. if (svsk) {
  337. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  338. svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  339. svc_xprt_enqueue(&svsk->sk_xprt);
  340. }
  341. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  342. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  343. svsk);
  344. wake_up_interruptible(sk->sk_sleep);
  345. }
  346. }
  347. /*
  348. * Copy the UDP datagram's destination address to the rqstp structure.
  349. * The 'destination' address in this case is the address to which the
  350. * peer sent the datagram, i.e. our local address. For multihomed
  351. * hosts, this can change from msg to msg. Note that only the IP
  352. * address changes, the port number should remain the same.
  353. */
  354. static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
  355. struct cmsghdr *cmh)
  356. {
  357. struct svc_sock *svsk =
  358. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  359. switch (svsk->sk_sk->sk_family) {
  360. case AF_INET: {
  361. struct in_pktinfo *pki = CMSG_DATA(cmh);
  362. rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
  363. break;
  364. }
  365. case AF_INET6: {
  366. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  367. ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
  368. break;
  369. }
  370. }
  371. }
  372. /*
  373. * Receive a datagram from a UDP socket.
  374. */
  375. static int svc_udp_recvfrom(struct svc_rqst *rqstp)
  376. {
  377. struct svc_sock *svsk =
  378. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  379. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  380. struct sk_buff *skb;
  381. union {
  382. struct cmsghdr hdr;
  383. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  384. } buffer;
  385. struct cmsghdr *cmh = &buffer.hdr;
  386. int err, len;
  387. struct msghdr msg = {
  388. .msg_name = svc_addr(rqstp),
  389. .msg_control = cmh,
  390. .msg_controllen = sizeof(buffer),
  391. .msg_flags = MSG_DONTWAIT,
  392. };
  393. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  394. /* udp sockets need large rcvbuf as all pending
  395. * requests are still in that buffer. sndbuf must
  396. * also be large enough that there is enough space
  397. * for one reply per thread. We count all threads
  398. * rather than threads in a particular pool, which
  399. * provides an upper bound on the number of threads
  400. * which will access the socket.
  401. */
  402. svc_sock_setbufsize(svsk->sk_sock,
  403. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  404. (serv->sv_nrthreads+3) * serv->sv_max_mesg);
  405. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  406. skb = NULL;
  407. err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
  408. 0, 0, MSG_PEEK | MSG_DONTWAIT);
  409. if (err >= 0)
  410. skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
  411. if (skb == NULL) {
  412. if (err != -EAGAIN) {
  413. /* possibly an icmp error */
  414. dprintk("svc: recvfrom returned error %d\n", -err);
  415. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  416. }
  417. svc_xprt_received(&svsk->sk_xprt);
  418. return -EAGAIN;
  419. }
  420. len = svc_addr_len(svc_addr(rqstp));
  421. if (len < 0)
  422. return len;
  423. rqstp->rq_addrlen = len;
  424. if (skb->tstamp.tv64 == 0) {
  425. skb->tstamp = ktime_get_real();
  426. /* Don't enable netstamp, sunrpc doesn't
  427. need that much accuracy */
  428. }
  429. svsk->sk_sk->sk_stamp = skb->tstamp;
  430. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
  431. /*
  432. * Maybe more packets - kick another thread ASAP.
  433. */
  434. svc_xprt_received(&svsk->sk_xprt);
  435. len = skb->len - sizeof(struct udphdr);
  436. rqstp->rq_arg.len = len;
  437. rqstp->rq_prot = IPPROTO_UDP;
  438. if (cmh->cmsg_level != IPPROTO_IP ||
  439. cmh->cmsg_type != IP_PKTINFO) {
  440. if (net_ratelimit())
  441. printk("rpcsvc: received unknown control message:"
  442. "%d/%d\n",
  443. cmh->cmsg_level, cmh->cmsg_type);
  444. skb_free_datagram(svsk->sk_sk, skb);
  445. return 0;
  446. }
  447. svc_udp_get_dest_address(rqstp, cmh);
  448. if (skb_is_nonlinear(skb)) {
  449. /* we have to copy */
  450. local_bh_disable();
  451. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  452. local_bh_enable();
  453. /* checksum error */
  454. skb_free_datagram(svsk->sk_sk, skb);
  455. return 0;
  456. }
  457. local_bh_enable();
  458. skb_free_datagram(svsk->sk_sk, skb);
  459. } else {
  460. /* we can use it in-place */
  461. rqstp->rq_arg.head[0].iov_base = skb->data +
  462. sizeof(struct udphdr);
  463. rqstp->rq_arg.head[0].iov_len = len;
  464. if (skb_checksum_complete(skb)) {
  465. skb_free_datagram(svsk->sk_sk, skb);
  466. return 0;
  467. }
  468. rqstp->rq_xprt_ctxt = skb;
  469. }
  470. rqstp->rq_arg.page_base = 0;
  471. if (len <= rqstp->rq_arg.head[0].iov_len) {
  472. rqstp->rq_arg.head[0].iov_len = len;
  473. rqstp->rq_arg.page_len = 0;
  474. rqstp->rq_respages = rqstp->rq_pages+1;
  475. } else {
  476. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  477. rqstp->rq_respages = rqstp->rq_pages + 1 +
  478. DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
  479. }
  480. if (serv->sv_stats)
  481. serv->sv_stats->netudpcnt++;
  482. return len;
  483. }
  484. static int
  485. svc_udp_sendto(struct svc_rqst *rqstp)
  486. {
  487. int error;
  488. error = svc_sendto(rqstp, &rqstp->rq_res);
  489. if (error == -ECONNREFUSED)
  490. /* ICMP error on earlier request. */
  491. error = svc_sendto(rqstp, &rqstp->rq_res);
  492. return error;
  493. }
  494. static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
  495. {
  496. }
  497. static int svc_udp_has_wspace(struct svc_xprt *xprt)
  498. {
  499. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  500. struct svc_serv *serv = xprt->xpt_server;
  501. unsigned long required;
  502. /*
  503. * Set the SOCK_NOSPACE flag before checking the available
  504. * sock space.
  505. */
  506. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  507. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  508. if (required*2 > sock_wspace(svsk->sk_sk))
  509. return 0;
  510. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  511. return 1;
  512. }
  513. static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
  514. {
  515. BUG();
  516. return NULL;
  517. }
  518. static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
  519. struct sockaddr *sa, int salen,
  520. int flags)
  521. {
  522. return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
  523. }
  524. static struct svc_xprt_ops svc_udp_ops = {
  525. .xpo_create = svc_udp_create,
  526. .xpo_recvfrom = svc_udp_recvfrom,
  527. .xpo_sendto = svc_udp_sendto,
  528. .xpo_release_rqst = svc_release_skb,
  529. .xpo_detach = svc_sock_detach,
  530. .xpo_free = svc_sock_free,
  531. .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
  532. .xpo_has_wspace = svc_udp_has_wspace,
  533. .xpo_accept = svc_udp_accept,
  534. };
  535. static struct svc_xprt_class svc_udp_class = {
  536. .xcl_name = "udp",
  537. .xcl_owner = THIS_MODULE,
  538. .xcl_ops = &svc_udp_ops,
  539. .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
  540. };
  541. static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
  542. {
  543. int one = 1;
  544. mm_segment_t oldfs;
  545. svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
  546. clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  547. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  548. svsk->sk_sk->sk_write_space = svc_write_space;
  549. /* initialise setting must have enough space to
  550. * receive and respond to one request.
  551. * svc_udp_recvfrom will re-adjust if necessary
  552. */
  553. svc_sock_setbufsize(svsk->sk_sock,
  554. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  555. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  556. /* data might have come in before data_ready set up */
  557. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  558. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  559. oldfs = get_fs();
  560. set_fs(KERNEL_DS);
  561. /* make sure we get destination address info */
  562. svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
  563. (char __user *)&one, sizeof(one));
  564. set_fs(oldfs);
  565. }
  566. /*
  567. * A data_ready event on a listening socket means there's a connection
  568. * pending. Do not use state_change as a substitute for it.
  569. */
  570. static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  571. {
  572. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  573. dprintk("svc: socket %p TCP (listen) state change %d\n",
  574. sk, sk->sk_state);
  575. /*
  576. * This callback may called twice when a new connection
  577. * is established as a child socket inherits everything
  578. * from a parent LISTEN socket.
  579. * 1) data_ready method of the parent socket will be called
  580. * when one of child sockets become ESTABLISHED.
  581. * 2) data_ready method of the child socket may be called
  582. * when it receives data before the socket is accepted.
  583. * In case of 2, we should ignore it silently.
  584. */
  585. if (sk->sk_state == TCP_LISTEN) {
  586. if (svsk) {
  587. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  588. svc_xprt_enqueue(&svsk->sk_xprt);
  589. } else
  590. printk("svc: socket %p: no user data\n", sk);
  591. }
  592. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  593. wake_up_interruptible_all(sk->sk_sleep);
  594. }
  595. /*
  596. * A state change on a connected socket means it's dying or dead.
  597. */
  598. static void svc_tcp_state_change(struct sock *sk)
  599. {
  600. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  601. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  602. sk, sk->sk_state, sk->sk_user_data);
  603. if (!svsk)
  604. printk("svc: socket %p: no user data\n", sk);
  605. else {
  606. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  607. svc_xprt_enqueue(&svsk->sk_xprt);
  608. }
  609. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  610. wake_up_interruptible_all(sk->sk_sleep);
  611. }
  612. static void svc_tcp_data_ready(struct sock *sk, int count)
  613. {
  614. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  615. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  616. sk, sk->sk_user_data);
  617. if (svsk) {
  618. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  619. svc_xprt_enqueue(&svsk->sk_xprt);
  620. }
  621. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  622. wake_up_interruptible(sk->sk_sleep);
  623. }
  624. /*
  625. * Accept a TCP connection
  626. */
  627. static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
  628. {
  629. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  630. struct sockaddr_storage addr;
  631. struct sockaddr *sin = (struct sockaddr *) &addr;
  632. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  633. struct socket *sock = svsk->sk_sock;
  634. struct socket *newsock;
  635. struct svc_sock *newsvsk;
  636. int err, slen;
  637. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  638. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  639. if (!sock)
  640. return NULL;
  641. clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  642. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  643. if (err < 0) {
  644. if (err == -ENOMEM)
  645. printk(KERN_WARNING "%s: no more sockets!\n",
  646. serv->sv_name);
  647. else if (err != -EAGAIN && net_ratelimit())
  648. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  649. serv->sv_name, -err);
  650. return NULL;
  651. }
  652. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  653. err = kernel_getpeername(newsock, sin, &slen);
  654. if (err < 0) {
  655. if (net_ratelimit())
  656. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  657. serv->sv_name, -err);
  658. goto failed; /* aborted connection or whatever */
  659. }
  660. /* Ideally, we would want to reject connections from unauthorized
  661. * hosts here, but when we get encryption, the IP of the host won't
  662. * tell us anything. For now just warn about unpriv connections.
  663. */
  664. if (!svc_port_is_privileged(sin)) {
  665. dprintk(KERN_WARNING
  666. "%s: connect from unprivileged port: %s\n",
  667. serv->sv_name,
  668. __svc_print_addr(sin, buf, sizeof(buf)));
  669. }
  670. dprintk("%s: connect from %s\n", serv->sv_name,
  671. __svc_print_addr(sin, buf, sizeof(buf)));
  672. /* make sure that a write doesn't block forever when
  673. * low on memory
  674. */
  675. newsock->sk->sk_sndtimeo = HZ*30;
  676. if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
  677. (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
  678. goto failed;
  679. svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
  680. err = kernel_getsockname(newsock, sin, &slen);
  681. if (unlikely(err < 0)) {
  682. dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
  683. slen = offsetof(struct sockaddr, sa_data);
  684. }
  685. svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
  686. if (serv->sv_stats)
  687. serv->sv_stats->nettcpconn++;
  688. return &newsvsk->sk_xprt;
  689. failed:
  690. sock_release(newsock);
  691. return NULL;
  692. }
  693. /*
  694. * Receive data from a TCP socket.
  695. */
  696. static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
  697. {
  698. struct svc_sock *svsk =
  699. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  700. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  701. int len;
  702. struct kvec *vec;
  703. int pnum, vlen;
  704. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  705. svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
  706. test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
  707. test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
  708. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  709. /* sndbuf needs to have room for one request
  710. * per thread, otherwise we can stall even when the
  711. * network isn't a bottleneck.
  712. *
  713. * We count all threads rather than threads in a
  714. * particular pool, which provides an upper bound
  715. * on the number of threads which will access the socket.
  716. *
  717. * rcvbuf just needs to be able to hold a few requests.
  718. * Normally they will be removed from the queue
  719. * as soon a a complete request arrives.
  720. */
  721. svc_sock_setbufsize(svsk->sk_sock,
  722. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  723. 3 * serv->sv_max_mesg);
  724. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  725. /* Receive data. If we haven't got the record length yet, get
  726. * the next four bytes. Otherwise try to gobble up as much as
  727. * possible up to the complete record length.
  728. */
  729. if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
  730. int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
  731. struct kvec iov;
  732. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  733. iov.iov_len = want;
  734. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  735. goto error;
  736. svsk->sk_tcplen += len;
  737. if (len < want) {
  738. dprintk("svc: short recvfrom while reading record "
  739. "length (%d of %d)\n", len, want);
  740. svc_xprt_received(&svsk->sk_xprt);
  741. return -EAGAIN; /* record header not complete */
  742. }
  743. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  744. if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
  745. /* FIXME: technically, a record can be fragmented,
  746. * and non-terminal fragments will not have the top
  747. * bit set in the fragment length header.
  748. * But apparently no known nfs clients send fragmented
  749. * records. */
  750. if (net_ratelimit())
  751. printk(KERN_NOTICE "RPC: multiple fragments "
  752. "per record not supported\n");
  753. goto err_delete;
  754. }
  755. svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
  756. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  757. if (svsk->sk_reclen > serv->sv_max_mesg) {
  758. if (net_ratelimit())
  759. printk(KERN_NOTICE "RPC: "
  760. "fragment too large: 0x%08lx\n",
  761. (unsigned long)svsk->sk_reclen);
  762. goto err_delete;
  763. }
  764. }
  765. /* Check whether enough data is available */
  766. len = svc_recv_available(svsk);
  767. if (len < 0)
  768. goto error;
  769. if (len < svsk->sk_reclen) {
  770. dprintk("svc: incomplete TCP record (%d of %d)\n",
  771. len, svsk->sk_reclen);
  772. svc_xprt_received(&svsk->sk_xprt);
  773. return -EAGAIN; /* record not complete */
  774. }
  775. len = svsk->sk_reclen;
  776. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  777. vec = rqstp->rq_vec;
  778. vec[0] = rqstp->rq_arg.head[0];
  779. vlen = PAGE_SIZE;
  780. pnum = 1;
  781. while (vlen < len) {
  782. vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
  783. vec[pnum].iov_len = PAGE_SIZE;
  784. pnum++;
  785. vlen += PAGE_SIZE;
  786. }
  787. rqstp->rq_respages = &rqstp->rq_pages[pnum];
  788. /* Now receive data */
  789. len = svc_recvfrom(rqstp, vec, pnum, len);
  790. if (len < 0)
  791. goto error;
  792. dprintk("svc: TCP complete record (%d bytes)\n", len);
  793. rqstp->rq_arg.len = len;
  794. rqstp->rq_arg.page_base = 0;
  795. if (len <= rqstp->rq_arg.head[0].iov_len) {
  796. rqstp->rq_arg.head[0].iov_len = len;
  797. rqstp->rq_arg.page_len = 0;
  798. } else {
  799. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  800. }
  801. rqstp->rq_xprt_ctxt = NULL;
  802. rqstp->rq_prot = IPPROTO_TCP;
  803. /* Reset TCP read info */
  804. svsk->sk_reclen = 0;
  805. svsk->sk_tcplen = 0;
  806. svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
  807. svc_xprt_received(&svsk->sk_xprt);
  808. if (serv->sv_stats)
  809. serv->sv_stats->nettcpcnt++;
  810. return len;
  811. err_delete:
  812. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  813. return -EAGAIN;
  814. error:
  815. if (len == -EAGAIN) {
  816. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  817. svc_xprt_received(&svsk->sk_xprt);
  818. } else {
  819. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  820. svsk->sk_xprt.xpt_server->sv_name, -len);
  821. goto err_delete;
  822. }
  823. return len;
  824. }
  825. /*
  826. * Send out data on TCP socket.
  827. */
  828. static int svc_tcp_sendto(struct svc_rqst *rqstp)
  829. {
  830. struct xdr_buf *xbufp = &rqstp->rq_res;
  831. int sent;
  832. __be32 reclen;
  833. /* Set up the first element of the reply kvec.
  834. * Any other kvecs that may be in use have been taken
  835. * care of by the server implementation itself.
  836. */
  837. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  838. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  839. if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
  840. return -ENOTCONN;
  841. sent = svc_sendto(rqstp, &rqstp->rq_res);
  842. if (sent != xbufp->len) {
  843. printk(KERN_NOTICE
  844. "rpc-srv/tcp: %s: %s %d when sending %d bytes "
  845. "- shutting down socket\n",
  846. rqstp->rq_xprt->xpt_server->sv_name,
  847. (sent<0)?"got error":"sent only",
  848. sent, xbufp->len);
  849. set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
  850. svc_xprt_enqueue(rqstp->rq_xprt);
  851. sent = -EAGAIN;
  852. }
  853. return sent;
  854. }
  855. /*
  856. * Setup response header. TCP has a 4B record length field.
  857. */
  858. static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
  859. {
  860. struct kvec *resv = &rqstp->rq_res.head[0];
  861. /* tcp needs a space for the record length... */
  862. svc_putnl(resv, 0);
  863. }
  864. static int svc_tcp_has_wspace(struct svc_xprt *xprt)
  865. {
  866. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  867. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  868. int required;
  869. int wspace;
  870. /*
  871. * Set the SOCK_NOSPACE flag before checking the available
  872. * sock space.
  873. */
  874. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  875. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  876. wspace = sk_stream_wspace(svsk->sk_sk);
  877. if (wspace < sk_stream_min_wspace(svsk->sk_sk))
  878. return 0;
  879. if (required * 2 > wspace)
  880. return 0;
  881. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  882. return 1;
  883. }
  884. static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
  885. struct sockaddr *sa, int salen,
  886. int flags)
  887. {
  888. return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
  889. }
  890. static struct svc_xprt_ops svc_tcp_ops = {
  891. .xpo_create = svc_tcp_create,
  892. .xpo_recvfrom = svc_tcp_recvfrom,
  893. .xpo_sendto = svc_tcp_sendto,
  894. .xpo_release_rqst = svc_release_skb,
  895. .xpo_detach = svc_tcp_sock_detach,
  896. .xpo_free = svc_sock_free,
  897. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  898. .xpo_has_wspace = svc_tcp_has_wspace,
  899. .xpo_accept = svc_tcp_accept,
  900. };
  901. static struct svc_xprt_class svc_tcp_class = {
  902. .xcl_name = "tcp",
  903. .xcl_owner = THIS_MODULE,
  904. .xcl_ops = &svc_tcp_ops,
  905. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  906. };
  907. void svc_init_xprt_sock(void)
  908. {
  909. svc_reg_xprt_class(&svc_tcp_class);
  910. svc_reg_xprt_class(&svc_udp_class);
  911. }
  912. void svc_cleanup_xprt_sock(void)
  913. {
  914. svc_unreg_xprt_class(&svc_tcp_class);
  915. svc_unreg_xprt_class(&svc_udp_class);
  916. }
  917. static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
  918. {
  919. struct sock *sk = svsk->sk_sk;
  920. svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
  921. set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  922. if (sk->sk_state == TCP_LISTEN) {
  923. dprintk("setting up TCP socket for listening\n");
  924. set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
  925. sk->sk_data_ready = svc_tcp_listen_data_ready;
  926. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  927. } else {
  928. dprintk("setting up TCP socket for reading\n");
  929. sk->sk_state_change = svc_tcp_state_change;
  930. sk->sk_data_ready = svc_tcp_data_ready;
  931. sk->sk_write_space = svc_write_space;
  932. svsk->sk_reclen = 0;
  933. svsk->sk_tcplen = 0;
  934. tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
  935. /* initialise setting must have enough space to
  936. * receive and respond to one request.
  937. * svc_tcp_recvfrom will re-adjust if necessary
  938. */
  939. svc_sock_setbufsize(svsk->sk_sock,
  940. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  941. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  942. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  943. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  944. if (sk->sk_state != TCP_ESTABLISHED)
  945. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  946. }
  947. }
  948. void svc_sock_update_bufs(struct svc_serv *serv)
  949. {
  950. /*
  951. * The number of server threads has changed. Update
  952. * rcvbuf and sndbuf accordingly on all sockets
  953. */
  954. struct list_head *le;
  955. spin_lock_bh(&serv->sv_lock);
  956. list_for_each(le, &serv->sv_permsocks) {
  957. struct svc_sock *svsk =
  958. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  959. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  960. }
  961. list_for_each(le, &serv->sv_tempsocks) {
  962. struct svc_sock *svsk =
  963. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  964. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  965. }
  966. spin_unlock_bh(&serv->sv_lock);
  967. }
  968. EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
  969. /*
  970. * Initialize socket for RPC use and create svc_sock struct
  971. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  972. */
  973. static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
  974. struct socket *sock,
  975. int *errp, int flags)
  976. {
  977. struct svc_sock *svsk;
  978. struct sock *inet;
  979. int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
  980. int val;
  981. dprintk("svc: svc_setup_socket %p\n", sock);
  982. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  983. *errp = -ENOMEM;
  984. return NULL;
  985. }
  986. inet = sock->sk;
  987. /* Register socket with portmapper */
  988. if (*errp >= 0 && pmap_register)
  989. *errp = svc_register(serv, inet->sk_protocol,
  990. ntohs(inet_sk(inet)->sport));
  991. if (*errp < 0) {
  992. kfree(svsk);
  993. return NULL;
  994. }
  995. inet->sk_user_data = svsk;
  996. svsk->sk_sock = sock;
  997. svsk->sk_sk = inet;
  998. svsk->sk_ostate = inet->sk_state_change;
  999. svsk->sk_odata = inet->sk_data_ready;
  1000. svsk->sk_owspace = inet->sk_write_space;
  1001. /* Initialize the socket */
  1002. if (sock->type == SOCK_DGRAM)
  1003. svc_udp_init(svsk, serv);
  1004. else
  1005. svc_tcp_init(svsk, serv);
  1006. /*
  1007. * We start one listener per sv_serv. We want AF_INET
  1008. * requests to be automatically shunted to our AF_INET6
  1009. * listener using a mapped IPv4 address. Make sure
  1010. * no-one starts an equivalent IPv4 listener, which
  1011. * would steal our incoming connections.
  1012. */
  1013. val = 0;
  1014. if (serv->sv_family == AF_INET6)
  1015. kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
  1016. (char *)&val, sizeof(val));
  1017. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1018. svsk, svsk->sk_sk);
  1019. return svsk;
  1020. }
  1021. int svc_addsock(struct svc_serv *serv,
  1022. int fd,
  1023. char *name_return)
  1024. {
  1025. int err = 0;
  1026. struct socket *so = sockfd_lookup(fd, &err);
  1027. struct svc_sock *svsk = NULL;
  1028. if (!so)
  1029. return err;
  1030. if (so->sk->sk_family != AF_INET)
  1031. err = -EAFNOSUPPORT;
  1032. else if (so->sk->sk_protocol != IPPROTO_TCP &&
  1033. so->sk->sk_protocol != IPPROTO_UDP)
  1034. err = -EPROTONOSUPPORT;
  1035. else if (so->state > SS_UNCONNECTED)
  1036. err = -EISCONN;
  1037. else {
  1038. if (!try_module_get(THIS_MODULE))
  1039. err = -ENOENT;
  1040. else
  1041. svsk = svc_setup_socket(serv, so, &err,
  1042. SVC_SOCK_DEFAULTS);
  1043. if (svsk) {
  1044. struct sockaddr_storage addr;
  1045. struct sockaddr *sin = (struct sockaddr *)&addr;
  1046. int salen;
  1047. if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
  1048. svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
  1049. clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1050. spin_lock_bh(&serv->sv_lock);
  1051. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
  1052. spin_unlock_bh(&serv->sv_lock);
  1053. svc_xprt_received(&svsk->sk_xprt);
  1054. err = 0;
  1055. } else
  1056. module_put(THIS_MODULE);
  1057. }
  1058. if (err) {
  1059. sockfd_put(so);
  1060. return err;
  1061. }
  1062. return one_sock_name(name_return, svsk);
  1063. }
  1064. EXPORT_SYMBOL_GPL(svc_addsock);
  1065. /*
  1066. * Create socket for RPC service.
  1067. */
  1068. static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
  1069. int protocol,
  1070. struct sockaddr *sin, int len,
  1071. int flags)
  1072. {
  1073. struct svc_sock *svsk;
  1074. struct socket *sock;
  1075. int error;
  1076. int type;
  1077. struct sockaddr_storage addr;
  1078. struct sockaddr *newsin = (struct sockaddr *)&addr;
  1079. int newlen;
  1080. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  1081. dprintk("svc: svc_create_socket(%s, %d, %s)\n",
  1082. serv->sv_program->pg_name, protocol,
  1083. __svc_print_addr(sin, buf, sizeof(buf)));
  1084. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1085. printk(KERN_WARNING "svc: only UDP and TCP "
  1086. "sockets supported\n");
  1087. return ERR_PTR(-EINVAL);
  1088. }
  1089. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1090. error = sock_create_kern(sin->sa_family, type, protocol, &sock);
  1091. if (error < 0)
  1092. return ERR_PTR(error);
  1093. svc_reclassify_socket(sock);
  1094. if (type == SOCK_STREAM)
  1095. sock->sk->sk_reuse = 1; /* allow address reuse */
  1096. error = kernel_bind(sock, sin, len);
  1097. if (error < 0)
  1098. goto bummer;
  1099. newlen = len;
  1100. error = kernel_getsockname(sock, newsin, &newlen);
  1101. if (error < 0)
  1102. goto bummer;
  1103. if (protocol == IPPROTO_TCP) {
  1104. if ((error = kernel_listen(sock, 64)) < 0)
  1105. goto bummer;
  1106. }
  1107. if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
  1108. svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
  1109. return (struct svc_xprt *)svsk;
  1110. }
  1111. bummer:
  1112. dprintk("svc: svc_create_socket error = %d\n", -error);
  1113. sock_release(sock);
  1114. return ERR_PTR(error);
  1115. }
  1116. /*
  1117. * Detach the svc_sock from the socket so that no
  1118. * more callbacks occur.
  1119. */
  1120. static void svc_sock_detach(struct svc_xprt *xprt)
  1121. {
  1122. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1123. struct sock *sk = svsk->sk_sk;
  1124. dprintk("svc: svc_sock_detach(%p)\n", svsk);
  1125. /* put back the old socket callbacks */
  1126. sk->sk_state_change = svsk->sk_ostate;
  1127. sk->sk_data_ready = svsk->sk_odata;
  1128. sk->sk_write_space = svsk->sk_owspace;
  1129. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  1130. wake_up_interruptible(sk->sk_sleep);
  1131. }
  1132. /*
  1133. * Disconnect the socket, and reset the callbacks
  1134. */
  1135. static void svc_tcp_sock_detach(struct svc_xprt *xprt)
  1136. {
  1137. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1138. dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
  1139. svc_sock_detach(xprt);
  1140. if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
  1141. kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
  1142. }
  1143. /*
  1144. * Free the svc_sock's socket resources and the svc_sock itself.
  1145. */
  1146. static void svc_sock_free(struct svc_xprt *xprt)
  1147. {
  1148. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1149. dprintk("svc: svc_sock_free(%p)\n", svsk);
  1150. if (svsk->sk_sock->file)
  1151. sockfd_put(svsk->sk_sock);
  1152. else
  1153. sock_release(svsk->sk_sock);
  1154. kfree(svsk);
  1155. }