PageRenderTime 47ms CodeModel.GetById 17ms RepoModel.GetById 0ms app.codeStats 0ms

/cmd/mmc.c

https://bitbucket.org/hldspb/uboot-sbc8600
C | 883 lines | 740 code | 125 blank | 18 comment | 175 complexity | 761caf319d639e3a39edb6bcb1a8f55e MD5 | raw file
  1. /*
  2. * (C) Copyright 2003
  3. * Kyle Harris, kharris@nexus-tech.net
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <command.h>
  9. #include <console.h>
  10. #include <mmc.h>
  11. static int curr_device = -1;
  12. static void print_mmcinfo(struct mmc *mmc)
  13. {
  14. int i;
  15. printf("Device: %s\n", mmc->cfg->name);
  16. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  17. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  18. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  19. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  20. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  21. printf("Tran Speed: %d\n", mmc->tran_speed);
  22. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  23. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  24. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  25. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  26. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  27. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  28. printf("\n");
  29. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  30. puts("Capacity: ");
  31. print_size(mmc->capacity, "\n");
  32. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  33. mmc->ddr_mode ? " DDR" : "");
  34. puts("Erase Group Size: ");
  35. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  36. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  37. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  38. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  39. puts("HC WP Group Size: ");
  40. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  41. puts("User Capacity: ");
  42. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  43. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  44. puts(" WRREL\n");
  45. else
  46. putc('\n');
  47. if (usr_enh) {
  48. puts("User Enhanced Start: ");
  49. print_size(mmc->enh_user_start, "\n");
  50. puts("User Enhanced Size: ");
  51. print_size(mmc->enh_user_size, "\n");
  52. }
  53. puts("Boot Capacity: ");
  54. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  55. puts("RPMB Capacity: ");
  56. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  57. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  58. bool is_enh = has_enh &&
  59. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  60. if (mmc->capacity_gp[i]) {
  61. printf("GP%i Capacity: ", i+1);
  62. print_size(mmc->capacity_gp[i],
  63. is_enh ? " ENH" : "");
  64. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  65. puts(" WRREL\n");
  66. else
  67. putc('\n');
  68. }
  69. }
  70. }
  71. }
  72. static struct mmc *init_mmc_device(int dev, bool force_init)
  73. {
  74. struct mmc *mmc;
  75. mmc = find_mmc_device(dev);
  76. if (!mmc) {
  77. printf("no mmc device at slot %x\n", dev);
  78. return NULL;
  79. }
  80. if (force_init)
  81. mmc->has_init = 0;
  82. if (mmc_init(mmc))
  83. return NULL;
  84. return mmc;
  85. }
  86. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  87. {
  88. struct mmc *mmc;
  89. if (curr_device < 0) {
  90. if (get_mmc_num() > 0)
  91. curr_device = 0;
  92. else {
  93. puts("No MMC device available\n");
  94. return 1;
  95. }
  96. }
  97. mmc = init_mmc_device(curr_device, false);
  98. if (!mmc)
  99. return CMD_RET_FAILURE;
  100. print_mmcinfo(mmc);
  101. return CMD_RET_SUCCESS;
  102. }
  103. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  104. static int confirm_key_prog(void)
  105. {
  106. puts("Warning: Programming authentication key can be done only once !\n"
  107. " Use this command only if you are sure of what you are doing,\n"
  108. "Really perform the key programming? <y/N> ");
  109. if (confirm_yesno())
  110. return 1;
  111. puts("Authentication key programming aborted\n");
  112. return 0;
  113. }
  114. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  115. int argc, char * const argv[])
  116. {
  117. void *key_addr;
  118. struct mmc *mmc = find_mmc_device(curr_device);
  119. if (argc != 2)
  120. return CMD_RET_USAGE;
  121. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  122. if (!confirm_key_prog())
  123. return CMD_RET_FAILURE;
  124. if (mmc_rpmb_set_key(mmc, key_addr)) {
  125. printf("ERROR - Key already programmed ?\n");
  126. return CMD_RET_FAILURE;
  127. }
  128. return CMD_RET_SUCCESS;
  129. }
  130. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  131. int argc, char * const argv[])
  132. {
  133. u16 blk, cnt;
  134. void *addr;
  135. int n;
  136. void *key_addr = NULL;
  137. struct mmc *mmc = find_mmc_device(curr_device);
  138. if (argc < 4)
  139. return CMD_RET_USAGE;
  140. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  141. blk = simple_strtoul(argv[2], NULL, 16);
  142. cnt = simple_strtoul(argv[3], NULL, 16);
  143. if (argc == 5)
  144. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  145. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  146. curr_device, blk, cnt);
  147. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  148. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  149. if (n != cnt)
  150. return CMD_RET_FAILURE;
  151. return CMD_RET_SUCCESS;
  152. }
  153. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  154. int argc, char * const argv[])
  155. {
  156. u16 blk, cnt;
  157. void *addr;
  158. int n;
  159. void *key_addr;
  160. struct mmc *mmc = find_mmc_device(curr_device);
  161. if (argc != 5)
  162. return CMD_RET_USAGE;
  163. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  164. blk = simple_strtoul(argv[2], NULL, 16);
  165. cnt = simple_strtoul(argv[3], NULL, 16);
  166. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  167. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  168. curr_device, blk, cnt);
  169. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  170. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  171. if (n != cnt)
  172. return CMD_RET_FAILURE;
  173. return CMD_RET_SUCCESS;
  174. }
  175. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  176. int argc, char * const argv[])
  177. {
  178. unsigned long counter;
  179. struct mmc *mmc = find_mmc_device(curr_device);
  180. if (mmc_rpmb_get_counter(mmc, &counter))
  181. return CMD_RET_FAILURE;
  182. printf("RPMB Write counter= %lx\n", counter);
  183. return CMD_RET_SUCCESS;
  184. }
  185. static cmd_tbl_t cmd_rpmb[] = {
  186. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  187. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  188. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  189. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  190. };
  191. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  192. int argc, char * const argv[])
  193. {
  194. cmd_tbl_t *cp;
  195. struct mmc *mmc;
  196. char original_part;
  197. int ret;
  198. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  199. /* Drop the rpmb subcommand */
  200. argc--;
  201. argv++;
  202. if (cp == NULL || argc > cp->maxargs)
  203. return CMD_RET_USAGE;
  204. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  205. return CMD_RET_SUCCESS;
  206. mmc = init_mmc_device(curr_device, false);
  207. if (!mmc)
  208. return CMD_RET_FAILURE;
  209. if (!(mmc->version & MMC_VERSION_MMC)) {
  210. printf("It is not a EMMC device\n");
  211. return CMD_RET_FAILURE;
  212. }
  213. if (mmc->version < MMC_VERSION_4_41) {
  214. printf("RPMB not supported before version 4.41\n");
  215. return CMD_RET_FAILURE;
  216. }
  217. /* Switch to the RPMB partition */
  218. #ifndef CONFIG_BLK
  219. original_part = mmc->block_dev.hwpart;
  220. #else
  221. original_part = mmc_get_blk_desc(mmc)->hwpart;
  222. #endif
  223. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  224. 0)
  225. return CMD_RET_FAILURE;
  226. ret = cp->cmd(cmdtp, flag, argc, argv);
  227. /* Return to original partition */
  228. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  229. 0)
  230. return CMD_RET_FAILURE;
  231. return ret;
  232. }
  233. #endif
  234. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  235. int argc, char * const argv[])
  236. {
  237. struct mmc *mmc;
  238. u32 blk, cnt, n;
  239. void *addr;
  240. if (argc != 4)
  241. return CMD_RET_USAGE;
  242. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  243. blk = simple_strtoul(argv[2], NULL, 16);
  244. cnt = simple_strtoul(argv[3], NULL, 16);
  245. mmc = init_mmc_device(curr_device, false);
  246. if (!mmc)
  247. return CMD_RET_FAILURE;
  248. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  249. curr_device, blk, cnt);
  250. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  251. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  252. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  253. }
  254. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  255. int argc, char * const argv[])
  256. {
  257. struct mmc *mmc;
  258. u32 blk, cnt, n;
  259. void *addr;
  260. if (argc != 4)
  261. return CMD_RET_USAGE;
  262. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  263. blk = simple_strtoul(argv[2], NULL, 16);
  264. cnt = simple_strtoul(argv[3], NULL, 16);
  265. mmc = init_mmc_device(curr_device, false);
  266. if (!mmc)
  267. return CMD_RET_FAILURE;
  268. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  269. curr_device, blk, cnt);
  270. if (mmc_getwp(mmc) == 1) {
  271. printf("Error: card is write protected!\n");
  272. return CMD_RET_FAILURE;
  273. }
  274. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  275. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  276. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  277. }
  278. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  279. int argc, char * const argv[])
  280. {
  281. struct mmc *mmc;
  282. u32 blk, cnt, n;
  283. if (argc != 3)
  284. return CMD_RET_USAGE;
  285. blk = simple_strtoul(argv[1], NULL, 16);
  286. cnt = simple_strtoul(argv[2], NULL, 16);
  287. mmc = init_mmc_device(curr_device, false);
  288. if (!mmc)
  289. return CMD_RET_FAILURE;
  290. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  291. curr_device, blk, cnt);
  292. if (mmc_getwp(mmc) == 1) {
  293. printf("Error: card is write protected!\n");
  294. return CMD_RET_FAILURE;
  295. }
  296. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  297. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  298. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  299. }
  300. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  301. int argc, char * const argv[])
  302. {
  303. struct mmc *mmc;
  304. mmc = init_mmc_device(curr_device, true);
  305. if (!mmc)
  306. return CMD_RET_FAILURE;
  307. return CMD_RET_SUCCESS;
  308. }
  309. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  310. int argc, char * const argv[])
  311. {
  312. struct blk_desc *mmc_dev;
  313. struct mmc *mmc;
  314. mmc = init_mmc_device(curr_device, false);
  315. if (!mmc)
  316. return CMD_RET_FAILURE;
  317. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  318. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  319. part_print(mmc_dev);
  320. return CMD_RET_SUCCESS;
  321. }
  322. puts("get mmc type error!\n");
  323. return CMD_RET_FAILURE;
  324. }
  325. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  326. int argc, char * const argv[])
  327. {
  328. int dev, part = 0, ret;
  329. struct mmc *mmc;
  330. if (argc == 1) {
  331. dev = curr_device;
  332. } else if (argc == 2) {
  333. dev = simple_strtoul(argv[1], NULL, 10);
  334. } else if (argc == 3) {
  335. dev = (int)simple_strtoul(argv[1], NULL, 10);
  336. part = (int)simple_strtoul(argv[2], NULL, 10);
  337. if (part > PART_ACCESS_MASK) {
  338. printf("#part_num shouldn't be larger than %d\n",
  339. PART_ACCESS_MASK);
  340. return CMD_RET_FAILURE;
  341. }
  342. } else {
  343. return CMD_RET_USAGE;
  344. }
  345. mmc = init_mmc_device(dev, true);
  346. if (!mmc)
  347. return CMD_RET_FAILURE;
  348. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  349. printf("switch to partitions #%d, %s\n",
  350. part, (!ret) ? "OK" : "ERROR");
  351. if (ret)
  352. return 1;
  353. curr_device = dev;
  354. if (mmc->part_config == MMCPART_NOAVAILABLE)
  355. printf("mmc%d is current device\n", curr_device);
  356. else
  357. printf("mmc%d(part %d) is current device\n",
  358. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  359. return CMD_RET_SUCCESS;
  360. }
  361. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  362. int argc, char * const argv[])
  363. {
  364. print_mmc_devices('\n');
  365. return CMD_RET_SUCCESS;
  366. }
  367. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  368. int argc, char * const argv[])
  369. {
  370. int i = 0;
  371. memset(&pconf->user, 0, sizeof(pconf->user));
  372. while (i < argc) {
  373. if (!strcmp(argv[i], "enh")) {
  374. if (i + 2 >= argc)
  375. return -1;
  376. pconf->user.enh_start =
  377. simple_strtoul(argv[i+1], NULL, 10);
  378. pconf->user.enh_size =
  379. simple_strtoul(argv[i+2], NULL, 10);
  380. i += 3;
  381. } else if (!strcmp(argv[i], "wrrel")) {
  382. if (i + 1 >= argc)
  383. return -1;
  384. pconf->user.wr_rel_change = 1;
  385. if (!strcmp(argv[i+1], "on"))
  386. pconf->user.wr_rel_set = 1;
  387. else if (!strcmp(argv[i+1], "off"))
  388. pconf->user.wr_rel_set = 0;
  389. else
  390. return -1;
  391. i += 2;
  392. } else {
  393. break;
  394. }
  395. }
  396. return i;
  397. }
  398. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  399. int argc, char * const argv[])
  400. {
  401. int i;
  402. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  403. if (1 >= argc)
  404. return -1;
  405. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  406. i = 1;
  407. while (i < argc) {
  408. if (!strcmp(argv[i], "enh")) {
  409. pconf->gp_part[pidx].enhanced = 1;
  410. i += 1;
  411. } else if (!strcmp(argv[i], "wrrel")) {
  412. if (i + 1 >= argc)
  413. return -1;
  414. pconf->gp_part[pidx].wr_rel_change = 1;
  415. if (!strcmp(argv[i+1], "on"))
  416. pconf->gp_part[pidx].wr_rel_set = 1;
  417. else if (!strcmp(argv[i+1], "off"))
  418. pconf->gp_part[pidx].wr_rel_set = 0;
  419. else
  420. return -1;
  421. i += 2;
  422. } else {
  423. break;
  424. }
  425. }
  426. return i;
  427. }
  428. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  429. int argc, char * const argv[])
  430. {
  431. struct mmc *mmc;
  432. struct mmc_hwpart_conf pconf = { };
  433. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  434. int i, r, pidx;
  435. mmc = init_mmc_device(curr_device, false);
  436. if (!mmc)
  437. return CMD_RET_FAILURE;
  438. if (argc < 1)
  439. return CMD_RET_USAGE;
  440. i = 1;
  441. while (i < argc) {
  442. if (!strcmp(argv[i], "user")) {
  443. i++;
  444. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  445. if (r < 0)
  446. return CMD_RET_USAGE;
  447. i += r;
  448. } else if (!strncmp(argv[i], "gp", 2) &&
  449. strlen(argv[i]) == 3 &&
  450. argv[i][2] >= '1' && argv[i][2] <= '4') {
  451. pidx = argv[i][2] - '1';
  452. i++;
  453. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  454. if (r < 0)
  455. return CMD_RET_USAGE;
  456. i += r;
  457. } else if (!strcmp(argv[i], "check")) {
  458. mode = MMC_HWPART_CONF_CHECK;
  459. i++;
  460. } else if (!strcmp(argv[i], "set")) {
  461. mode = MMC_HWPART_CONF_SET;
  462. i++;
  463. } else if (!strcmp(argv[i], "complete")) {
  464. mode = MMC_HWPART_CONF_COMPLETE;
  465. i++;
  466. } else {
  467. return CMD_RET_USAGE;
  468. }
  469. }
  470. puts("Partition configuration:\n");
  471. if (pconf.user.enh_size) {
  472. puts("\tUser Enhanced Start: ");
  473. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  474. puts("\tUser Enhanced Size: ");
  475. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  476. } else {
  477. puts("\tNo enhanced user data area\n");
  478. }
  479. if (pconf.user.wr_rel_change)
  480. printf("\tUser partition write reliability: %s\n",
  481. pconf.user.wr_rel_set ? "on" : "off");
  482. for (pidx = 0; pidx < 4; pidx++) {
  483. if (pconf.gp_part[pidx].size) {
  484. printf("\tGP%i Capacity: ", pidx+1);
  485. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  486. pconf.gp_part[pidx].enhanced ?
  487. " ENH\n" : "\n");
  488. } else {
  489. printf("\tNo GP%i partition\n", pidx+1);
  490. }
  491. if (pconf.gp_part[pidx].wr_rel_change)
  492. printf("\tGP%i write reliability: %s\n", pidx+1,
  493. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  494. }
  495. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  496. if (mode == MMC_HWPART_CONF_COMPLETE)
  497. puts("Partitioning successful, "
  498. "power-cycle to make effective\n");
  499. return CMD_RET_SUCCESS;
  500. } else {
  501. puts("Failed!\n");
  502. return CMD_RET_FAILURE;
  503. }
  504. }
  505. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  506. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  507. int argc, char * const argv[])
  508. {
  509. int dev;
  510. struct mmc *mmc;
  511. u8 width, reset, mode;
  512. if (argc != 5)
  513. return CMD_RET_USAGE;
  514. dev = simple_strtoul(argv[1], NULL, 10);
  515. width = simple_strtoul(argv[2], NULL, 10);
  516. reset = simple_strtoul(argv[3], NULL, 10);
  517. mode = simple_strtoul(argv[4], NULL, 10);
  518. mmc = init_mmc_device(dev, false);
  519. if (!mmc)
  520. return CMD_RET_FAILURE;
  521. if (IS_SD(mmc)) {
  522. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  523. return CMD_RET_FAILURE;
  524. }
  525. /* acknowledge to be sent during boot operation */
  526. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  527. }
  528. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  529. int argc, char * const argv[])
  530. {
  531. int dev;
  532. struct mmc *mmc;
  533. u32 bootsize, rpmbsize;
  534. if (argc != 4)
  535. return CMD_RET_USAGE;
  536. dev = simple_strtoul(argv[1], NULL, 10);
  537. bootsize = simple_strtoul(argv[2], NULL, 10);
  538. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  539. mmc = init_mmc_device(dev, false);
  540. if (!mmc)
  541. return CMD_RET_FAILURE;
  542. if (IS_SD(mmc)) {
  543. printf("It is not a EMMC device\n");
  544. return CMD_RET_FAILURE;
  545. }
  546. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  547. printf("EMMC boot partition Size change Failed.\n");
  548. return CMD_RET_FAILURE;
  549. }
  550. printf("EMMC boot partition Size %d MB\n", bootsize);
  551. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  552. return CMD_RET_SUCCESS;
  553. }
  554. static int mmc_partconf_print(struct mmc *mmc)
  555. {
  556. u8 ack, access, part;
  557. if (mmc->part_config == MMCPART_NOAVAILABLE) {
  558. printf("No part_config info for ver. 0x%x\n", mmc->version);
  559. return CMD_RET_FAILURE;
  560. }
  561. access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
  562. ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
  563. part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
  564. printf("EXT_CSD[179], PARTITION_CONFIG:\n"
  565. "BOOT_ACK: 0x%x\n"
  566. "BOOT_PARTITION_ENABLE: 0x%x\n"
  567. "PARTITION_ACCESS: 0x%x\n", ack, part, access);
  568. return CMD_RET_SUCCESS;
  569. }
  570. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  571. int argc, char * const argv[])
  572. {
  573. int dev;
  574. struct mmc *mmc;
  575. u8 ack, part_num, access;
  576. if (argc != 2 && argc != 5)
  577. return CMD_RET_USAGE;
  578. dev = simple_strtoul(argv[1], NULL, 10);
  579. mmc = init_mmc_device(dev, false);
  580. if (!mmc)
  581. return CMD_RET_FAILURE;
  582. if (IS_SD(mmc)) {
  583. puts("PARTITION_CONFIG only exists on eMMC\n");
  584. return CMD_RET_FAILURE;
  585. }
  586. if (argc == 2)
  587. return mmc_partconf_print(mmc);
  588. ack = simple_strtoul(argv[2], NULL, 10);
  589. part_num = simple_strtoul(argv[3], NULL, 10);
  590. access = simple_strtoul(argv[4], NULL, 10);
  591. /* acknowledge to be sent during boot operation */
  592. return mmc_set_part_conf(mmc, ack, part_num, access);
  593. }
  594. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  595. int argc, char * const argv[])
  596. {
  597. int dev;
  598. struct mmc *mmc;
  599. u8 enable;
  600. /*
  601. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  602. * The only valid values are 0x0, 0x1 and 0x2 and writing
  603. * a value of 0x1 or 0x2 sets the value permanently.
  604. */
  605. if (argc != 3)
  606. return CMD_RET_USAGE;
  607. dev = simple_strtoul(argv[1], NULL, 10);
  608. enable = simple_strtoul(argv[2], NULL, 10);
  609. if (enable > 2) {
  610. puts("Invalid RST_n_ENABLE value\n");
  611. return CMD_RET_USAGE;
  612. }
  613. mmc = init_mmc_device(dev, false);
  614. if (!mmc)
  615. return CMD_RET_FAILURE;
  616. if (IS_SD(mmc)) {
  617. puts("RST_n_FUNCTION only exists on eMMC\n");
  618. return CMD_RET_FAILURE;
  619. }
  620. return mmc_set_rst_n_function(mmc, enable);
  621. }
  622. #endif
  623. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  624. int argc, char * const argv[])
  625. {
  626. struct mmc *mmc;
  627. u32 val;
  628. int ret;
  629. if (argc != 2)
  630. return CMD_RET_USAGE;
  631. val = simple_strtoul(argv[1], NULL, 16);
  632. mmc = find_mmc_device(curr_device);
  633. if (!mmc) {
  634. printf("no mmc device at slot %x\n", curr_device);
  635. return CMD_RET_FAILURE;
  636. }
  637. ret = mmc_set_dsr(mmc, val);
  638. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  639. if (!ret) {
  640. mmc->has_init = 0;
  641. if (mmc_init(mmc))
  642. return CMD_RET_FAILURE;
  643. else
  644. return CMD_RET_SUCCESS;
  645. }
  646. return ret;
  647. }
  648. #ifdef CONFIG_CMD_BKOPS_ENABLE
  649. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  650. int argc, char * const argv[])
  651. {
  652. int dev;
  653. struct mmc *mmc;
  654. if (argc != 2)
  655. return CMD_RET_USAGE;
  656. dev = simple_strtoul(argv[1], NULL, 10);
  657. mmc = init_mmc_device(dev, false);
  658. if (!mmc)
  659. return CMD_RET_FAILURE;
  660. if (IS_SD(mmc)) {
  661. puts("BKOPS_EN only exists on eMMC\n");
  662. return CMD_RET_FAILURE;
  663. }
  664. return mmc_set_bkops_enable(mmc);
  665. }
  666. #endif
  667. static cmd_tbl_t cmd_mmc[] = {
  668. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  669. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  670. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  671. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  672. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  673. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  674. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  675. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  676. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  677. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  678. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  679. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  680. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  681. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  682. #endif
  683. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  684. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  685. #endif
  686. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  687. #ifdef CONFIG_CMD_BKOPS_ENABLE
  688. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  689. #endif
  690. };
  691. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  692. {
  693. cmd_tbl_t *cp;
  694. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  695. /* Drop the mmc command */
  696. argc--;
  697. argv++;
  698. if (cp == NULL || argc > cp->maxargs)
  699. return CMD_RET_USAGE;
  700. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  701. return CMD_RET_SUCCESS;
  702. if (curr_device < 0) {
  703. if (get_mmc_num() > 0) {
  704. curr_device = 0;
  705. } else {
  706. puts("No MMC device available\n");
  707. return CMD_RET_FAILURE;
  708. }
  709. }
  710. return cp->cmd(cmdtp, flag, argc, argv);
  711. }
  712. U_BOOT_CMD(
  713. mmc, 29, 1, do_mmcops,
  714. "MMC sub system",
  715. "info - display info of the current MMC device\n"
  716. "mmc read addr blk# cnt\n"
  717. "mmc write addr blk# cnt\n"
  718. "mmc erase blk# cnt\n"
  719. "mmc rescan\n"
  720. "mmc part - lists available partition on current mmc device\n"
  721. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  722. "mmc list - lists available devices\n"
  723. "mmc hwpartition [args...] - does hardware partitioning\n"
  724. " arguments (sizes in 512-byte blocks):\n"
  725. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  726. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  727. " [check|set|complete] - mode, complete set partitioning completed\n"
  728. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  729. " Power cycling is required to initialize partitions after set to complete.\n"
  730. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  731. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  732. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  733. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  734. " - Change sizes of boot and RPMB partitions of specified device\n"
  735. "mmc partconf dev [boot_ack boot_partition partition_access]\n"
  736. " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
  737. "mmc rst-function dev value\n"
  738. " - Change the RST_n_FUNCTION field of the specified device\n"
  739. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  740. #endif
  741. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  742. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  743. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  744. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  745. "mmc rpmb counter - read the value of the write counter\n"
  746. #endif
  747. "mmc setdsr <value> - set DSR register value\n"
  748. #ifdef CONFIG_CMD_BKOPS_ENABLE
  749. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  750. " WARNING: This is a write-once setting.\n"
  751. #endif
  752. );
  753. /* Old command kept for compatibility. Same as 'mmc info' */
  754. U_BOOT_CMD(
  755. mmcinfo, 1, 0, do_mmcinfo,
  756. "display MMC info",
  757. "- display info of the current MMC device"
  758. );