PageRenderTime 51ms CodeModel.GetById 18ms app.highlight 26ms RepoModel.GetById 1ms app.codeStats 0ms

/lib/swiotlb.c

https://bitbucket.org/abioy/linux
C | 929 lines | 574 code | 122 blank | 233 comment | 102 complexity | 0f9ce871466e3ecfbcf00cd803c86618 MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define OFFSET(val,align) ((unsigned long)	\
 42	                   ( (val) & ( (align) - 1)))
 43
 44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 45
 46/*
 47 * Minimum IO TLB size to bother booting with.  Systems with mainly
 48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 49 * allocate a contiguous 1MB, we're probably in trouble anyway.
 50 */
 51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 52
 53/*
 54 * Enumeration for sync targets
 55 */
 56enum dma_sync_target {
 57	SYNC_FOR_CPU = 0,
 58	SYNC_FOR_DEVICE = 1,
 59};
 60
 61int swiotlb_force;
 62
 63/*
 64 * Used to do a quick range check in unmap_single and
 65 * sync_single_*, to see if the memory was in fact allocated by this
 66 * API.
 67 */
 68static char *io_tlb_start, *io_tlb_end;
 69
 70/*
 71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
 72 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 73 */
 74static unsigned long io_tlb_nslabs;
 75
 76/*
 77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 78 */
 79static unsigned long io_tlb_overflow = 32*1024;
 80
 81void *io_tlb_overflow_buffer;
 82
 83/*
 84 * This is a free list describing the number of free entries available from
 85 * each index
 86 */
 87static unsigned int *io_tlb_list;
 88static unsigned int io_tlb_index;
 89
 90/*
 91 * We need to save away the original address corresponding to a mapped entry
 92 * for the sync operations.
 93 */
 94static phys_addr_t *io_tlb_orig_addr;
 95
 96/*
 97 * Protect the above data structures in the map and unmap calls
 98 */
 99static DEFINE_SPINLOCK(io_tlb_lock);
100
101static int late_alloc;
102
103static int __init
104setup_io_tlb_npages(char *str)
105{
106	if (isdigit(*str)) {
107		io_tlb_nslabs = simple_strtoul(str, &str, 0);
108		/* avoid tail segment of size < IO_TLB_SEGSIZE */
109		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110	}
111	if (*str == ',')
112		++str;
113	if (!strcmp(str, "force"))
114		swiotlb_force = 1;
115
116	return 1;
117}
118__setup("swiotlb=", setup_io_tlb_npages);
119/* make io_tlb_overflow tunable too? */
120
121/* Note that this doesn't work with highmem page */
122static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
123				      volatile void *address)
124{
125	return phys_to_dma(hwdev, virt_to_phys(address));
126}
127
128void swiotlb_print_info(void)
129{
130	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
131	phys_addr_t pstart, pend;
132
133	pstart = virt_to_phys(io_tlb_start);
134	pend = virt_to_phys(io_tlb_end);
135
136	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
137	       bytes >> 20, io_tlb_start, io_tlb_end);
138	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
139	       (unsigned long long)pstart,
140	       (unsigned long long)pend);
141}
142
143/*
144 * Statically reserve bounce buffer space and initialize bounce buffer data
145 * structures for the software IO TLB used to implement the DMA API.
146 */
147void __init
148swiotlb_init_with_default_size(size_t default_size, int verbose)
149{
150	unsigned long i, bytes;
151
152	if (!io_tlb_nslabs) {
153		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
154		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
155	}
156
157	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
158
159	/*
160	 * Get IO TLB memory from the low pages
161	 */
162	io_tlb_start = alloc_bootmem_low_pages(bytes);
163	if (!io_tlb_start)
164		panic("Cannot allocate SWIOTLB buffer");
165	io_tlb_end = io_tlb_start + bytes;
166
167	/*
168	 * Allocate and initialize the free list array.  This array is used
169	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
170	 * between io_tlb_start and io_tlb_end.
171	 */
172	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
173	for (i = 0; i < io_tlb_nslabs; i++)
174 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
175	io_tlb_index = 0;
176	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
177
178	/*
179	 * Get the overflow emergency buffer
180	 */
181	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
182	if (!io_tlb_overflow_buffer)
183		panic("Cannot allocate SWIOTLB overflow buffer!\n");
184	if (verbose)
185		swiotlb_print_info();
186}
187
188void __init
189swiotlb_init(int verbose)
190{
191	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
192}
193
194/*
195 * Systems with larger DMA zones (those that don't support ISA) can
196 * initialize the swiotlb later using the slab allocator if needed.
197 * This should be just like above, but with some error catching.
198 */
199int
200swiotlb_late_init_with_default_size(size_t default_size)
201{
202	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
203	unsigned int order;
204
205	if (!io_tlb_nslabs) {
206		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
207		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
208	}
209
210	/*
211	 * Get IO TLB memory from the low pages
212	 */
213	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
214	io_tlb_nslabs = SLABS_PER_PAGE << order;
215	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
216
217	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
218		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
219							order);
220		if (io_tlb_start)
221			break;
222		order--;
223	}
224
225	if (!io_tlb_start)
226		goto cleanup1;
227
228	if (order != get_order(bytes)) {
229		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
230		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
231		io_tlb_nslabs = SLABS_PER_PAGE << order;
232		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
233	}
234	io_tlb_end = io_tlb_start + bytes;
235	memset(io_tlb_start, 0, bytes);
236
237	/*
238	 * Allocate and initialize the free list array.  This array is used
239	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
240	 * between io_tlb_start and io_tlb_end.
241	 */
242	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
243	                              get_order(io_tlb_nslabs * sizeof(int)));
244	if (!io_tlb_list)
245		goto cleanup2;
246
247	for (i = 0; i < io_tlb_nslabs; i++)
248 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
249	io_tlb_index = 0;
250
251	io_tlb_orig_addr = (phys_addr_t *)
252		__get_free_pages(GFP_KERNEL,
253				 get_order(io_tlb_nslabs *
254					   sizeof(phys_addr_t)));
255	if (!io_tlb_orig_addr)
256		goto cleanup3;
257
258	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
259
260	/*
261	 * Get the overflow emergency buffer
262	 */
263	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
264	                                          get_order(io_tlb_overflow));
265	if (!io_tlb_overflow_buffer)
266		goto cleanup4;
267
268	swiotlb_print_info();
269
270	late_alloc = 1;
271
272	return 0;
273
274cleanup4:
275	free_pages((unsigned long)io_tlb_orig_addr,
276		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
277	io_tlb_orig_addr = NULL;
278cleanup3:
279	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
280	                                                 sizeof(int)));
281	io_tlb_list = NULL;
282cleanup2:
283	io_tlb_end = NULL;
284	free_pages((unsigned long)io_tlb_start, order);
285	io_tlb_start = NULL;
286cleanup1:
287	io_tlb_nslabs = req_nslabs;
288	return -ENOMEM;
289}
290
291void __init swiotlb_free(void)
292{
293	if (!io_tlb_overflow_buffer)
294		return;
295
296	if (late_alloc) {
297		free_pages((unsigned long)io_tlb_overflow_buffer,
298			   get_order(io_tlb_overflow));
299		free_pages((unsigned long)io_tlb_orig_addr,
300			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
301		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
302								 sizeof(int)));
303		free_pages((unsigned long)io_tlb_start,
304			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
305	} else {
306		free_bootmem_late(__pa(io_tlb_overflow_buffer),
307				  io_tlb_overflow);
308		free_bootmem_late(__pa(io_tlb_orig_addr),
309				  io_tlb_nslabs * sizeof(phys_addr_t));
310		free_bootmem_late(__pa(io_tlb_list),
311				  io_tlb_nslabs * sizeof(int));
312		free_bootmem_late(__pa(io_tlb_start),
313				  io_tlb_nslabs << IO_TLB_SHIFT);
314	}
315}
316
317static int is_swiotlb_buffer(phys_addr_t paddr)
318{
319	return paddr >= virt_to_phys(io_tlb_start) &&
320		paddr < virt_to_phys(io_tlb_end);
321}
322
323/*
324 * Bounce: copy the swiotlb buffer back to the original dma location
325 */
326static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
327			   enum dma_data_direction dir)
328{
329	unsigned long pfn = PFN_DOWN(phys);
330
331	if (PageHighMem(pfn_to_page(pfn))) {
332		/* The buffer does not have a mapping.  Map it in and copy */
333		unsigned int offset = phys & ~PAGE_MASK;
334		char *buffer;
335		unsigned int sz = 0;
336		unsigned long flags;
337
338		while (size) {
339			sz = min_t(size_t, PAGE_SIZE - offset, size);
340
341			local_irq_save(flags);
342			buffer = kmap_atomic(pfn_to_page(pfn),
343					     KM_BOUNCE_READ);
344			if (dir == DMA_TO_DEVICE)
345				memcpy(dma_addr, buffer + offset, sz);
346			else
347				memcpy(buffer + offset, dma_addr, sz);
348			kunmap_atomic(buffer, KM_BOUNCE_READ);
349			local_irq_restore(flags);
350
351			size -= sz;
352			pfn++;
353			dma_addr += sz;
354			offset = 0;
355		}
356	} else {
357		if (dir == DMA_TO_DEVICE)
358			memcpy(dma_addr, phys_to_virt(phys), size);
359		else
360			memcpy(phys_to_virt(phys), dma_addr, size);
361	}
362}
363
364/*
365 * Allocates bounce buffer and returns its kernel virtual address.
366 */
367static void *
368map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
369{
370	unsigned long flags;
371	char *dma_addr;
372	unsigned int nslots, stride, index, wrap;
373	int i;
374	unsigned long start_dma_addr;
375	unsigned long mask;
376	unsigned long offset_slots;
377	unsigned long max_slots;
378
379	mask = dma_get_seg_boundary(hwdev);
380	start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
381
382	offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
383
384	/*
385 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
386 	 */
387	max_slots = mask + 1
388		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
389		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
390
391	/*
392	 * For mappings greater than a page, we limit the stride (and
393	 * hence alignment) to a page size.
394	 */
395	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
396	if (size > PAGE_SIZE)
397		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
398	else
399		stride = 1;
400
401	BUG_ON(!nslots);
402
403	/*
404	 * Find suitable number of IO TLB entries size that will fit this
405	 * request and allocate a buffer from that IO TLB pool.
406	 */
407	spin_lock_irqsave(&io_tlb_lock, flags);
408	index = ALIGN(io_tlb_index, stride);
409	if (index >= io_tlb_nslabs)
410		index = 0;
411	wrap = index;
412
413	do {
414		while (iommu_is_span_boundary(index, nslots, offset_slots,
415					      max_slots)) {
416			index += stride;
417			if (index >= io_tlb_nslabs)
418				index = 0;
419			if (index == wrap)
420				goto not_found;
421		}
422
423		/*
424		 * If we find a slot that indicates we have 'nslots' number of
425		 * contiguous buffers, we allocate the buffers from that slot
426		 * and mark the entries as '0' indicating unavailable.
427		 */
428		if (io_tlb_list[index] >= nslots) {
429			int count = 0;
430
431			for (i = index; i < (int) (index + nslots); i++)
432				io_tlb_list[i] = 0;
433			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
434				io_tlb_list[i] = ++count;
435			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
436
437			/*
438			 * Update the indices to avoid searching in the next
439			 * round.
440			 */
441			io_tlb_index = ((index + nslots) < io_tlb_nslabs
442					? (index + nslots) : 0);
443
444			goto found;
445		}
446		index += stride;
447		if (index >= io_tlb_nslabs)
448			index = 0;
449	} while (index != wrap);
450
451not_found:
452	spin_unlock_irqrestore(&io_tlb_lock, flags);
453	return NULL;
454found:
455	spin_unlock_irqrestore(&io_tlb_lock, flags);
456
457	/*
458	 * Save away the mapping from the original address to the DMA address.
459	 * This is needed when we sync the memory.  Then we sync the buffer if
460	 * needed.
461	 */
462	for (i = 0; i < nslots; i++)
463		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
464	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
465		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
466
467	return dma_addr;
468}
469
470/*
471 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
472 */
473static void
474do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
475{
476	unsigned long flags;
477	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
478	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
479	phys_addr_t phys = io_tlb_orig_addr[index];
480
481	/*
482	 * First, sync the memory before unmapping the entry
483	 */
484	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
485		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
486
487	/*
488	 * Return the buffer to the free list by setting the corresponding
489	 * entries to indicate the number of contiguous entries available.
490	 * While returning the entries to the free list, we merge the entries
491	 * with slots below and above the pool being returned.
492	 */
493	spin_lock_irqsave(&io_tlb_lock, flags);
494	{
495		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
496			 io_tlb_list[index + nslots] : 0);
497		/*
498		 * Step 1: return the slots to the free list, merging the
499		 * slots with superceeding slots
500		 */
501		for (i = index + nslots - 1; i >= index; i--)
502			io_tlb_list[i] = ++count;
503		/*
504		 * Step 2: merge the returned slots with the preceding slots,
505		 * if available (non zero)
506		 */
507		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
508			io_tlb_list[i] = ++count;
509	}
510	spin_unlock_irqrestore(&io_tlb_lock, flags);
511}
512
513static void
514sync_single(struct device *hwdev, char *dma_addr, size_t size,
515	    int dir, int target)
516{
517	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
518	phys_addr_t phys = io_tlb_orig_addr[index];
519
520	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
521
522	switch (target) {
523	case SYNC_FOR_CPU:
524		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
525			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
526		else
527			BUG_ON(dir != DMA_TO_DEVICE);
528		break;
529	case SYNC_FOR_DEVICE:
530		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
531			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
532		else
533			BUG_ON(dir != DMA_FROM_DEVICE);
534		break;
535	default:
536		BUG();
537	}
538}
539
540void *
541swiotlb_alloc_coherent(struct device *hwdev, size_t size,
542		       dma_addr_t *dma_handle, gfp_t flags)
543{
544	dma_addr_t dev_addr;
545	void *ret;
546	int order = get_order(size);
547	u64 dma_mask = DMA_BIT_MASK(32);
548
549	if (hwdev && hwdev->coherent_dma_mask)
550		dma_mask = hwdev->coherent_dma_mask;
551
552	ret = (void *)__get_free_pages(flags, order);
553	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
554		/*
555		 * The allocated memory isn't reachable by the device.
556		 */
557		free_pages((unsigned long) ret, order);
558		ret = NULL;
559	}
560	if (!ret) {
561		/*
562		 * We are either out of memory or the device can't DMA
563		 * to GFP_DMA memory; fall back on map_single(), which
564		 * will grab memory from the lowest available address range.
565		 */
566		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
567		if (!ret)
568			return NULL;
569	}
570
571	memset(ret, 0, size);
572	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
573
574	/* Confirm address can be DMA'd by device */
575	if (dev_addr + size - 1 > dma_mask) {
576		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
577		       (unsigned long long)dma_mask,
578		       (unsigned long long)dev_addr);
579
580		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
581		do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
582		return NULL;
583	}
584	*dma_handle = dev_addr;
585	return ret;
586}
587EXPORT_SYMBOL(swiotlb_alloc_coherent);
588
589void
590swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
591		      dma_addr_t dev_addr)
592{
593	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
594
595	WARN_ON(irqs_disabled());
596	if (!is_swiotlb_buffer(paddr))
597		free_pages((unsigned long)vaddr, get_order(size));
598	else
599		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
600		do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
601}
602EXPORT_SYMBOL(swiotlb_free_coherent);
603
604static void
605swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
606{
607	/*
608	 * Ran out of IOMMU space for this operation. This is very bad.
609	 * Unfortunately the drivers cannot handle this operation properly.
610	 * unless they check for dma_mapping_error (most don't)
611	 * When the mapping is small enough return a static buffer to limit
612	 * the damage, or panic when the transfer is too big.
613	 */
614	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
615	       "device %s\n", size, dev ? dev_name(dev) : "?");
616
617	if (size <= io_tlb_overflow || !do_panic)
618		return;
619
620	if (dir == DMA_BIDIRECTIONAL)
621		panic("DMA: Random memory could be DMA accessed\n");
622	if (dir == DMA_FROM_DEVICE)
623		panic("DMA: Random memory could be DMA written\n");
624	if (dir == DMA_TO_DEVICE)
625		panic("DMA: Random memory could be DMA read\n");
626}
627
628/*
629 * Map a single buffer of the indicated size for DMA in streaming mode.  The
630 * physical address to use is returned.
631 *
632 * Once the device is given the dma address, the device owns this memory until
633 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
634 */
635dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
636			    unsigned long offset, size_t size,
637			    enum dma_data_direction dir,
638			    struct dma_attrs *attrs)
639{
640	phys_addr_t phys = page_to_phys(page) + offset;
641	dma_addr_t dev_addr = phys_to_dma(dev, phys);
642	void *map;
643
644	BUG_ON(dir == DMA_NONE);
645	/*
646	 * If the address happens to be in the device's DMA window,
647	 * we can safely return the device addr and not worry about bounce
648	 * buffering it.
649	 */
650	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
651		return dev_addr;
652
653	/*
654	 * Oh well, have to allocate and map a bounce buffer.
655	 */
656	map = map_single(dev, phys, size, dir);
657	if (!map) {
658		swiotlb_full(dev, size, dir, 1);
659		map = io_tlb_overflow_buffer;
660	}
661
662	dev_addr = swiotlb_virt_to_bus(dev, map);
663
664	/*
665	 * Ensure that the address returned is DMA'ble
666	 */
667	if (!dma_capable(dev, dev_addr, size))
668		panic("map_single: bounce buffer is not DMA'ble");
669
670	return dev_addr;
671}
672EXPORT_SYMBOL_GPL(swiotlb_map_page);
673
674/*
675 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
676 * match what was provided for in a previous swiotlb_map_page call.  All
677 * other usages are undefined.
678 *
679 * After this call, reads by the cpu to the buffer are guaranteed to see
680 * whatever the device wrote there.
681 */
682static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
683			 size_t size, int dir)
684{
685	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
686
687	BUG_ON(dir == DMA_NONE);
688
689	if (is_swiotlb_buffer(paddr)) {
690		do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
691		return;
692	}
693
694	if (dir != DMA_FROM_DEVICE)
695		return;
696
697	/*
698	 * phys_to_virt doesn't work with hihgmem page but we could
699	 * call dma_mark_clean() with hihgmem page here. However, we
700	 * are fine since dma_mark_clean() is null on POWERPC. We can
701	 * make dma_mark_clean() take a physical address if necessary.
702	 */
703	dma_mark_clean(phys_to_virt(paddr), size);
704}
705
706void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
707			size_t size, enum dma_data_direction dir,
708			struct dma_attrs *attrs)
709{
710	unmap_single(hwdev, dev_addr, size, dir);
711}
712EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
713
714/*
715 * Make physical memory consistent for a single streaming mode DMA translation
716 * after a transfer.
717 *
718 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
719 * using the cpu, yet do not wish to teardown the dma mapping, you must
720 * call this function before doing so.  At the next point you give the dma
721 * address back to the card, you must first perform a
722 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
723 */
724static void
725swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
726		    size_t size, int dir, int target)
727{
728	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
729
730	BUG_ON(dir == DMA_NONE);
731
732	if (is_swiotlb_buffer(paddr)) {
733		sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
734		return;
735	}
736
737	if (dir != DMA_FROM_DEVICE)
738		return;
739
740	dma_mark_clean(phys_to_virt(paddr), size);
741}
742
743void
744swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
745			    size_t size, enum dma_data_direction dir)
746{
747	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
748}
749EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
750
751void
752swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
753			       size_t size, enum dma_data_direction dir)
754{
755	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
756}
757EXPORT_SYMBOL(swiotlb_sync_single_for_device);
758
759/*
760 * Same as above, but for a sub-range of the mapping.
761 */
762static void
763swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
764			  unsigned long offset, size_t size,
765			  int dir, int target)
766{
767	swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
768}
769
770void
771swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
772				  unsigned long offset, size_t size,
773				  enum dma_data_direction dir)
774{
775	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
776				  SYNC_FOR_CPU);
777}
778EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
779
780void
781swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
782				     unsigned long offset, size_t size,
783				     enum dma_data_direction dir)
784{
785	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
786				  SYNC_FOR_DEVICE);
787}
788EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
789
790/*
791 * Map a set of buffers described by scatterlist in streaming mode for DMA.
792 * This is the scatter-gather version of the above swiotlb_map_page
793 * interface.  Here the scatter gather list elements are each tagged with the
794 * appropriate dma address and length.  They are obtained via
795 * sg_dma_{address,length}(SG).
796 *
797 * NOTE: An implementation may be able to use a smaller number of
798 *       DMA address/length pairs than there are SG table elements.
799 *       (for example via virtual mapping capabilities)
800 *       The routine returns the number of addr/length pairs actually
801 *       used, at most nents.
802 *
803 * Device ownership issues as mentioned above for swiotlb_map_page are the
804 * same here.
805 */
806int
807swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
808		     enum dma_data_direction dir, struct dma_attrs *attrs)
809{
810	struct scatterlist *sg;
811	int i;
812
813	BUG_ON(dir == DMA_NONE);
814
815	for_each_sg(sgl, sg, nelems, i) {
816		phys_addr_t paddr = sg_phys(sg);
817		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
818
819		if (swiotlb_force ||
820		    !dma_capable(hwdev, dev_addr, sg->length)) {
821			void *map = map_single(hwdev, sg_phys(sg),
822					       sg->length, dir);
823			if (!map) {
824				/* Don't panic here, we expect map_sg users
825				   to do proper error handling. */
826				swiotlb_full(hwdev, sg->length, dir, 0);
827				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
828						       attrs);
829				sgl[0].dma_length = 0;
830				return 0;
831			}
832			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
833		} else
834			sg->dma_address = dev_addr;
835		sg->dma_length = sg->length;
836	}
837	return nelems;
838}
839EXPORT_SYMBOL(swiotlb_map_sg_attrs);
840
841int
842swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
843	       int dir)
844{
845	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
846}
847EXPORT_SYMBOL(swiotlb_map_sg);
848
849/*
850 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
851 * concerning calls here are the same as for swiotlb_unmap_page() above.
852 */
853void
854swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
855		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
856{
857	struct scatterlist *sg;
858	int i;
859
860	BUG_ON(dir == DMA_NONE);
861
862	for_each_sg(sgl, sg, nelems, i)
863		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
864
865}
866EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
867
868void
869swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
870		 int dir)
871{
872	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
873}
874EXPORT_SYMBOL(swiotlb_unmap_sg);
875
876/*
877 * Make physical memory consistent for a set of streaming mode DMA translations
878 * after a transfer.
879 *
880 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
881 * and usage.
882 */
883static void
884swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
885		int nelems, int dir, int target)
886{
887	struct scatterlist *sg;
888	int i;
889
890	for_each_sg(sgl, sg, nelems, i)
891		swiotlb_sync_single(hwdev, sg->dma_address,
892				    sg->dma_length, dir, target);
893}
894
895void
896swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
897			int nelems, enum dma_data_direction dir)
898{
899	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
900}
901EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
902
903void
904swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
905			   int nelems, enum dma_data_direction dir)
906{
907	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
908}
909EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
910
911int
912swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
913{
914	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
915}
916EXPORT_SYMBOL(swiotlb_dma_mapping_error);
917
918/*
919 * Return whether the given device DMA address mask can be supported
920 * properly.  For example, if your device can only drive the low 24-bits
921 * during bus mastering, then you would pass 0x00ffffff as the mask to
922 * this function.
923 */
924int
925swiotlb_dma_supported(struct device *hwdev, u64 mask)
926{
927	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
928}
929EXPORT_SYMBOL(swiotlb_dma_supported);