PageRenderTime 41ms CodeModel.GetById 18ms app.highlight 19ms RepoModel.GetById 0ms app.codeStats 0ms

/sound/soc/fsl/fsl_ssi.c

https://bitbucket.org/abioy/linux
C | 734 lines | 422 code | 97 blank | 215 comment | 59 complexity | 94456be0b9ff5f48c5c9598181dd596a MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
  1/*
  2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
  3 *
  4 * Author: Timur Tabi <timur@freescale.com>
  5 *
  6 * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
  7 * under the terms of the GNU General Public License version 2.  This
  8 * program is licensed "as is" without any warranty of any kind, whether
  9 * express or implied.
 10 */
 11
 12#include <linux/init.h>
 13#include <linux/module.h>
 14#include <linux/interrupt.h>
 15#include <linux/device.h>
 16#include <linux/delay.h>
 17#include <linux/slab.h>
 18
 19#include <sound/core.h>
 20#include <sound/pcm.h>
 21#include <sound/pcm_params.h>
 22#include <sound/initval.h>
 23#include <sound/soc.h>
 24
 25#include <asm/immap_86xx.h>
 26
 27#include "fsl_ssi.h"
 28
 29/**
 30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 31 *
 32 * This driver currently only supports the SSI running in I2S slave mode,
 33 * which means the codec determines the sample rate.  Therefore, we tell
 34 * ALSA that we support all rates and let the codec driver decide what rates
 35 * are really supported.
 36 */
 37#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
 38			  SNDRV_PCM_RATE_CONTINUOUS)
 39
 40/**
 41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 42 *
 43 * This driver currently only supports the SSI running in I2S slave mode.
 44 *
 45 * The SSI has a limitation in that the samples must be in the same byte
 46 * order as the host CPU.  This is because when multiple bytes are written
 47 * to the STX register, the bytes and bits must be written in the same
 48 * order.  The STX is a shift register, so all the bits need to be aligned
 49 * (bit-endianness must match byte-endianness).  Processors typically write
 50 * the bits within a byte in the same order that the bytes of a word are
 51 * written in.  So if the host CPU is big-endian, then only big-endian
 52 * samples will be written to STX properly.
 53 */
 54#ifdef __BIG_ENDIAN
 55#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
 56	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
 57	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
 58#else
 59#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
 60	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
 61	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
 62#endif
 63
 64/* SIER bitflag of interrupts to enable */
 65#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
 66		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
 67		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
 68		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
 69		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
 70
 71/**
 72 * fsl_ssi_private: per-SSI private data
 73 *
 74 * @name: short name for this device ("SSI0", "SSI1", etc)
 75 * @ssi: pointer to the SSI's registers
 76 * @ssi_phys: physical address of the SSI registers
 77 * @irq: IRQ of this SSI
 78 * @first_stream: pointer to the stream that was opened first
 79 * @second_stream: pointer to second stream
 80 * @dev: struct device pointer
 81 * @playback: the number of playback streams opened
 82 * @capture: the number of capture streams opened
 83 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
 84 * @cpu_dai: the CPU DAI for this device
 85 * @dev_attr: the sysfs device attribute structure
 86 * @stats: SSI statistics
 87 */
 88struct fsl_ssi_private {
 89	char name[8];
 90	struct ccsr_ssi __iomem *ssi;
 91	dma_addr_t ssi_phys;
 92	unsigned int irq;
 93	struct snd_pcm_substream *first_stream;
 94	struct snd_pcm_substream *second_stream;
 95	struct device *dev;
 96	unsigned int playback;
 97	unsigned int capture;
 98	int asynchronous;
 99	struct snd_soc_dai cpu_dai;
100	struct device_attribute dev_attr;
101
102	struct {
103		unsigned int rfrc;
104		unsigned int tfrc;
105		unsigned int cmdau;
106		unsigned int cmddu;
107		unsigned int rxt;
108		unsigned int rdr1;
109		unsigned int rdr0;
110		unsigned int tde1;
111		unsigned int tde0;
112		unsigned int roe1;
113		unsigned int roe0;
114		unsigned int tue1;
115		unsigned int tue0;
116		unsigned int tfs;
117		unsigned int rfs;
118		unsigned int tls;
119		unsigned int rls;
120		unsigned int rff1;
121		unsigned int rff0;
122		unsigned int tfe1;
123		unsigned int tfe0;
124	} stats;
125};
126
127/**
128 * fsl_ssi_isr: SSI interrupt handler
129 *
130 * Although it's possible to use the interrupt handler to send and receive
131 * data to/from the SSI, we use the DMA instead.  Programming is more
132 * complicated, but the performance is much better.
133 *
134 * This interrupt handler is used only to gather statistics.
135 *
136 * @irq: IRQ of the SSI device
137 * @dev_id: pointer to the ssi_private structure for this SSI device
138 */
139static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
140{
141	struct fsl_ssi_private *ssi_private = dev_id;
142	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
143	irqreturn_t ret = IRQ_NONE;
144	__be32 sisr;
145	__be32 sisr2 = 0;
146
147	/* We got an interrupt, so read the status register to see what we
148	   were interrupted for.  We mask it with the Interrupt Enable register
149	   so that we only check for events that we're interested in.
150	 */
151	sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
152
153	if (sisr & CCSR_SSI_SISR_RFRC) {
154		ssi_private->stats.rfrc++;
155		sisr2 |= CCSR_SSI_SISR_RFRC;
156		ret = IRQ_HANDLED;
157	}
158
159	if (sisr & CCSR_SSI_SISR_TFRC) {
160		ssi_private->stats.tfrc++;
161		sisr2 |= CCSR_SSI_SISR_TFRC;
162		ret = IRQ_HANDLED;
163	}
164
165	if (sisr & CCSR_SSI_SISR_CMDAU) {
166		ssi_private->stats.cmdau++;
167		ret = IRQ_HANDLED;
168	}
169
170	if (sisr & CCSR_SSI_SISR_CMDDU) {
171		ssi_private->stats.cmddu++;
172		ret = IRQ_HANDLED;
173	}
174
175	if (sisr & CCSR_SSI_SISR_RXT) {
176		ssi_private->stats.rxt++;
177		ret = IRQ_HANDLED;
178	}
179
180	if (sisr & CCSR_SSI_SISR_RDR1) {
181		ssi_private->stats.rdr1++;
182		ret = IRQ_HANDLED;
183	}
184
185	if (sisr & CCSR_SSI_SISR_RDR0) {
186		ssi_private->stats.rdr0++;
187		ret = IRQ_HANDLED;
188	}
189
190	if (sisr & CCSR_SSI_SISR_TDE1) {
191		ssi_private->stats.tde1++;
192		ret = IRQ_HANDLED;
193	}
194
195	if (sisr & CCSR_SSI_SISR_TDE0) {
196		ssi_private->stats.tde0++;
197		ret = IRQ_HANDLED;
198	}
199
200	if (sisr & CCSR_SSI_SISR_ROE1) {
201		ssi_private->stats.roe1++;
202		sisr2 |= CCSR_SSI_SISR_ROE1;
203		ret = IRQ_HANDLED;
204	}
205
206	if (sisr & CCSR_SSI_SISR_ROE0) {
207		ssi_private->stats.roe0++;
208		sisr2 |= CCSR_SSI_SISR_ROE0;
209		ret = IRQ_HANDLED;
210	}
211
212	if (sisr & CCSR_SSI_SISR_TUE1) {
213		ssi_private->stats.tue1++;
214		sisr2 |= CCSR_SSI_SISR_TUE1;
215		ret = IRQ_HANDLED;
216	}
217
218	if (sisr & CCSR_SSI_SISR_TUE0) {
219		ssi_private->stats.tue0++;
220		sisr2 |= CCSR_SSI_SISR_TUE0;
221		ret = IRQ_HANDLED;
222	}
223
224	if (sisr & CCSR_SSI_SISR_TFS) {
225		ssi_private->stats.tfs++;
226		ret = IRQ_HANDLED;
227	}
228
229	if (sisr & CCSR_SSI_SISR_RFS) {
230		ssi_private->stats.rfs++;
231		ret = IRQ_HANDLED;
232	}
233
234	if (sisr & CCSR_SSI_SISR_TLS) {
235		ssi_private->stats.tls++;
236		ret = IRQ_HANDLED;
237	}
238
239	if (sisr & CCSR_SSI_SISR_RLS) {
240		ssi_private->stats.rls++;
241		ret = IRQ_HANDLED;
242	}
243
244	if (sisr & CCSR_SSI_SISR_RFF1) {
245		ssi_private->stats.rff1++;
246		ret = IRQ_HANDLED;
247	}
248
249	if (sisr & CCSR_SSI_SISR_RFF0) {
250		ssi_private->stats.rff0++;
251		ret = IRQ_HANDLED;
252	}
253
254	if (sisr & CCSR_SSI_SISR_TFE1) {
255		ssi_private->stats.tfe1++;
256		ret = IRQ_HANDLED;
257	}
258
259	if (sisr & CCSR_SSI_SISR_TFE0) {
260		ssi_private->stats.tfe0++;
261		ret = IRQ_HANDLED;
262	}
263
264	/* Clear the bits that we set */
265	if (sisr2)
266		out_be32(&ssi->sisr, sisr2);
267
268	return ret;
269}
270
271/**
272 * fsl_ssi_startup: create a new substream
273 *
274 * This is the first function called when a stream is opened.
275 *
276 * If this is the first stream open, then grab the IRQ and program most of
277 * the SSI registers.
278 */
279static int fsl_ssi_startup(struct snd_pcm_substream *substream,
280			   struct snd_soc_dai *dai)
281{
282	struct snd_soc_pcm_runtime *rtd = substream->private_data;
283	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
284
285	/*
286	 * If this is the first stream opened, then request the IRQ
287	 * and initialize the SSI registers.
288	 */
289	if (!ssi_private->playback && !ssi_private->capture) {
290		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
291		int ret;
292
293		ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
294				  ssi_private->name, ssi_private);
295		if (ret < 0) {
296			dev_err(substream->pcm->card->dev,
297				"could not claim irq %u\n", ssi_private->irq);
298			return ret;
299		}
300
301		/*
302		 * Section 16.5 of the MPC8610 reference manual says that the
303		 * SSI needs to be disabled before updating the registers we set
304		 * here.
305		 */
306		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
307
308		/*
309		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
310		 * Also enable the transmit and receive FIFO.
311		 *
312		 * FIXME: Little-endian samples require a different shift dir
313		 */
314		clrsetbits_be32(&ssi->scr,
315			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
316			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
317			| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
318
319		out_be32(&ssi->stcr,
320			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
321			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
322			 CCSR_SSI_STCR_TSCKP);
323
324		out_be32(&ssi->srcr,
325			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
326			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
327			 CCSR_SSI_SRCR_RSCKP);
328
329		/*
330		 * The DC and PM bits are only used if the SSI is the clock
331		 * master.
332		 */
333
334		/* 4. Enable the interrupts and DMA requests */
335		out_be32(&ssi->sier, SIER_FLAGS);
336
337		/*
338		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
339		 * don't use FIFO 1.  Since the SSI only supports stereo, the
340		 * watermark should never be an odd number.
341		 */
342		out_be32(&ssi->sfcsr,
343			 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
344
345		/*
346		 * We keep the SSI disabled because if we enable it, then the
347		 * DMA controller will start.  It's not supposed to start until
348		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
349		 * DMA controller will transfer one "BWC" of data (i.e. the
350		 * amount of data that the MR.BWC bits are set to).  The reason
351		 * this is bad is because at this point, the PCM driver has not
352		 * finished initializing the DMA controller.
353		 */
354	}
355
356	if (!ssi_private->first_stream)
357		ssi_private->first_stream = substream;
358	else {
359		/* This is the second stream open, so we need to impose sample
360		 * rate and maybe sample size constraints.  Note that this can
361		 * cause a race condition if the second stream is opened before
362		 * the first stream is fully initialized.
363		 *
364		 * We provide some protection by checking to make sure the first
365		 * stream is initialized, but it's not perfect.  ALSA sometimes
366		 * re-initializes the driver with a different sample rate or
367		 * size.  If the second stream is opened before the first stream
368		 * has received its final parameters, then the second stream may
369		 * be constrained to the wrong sample rate or size.
370		 *
371		 * FIXME: This code does not handle opening and closing streams
372		 * repeatedly.  If you open two streams and then close the first
373		 * one, you may not be able to open another stream until you
374		 * close the second one as well.
375		 */
376		struct snd_pcm_runtime *first_runtime =
377			ssi_private->first_stream->runtime;
378
379		if (!first_runtime->sample_bits) {
380			dev_err(substream->pcm->card->dev,
381				"set sample size in %s stream first\n",
382				substream->stream == SNDRV_PCM_STREAM_PLAYBACK
383				? "capture" : "playback");
384			return -EAGAIN;
385		}
386
387		/* If we're in synchronous mode, then we need to constrain
388		 * the sample size as well.  We don't support independent sample
389		 * rates in asynchronous mode.
390		 */
391		if (!ssi_private->asynchronous)
392			snd_pcm_hw_constraint_minmax(substream->runtime,
393				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
394				first_runtime->sample_bits,
395				first_runtime->sample_bits);
396
397		ssi_private->second_stream = substream;
398	}
399
400	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
401		ssi_private->playback++;
402
403	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
404		ssi_private->capture++;
405
406	return 0;
407}
408
409/**
410 * fsl_ssi_hw_params - program the sample size
411 *
412 * Most of the SSI registers have been programmed in the startup function,
413 * but the word length must be programmed here.  Unfortunately, programming
414 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
415 * cause a problem with supporting simultaneous playback and capture.  If
416 * the SSI is already playing a stream, then that stream may be temporarily
417 * stopped when you start capture.
418 *
419 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
420 * clock master.
421 */
422static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
423	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
424{
425	struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
426
427	if (substream == ssi_private->first_stream) {
428		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
429		unsigned int sample_size =
430			snd_pcm_format_width(params_format(hw_params));
431		u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
432
433		/* The SSI should always be disabled at this points (SSIEN=0) */
434
435		/* In synchronous mode, the SSI uses STCCR for capture */
436		if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
437		    !ssi_private->asynchronous)
438			clrsetbits_be32(&ssi->stccr,
439					CCSR_SSI_SxCCR_WL_MASK, wl);
440		else
441			clrsetbits_be32(&ssi->srccr,
442					CCSR_SSI_SxCCR_WL_MASK, wl);
443	}
444
445	return 0;
446}
447
448/**
449 * fsl_ssi_trigger: start and stop the DMA transfer.
450 *
451 * This function is called by ALSA to start, stop, pause, and resume the DMA
452 * transfer of data.
453 *
454 * The DMA channel is in external master start and pause mode, which
455 * means the SSI completely controls the flow of data.
456 */
457static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
458			   struct snd_soc_dai *dai)
459{
460	struct snd_soc_pcm_runtime *rtd = substream->private_data;
461	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
462	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
463
464	switch (cmd) {
465	case SNDRV_PCM_TRIGGER_START:
466		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
467	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
468		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
469			setbits32(&ssi->scr,
470				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
471		else
472			setbits32(&ssi->scr,
473				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
474		break;
475
476	case SNDRV_PCM_TRIGGER_STOP:
477	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
478		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
479			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
480		else
481			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
482		break;
483
484	default:
485		return -EINVAL;
486	}
487
488	return 0;
489}
490
491/**
492 * fsl_ssi_shutdown: shutdown the SSI
493 *
494 * Shutdown the SSI if there are no other substreams open.
495 */
496static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
497			     struct snd_soc_dai *dai)
498{
499	struct snd_soc_pcm_runtime *rtd = substream->private_data;
500	struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
501
502	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
503		ssi_private->playback--;
504
505	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
506		ssi_private->capture--;
507
508	if (ssi_private->first_stream == substream)
509		ssi_private->first_stream = ssi_private->second_stream;
510
511	ssi_private->second_stream = NULL;
512
513	/*
514	 * If this is the last active substream, disable the SSI and release
515	 * the IRQ.
516	 */
517	if (!ssi_private->playback && !ssi_private->capture) {
518		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
519
520		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
521
522		free_irq(ssi_private->irq, ssi_private);
523	}
524}
525
526/**
527 * fsl_ssi_set_sysclk: set the clock frequency and direction
528 *
529 * This function is called by the machine driver to tell us what the clock
530 * frequency and direction are.
531 *
532 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
533 * and we don't care about the frequency.  Return an error if the direction
534 * is not SND_SOC_CLOCK_IN.
535 *
536 * @clk_id: reserved, should be zero
537 * @freq: the frequency of the given clock ID, currently ignored
538 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
539 */
540static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
541			      int clk_id, unsigned int freq, int dir)
542{
543
544	return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
545}
546
547/**
548 * fsl_ssi_set_fmt: set the serial format.
549 *
550 * This function is called by the machine driver to tell us what serial
551 * format to use.
552 *
553 * Currently, we only support I2S mode.  Return an error if the format is
554 * not SND_SOC_DAIFMT_I2S.
555 *
556 * @format: one of SND_SOC_DAIFMT_xxx
557 */
558static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
559{
560	return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
561}
562
563/**
564 * fsl_ssi_dai_template: template CPU DAI for the SSI
565 */
566static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
567	.startup	= fsl_ssi_startup,
568	.hw_params	= fsl_ssi_hw_params,
569	.shutdown	= fsl_ssi_shutdown,
570	.trigger	= fsl_ssi_trigger,
571	.set_sysclk	= fsl_ssi_set_sysclk,
572	.set_fmt	= fsl_ssi_set_fmt,
573};
574
575static struct snd_soc_dai fsl_ssi_dai_template = {
576	.playback = {
577		/* The SSI does not support monaural audio. */
578		.channels_min = 2,
579		.channels_max = 2,
580		.rates = FSLSSI_I2S_RATES,
581		.formats = FSLSSI_I2S_FORMATS,
582	},
583	.capture = {
584		.channels_min = 2,
585		.channels_max = 2,
586		.rates = FSLSSI_I2S_RATES,
587		.formats = FSLSSI_I2S_FORMATS,
588	},
589	.ops = &fsl_ssi_dai_ops,
590};
591
592/* Show the statistics of a flag only if its interrupt is enabled.  The
593 * compiler will optimze this code to a no-op if the interrupt is not
594 * enabled.
595 */
596#define SIER_SHOW(flag, name) \
597	do { \
598		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
599			length += sprintf(buf + length, #name "=%u\n", \
600				ssi_private->stats.name); \
601	} while (0)
602
603
604/**
605 * fsl_sysfs_ssi_show: display SSI statistics
606 *
607 * Display the statistics for the current SSI device.  To avoid confusion,
608 * we only show those counts that are enabled.
609 */
610static ssize_t fsl_sysfs_ssi_show(struct device *dev,
611	struct device_attribute *attr, char *buf)
612{
613	struct fsl_ssi_private *ssi_private =
614		container_of(attr, struct fsl_ssi_private, dev_attr);
615	ssize_t length = 0;
616
617	SIER_SHOW(RFRC_EN, rfrc);
618	SIER_SHOW(TFRC_EN, tfrc);
619	SIER_SHOW(CMDAU_EN, cmdau);
620	SIER_SHOW(CMDDU_EN, cmddu);
621	SIER_SHOW(RXT_EN, rxt);
622	SIER_SHOW(RDR1_EN, rdr1);
623	SIER_SHOW(RDR0_EN, rdr0);
624	SIER_SHOW(TDE1_EN, tde1);
625	SIER_SHOW(TDE0_EN, tde0);
626	SIER_SHOW(ROE1_EN, roe1);
627	SIER_SHOW(ROE0_EN, roe0);
628	SIER_SHOW(TUE1_EN, tue1);
629	SIER_SHOW(TUE0_EN, tue0);
630	SIER_SHOW(TFS_EN, tfs);
631	SIER_SHOW(RFS_EN, rfs);
632	SIER_SHOW(TLS_EN, tls);
633	SIER_SHOW(RLS_EN, rls);
634	SIER_SHOW(RFF1_EN, rff1);
635	SIER_SHOW(RFF0_EN, rff0);
636	SIER_SHOW(TFE1_EN, tfe1);
637	SIER_SHOW(TFE0_EN, tfe0);
638
639	return length;
640}
641
642/**
643 * fsl_ssi_create_dai: create a snd_soc_dai structure
644 *
645 * This function is called by the machine driver to create a snd_soc_dai
646 * structure.  The function creates an ssi_private object, which contains
647 * the snd_soc_dai.  It also creates the sysfs statistics device.
648 */
649struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
650{
651	struct snd_soc_dai *fsl_ssi_dai;
652	struct fsl_ssi_private *ssi_private;
653	int ret = 0;
654	struct device_attribute *dev_attr;
655
656	ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
657	if (!ssi_private) {
658		dev_err(ssi_info->dev, "could not allocate DAI object\n");
659		return NULL;
660	}
661	memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
662	       sizeof(struct snd_soc_dai));
663
664	fsl_ssi_dai = &ssi_private->cpu_dai;
665	dev_attr = &ssi_private->dev_attr;
666
667	sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
668	ssi_private->ssi = ssi_info->ssi;
669	ssi_private->ssi_phys = ssi_info->ssi_phys;
670	ssi_private->irq = ssi_info->irq;
671	ssi_private->dev = ssi_info->dev;
672	ssi_private->asynchronous = ssi_info->asynchronous;
673
674	dev_set_drvdata(ssi_private->dev, fsl_ssi_dai);
675
676	/* Initialize the the device_attribute structure */
677	dev_attr->attr.name = "ssi-stats";
678	dev_attr->attr.mode = S_IRUGO;
679	dev_attr->show = fsl_sysfs_ssi_show;
680
681	ret = device_create_file(ssi_private->dev, dev_attr);
682	if (ret) {
683		dev_err(ssi_info->dev, "could not create sysfs %s file\n",
684			ssi_private->dev_attr.attr.name);
685		kfree(fsl_ssi_dai);
686		return NULL;
687	}
688
689	fsl_ssi_dai->private_data = ssi_private;
690	fsl_ssi_dai->name = ssi_private->name;
691	fsl_ssi_dai->id = ssi_info->id;
692	fsl_ssi_dai->dev = ssi_info->dev;
693	fsl_ssi_dai->symmetric_rates = 1;
694
695	ret = snd_soc_register_dai(fsl_ssi_dai);
696	if (ret != 0) {
697		dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
698		kfree(fsl_ssi_dai);
699		return NULL;
700	}
701
702	return fsl_ssi_dai;
703}
704EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
705
706/**
707 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
708 *
709 * This function undoes the operations of fsl_ssi_create_dai()
710 */
711void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
712{
713	struct fsl_ssi_private *ssi_private =
714	container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
715
716	device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
717
718	snd_soc_unregister_dai(&ssi_private->cpu_dai);
719
720	kfree(ssi_private);
721}
722EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
723
724static int __init fsl_ssi_init(void)
725{
726	printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
727
728	return 0;
729}
730module_init(fsl_ssi_init);
731
732MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
733MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
734MODULE_LICENSE("GPL");