PageRenderTime 85ms CodeModel.GetById 18ms app.highlight 53ms RepoModel.GetById 0ms app.codeStats 1ms

/sound/core/pcm_lib.c

https://bitbucket.org/abioy/linux
C | 2182 lines | 1726 code | 158 blank | 298 comment | 394 complexity | 65181e6cbb374303cf1f382f97ca907f MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0

Large files files are truncated, but you can click here to view the full file

   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <sound/core.h>
  27#include <sound/control.h>
  28#include <sound/info.h>
  29#include <sound/pcm.h>
  30#include <sound/pcm_params.h>
  31#include <sound/timer.h>
  32
  33/*
  34 * fill ring buffer with silence
  35 * runtime->silence_start: starting pointer to silence area
  36 * runtime->silence_filled: size filled with silence
  37 * runtime->silence_threshold: threshold from application
  38 * runtime->silence_size: maximal size from application
  39 *
  40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  41 */
  42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  43{
  44	struct snd_pcm_runtime *runtime = substream->runtime;
  45	snd_pcm_uframes_t frames, ofs, transfer;
  46
  47	if (runtime->silence_size < runtime->boundary) {
  48		snd_pcm_sframes_t noise_dist, n;
  49		if (runtime->silence_start != runtime->control->appl_ptr) {
  50			n = runtime->control->appl_ptr - runtime->silence_start;
  51			if (n < 0)
  52				n += runtime->boundary;
  53			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  54				runtime->silence_filled -= n;
  55			else
  56				runtime->silence_filled = 0;
  57			runtime->silence_start = runtime->control->appl_ptr;
  58		}
  59		if (runtime->silence_filled >= runtime->buffer_size)
  60			return;
  61		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  62		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  63			return;
  64		frames = runtime->silence_threshold - noise_dist;
  65		if (frames > runtime->silence_size)
  66			frames = runtime->silence_size;
  67	} else {
  68		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  69			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  70			runtime->silence_filled = avail > 0 ? avail : 0;
  71			runtime->silence_start = (runtime->status->hw_ptr +
  72						  runtime->silence_filled) %
  73						 runtime->boundary;
  74		} else {
  75			ofs = runtime->status->hw_ptr;
  76			frames = new_hw_ptr - ofs;
  77			if ((snd_pcm_sframes_t)frames < 0)
  78				frames += runtime->boundary;
  79			runtime->silence_filled -= frames;
  80			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  81				runtime->silence_filled = 0;
  82				runtime->silence_start = new_hw_ptr;
  83			} else {
  84				runtime->silence_start = ofs;
  85			}
  86		}
  87		frames = runtime->buffer_size - runtime->silence_filled;
  88	}
  89	if (snd_BUG_ON(frames > runtime->buffer_size))
  90		return;
  91	if (frames == 0)
  92		return;
  93	ofs = runtime->silence_start % runtime->buffer_size;
  94	while (frames > 0) {
  95		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  96		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
  97		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
  98			if (substream->ops->silence) {
  99				int err;
 100				err = substream->ops->silence(substream, -1, ofs, transfer);
 101				snd_BUG_ON(err < 0);
 102			} else {
 103				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 104				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 105			}
 106		} else {
 107			unsigned int c;
 108			unsigned int channels = runtime->channels;
 109			if (substream->ops->silence) {
 110				for (c = 0; c < channels; ++c) {
 111					int err;
 112					err = substream->ops->silence(substream, c, ofs, transfer);
 113					snd_BUG_ON(err < 0);
 114				}
 115			} else {
 116				size_t dma_csize = runtime->dma_bytes / channels;
 117				for (c = 0; c < channels; ++c) {
 118					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 119					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 120				}
 121			}
 122		}
 123		runtime->silence_filled += transfer;
 124		frames -= transfer;
 125		ofs = 0;
 126	}
 127}
 128
 129static void pcm_debug_name(struct snd_pcm_substream *substream,
 130			   char *name, size_t len)
 131{
 132	snprintf(name, len, "pcmC%dD%d%c:%d",
 133		 substream->pcm->card->number,
 134		 substream->pcm->device,
 135		 substream->stream ? 'c' : 'p',
 136		 substream->number);
 137}
 138
 139#define XRUN_DEBUG_BASIC	(1<<0)
 140#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 141#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 142#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 143#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 144#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 145#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 146
 147#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 148
 149#define xrun_debug(substream, mask) \
 150			((substream)->pstr->xrun_debug & (mask))
 151#else
 152#define xrun_debug(substream, mask)	0
 153#endif
 154
 155#define dump_stack_on_xrun(substream) do {			\
 156		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 157			dump_stack();				\
 158	} while (0)
 159
 160static void xrun(struct snd_pcm_substream *substream)
 161{
 162	struct snd_pcm_runtime *runtime = substream->runtime;
 163
 164	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 165		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 166	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 167	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 168		char name[16];
 169		pcm_debug_name(substream, name, sizeof(name));
 170		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 171		dump_stack_on_xrun(substream);
 172	}
 173}
 174
 175#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 176#define hw_ptr_error(substream, fmt, args...)				\
 177	do {								\
 178		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 179			xrun_log_show(substream);			\
 180			if (printk_ratelimit()) {			\
 181				snd_printd("PCM: " fmt, ##args);	\
 182			}						\
 183			dump_stack_on_xrun(substream);			\
 184		}							\
 185	} while (0)
 186
 187#define XRUN_LOG_CNT	10
 188
 189struct hwptr_log_entry {
 190	unsigned long jiffies;
 191	snd_pcm_uframes_t pos;
 192	snd_pcm_uframes_t period_size;
 193	snd_pcm_uframes_t buffer_size;
 194	snd_pcm_uframes_t old_hw_ptr;
 195	snd_pcm_uframes_t hw_ptr_base;
 196};
 197
 198struct snd_pcm_hwptr_log {
 199	unsigned int idx;
 200	unsigned int hit: 1;
 201	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 202};
 203
 204static void xrun_log(struct snd_pcm_substream *substream,
 205		     snd_pcm_uframes_t pos)
 206{
 207	struct snd_pcm_runtime *runtime = substream->runtime;
 208	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 209	struct hwptr_log_entry *entry;
 210
 211	if (log == NULL) {
 212		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 213		if (log == NULL)
 214			return;
 215		runtime->hwptr_log = log;
 216	} else {
 217		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 218			return;
 219	}
 220	entry = &log->entries[log->idx];
 221	entry->jiffies = jiffies;
 222	entry->pos = pos;
 223	entry->period_size = runtime->period_size;
 224	entry->buffer_size = runtime->buffer_size;;
 225	entry->old_hw_ptr = runtime->status->hw_ptr;
 226	entry->hw_ptr_base = runtime->hw_ptr_base;
 227	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 228}
 229
 230static void xrun_log_show(struct snd_pcm_substream *substream)
 231{
 232	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 233	struct hwptr_log_entry *entry;
 234	char name[16];
 235	unsigned int idx;
 236	int cnt;
 237
 238	if (log == NULL)
 239		return;
 240	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 241		return;
 242	pcm_debug_name(substream, name, sizeof(name));
 243	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 244		entry = &log->entries[idx];
 245		if (entry->period_size == 0)
 246			break;
 247		snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
 248			   "hwptr=%ld/%ld\n",
 249			   name, entry->jiffies, (unsigned long)entry->pos,
 250			   (unsigned long)entry->period_size,
 251			   (unsigned long)entry->buffer_size,
 252			   (unsigned long)entry->old_hw_ptr,
 253			   (unsigned long)entry->hw_ptr_base);
 254		idx++;
 255		idx %= XRUN_LOG_CNT;
 256	}
 257	log->hit = 1;
 258}
 259
 260#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 261
 262#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 263#define xrun_log(substream, pos)	do { } while (0)
 264#define xrun_log_show(substream)	do { } while (0)
 265
 266#endif
 267
 268int snd_pcm_update_state(struct snd_pcm_substream *substream,
 269			 struct snd_pcm_runtime *runtime)
 270{
 271	snd_pcm_uframes_t avail;
 272
 273	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 274		avail = snd_pcm_playback_avail(runtime);
 275	else
 276		avail = snd_pcm_capture_avail(runtime);
 277	if (avail > runtime->avail_max)
 278		runtime->avail_max = avail;
 279	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 280		if (avail >= runtime->buffer_size) {
 281			snd_pcm_drain_done(substream);
 282			return -EPIPE;
 283		}
 284	} else {
 285		if (avail >= runtime->stop_threshold) {
 286			xrun(substream);
 287			return -EPIPE;
 288		}
 289	}
 290	if (avail >= runtime->control->avail_min)
 291		wake_up(runtime->twake ? &runtime->tsleep : &runtime->sleep);
 292	return 0;
 293}
 294
 295static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 296				  unsigned int in_interrupt)
 297{
 298	struct snd_pcm_runtime *runtime = substream->runtime;
 299	snd_pcm_uframes_t pos;
 300	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 301	snd_pcm_sframes_t hdelta, delta;
 302	unsigned long jdelta;
 303
 304	old_hw_ptr = runtime->status->hw_ptr;
 305	pos = substream->ops->pointer(substream);
 306	if (pos == SNDRV_PCM_POS_XRUN) {
 307		xrun(substream);
 308		return -EPIPE;
 309	}
 310	if (pos >= runtime->buffer_size) {
 311		if (printk_ratelimit()) {
 312			char name[16];
 313			pcm_debug_name(substream, name, sizeof(name));
 314			xrun_log_show(substream);
 315			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 316				   "buffer size = %ld, period size = %ld\n",
 317				   name, pos, runtime->buffer_size,
 318				   runtime->period_size);
 319		}
 320		pos = 0;
 321	}
 322	pos -= pos % runtime->min_align;
 323	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 324		xrun_log(substream, pos);
 325	hw_base = runtime->hw_ptr_base;
 326	new_hw_ptr = hw_base + pos;
 327	if (in_interrupt) {
 328		/* we know that one period was processed */
 329		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 330		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 331		if (delta > new_hw_ptr) {
 332			hw_base += runtime->buffer_size;
 333			if (hw_base >= runtime->boundary)
 334				hw_base = 0;
 335			new_hw_ptr = hw_base + pos;
 336			goto __delta;
 337		}
 338	}
 339	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 340	/* pointer crosses the end of the ring buffer */
 341	if (new_hw_ptr < old_hw_ptr) {
 342		hw_base += runtime->buffer_size;
 343		if (hw_base >= runtime->boundary)
 344			hw_base = 0;
 345		new_hw_ptr = hw_base + pos;
 346	}
 347      __delta:
 348	delta = (new_hw_ptr - old_hw_ptr) % runtime->boundary;
 349	if (xrun_debug(substream, in_interrupt ?
 350			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 351		char name[16];
 352		pcm_debug_name(substream, name, sizeof(name));
 353		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 354			   "hwptr=%ld/%ld/%ld/%ld\n",
 355			   in_interrupt ? "period" : "hwptr",
 356			   name,
 357			   (unsigned int)pos,
 358			   (unsigned int)runtime->period_size,
 359			   (unsigned int)runtime->buffer_size,
 360			   (unsigned long)delta,
 361			   (unsigned long)old_hw_ptr,
 362			   (unsigned long)new_hw_ptr,
 363			   (unsigned long)runtime->hw_ptr_base);
 364	}
 365	/* something must be really wrong */
 366	if (delta >= runtime->buffer_size + runtime->period_size) {
 367		hw_ptr_error(substream,
 368			       "Unexpected hw_pointer value %s"
 369			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 370			       "old_hw_ptr=%ld)\n",
 371				     in_interrupt ? "[Q] " : "[P]",
 372				     substream->stream, (long)pos,
 373				     (long)new_hw_ptr, (long)old_hw_ptr);
 374		return 0;
 375	}
 376
 377	/* Do jiffies check only in xrun_debug mode */
 378	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 379		goto no_jiffies_check;
 380
 381	/* Skip the jiffies check for hardwares with BATCH flag.
 382	 * Such hardware usually just increases the position at each IRQ,
 383	 * thus it can't give any strange position.
 384	 */
 385	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 386		goto no_jiffies_check;
 387	hdelta = delta;
 388	if (hdelta < runtime->delay)
 389		goto no_jiffies_check;
 390	hdelta -= runtime->delay;
 391	jdelta = jiffies - runtime->hw_ptr_jiffies;
 392	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 393		delta = jdelta /
 394			(((runtime->period_size * HZ) / runtime->rate)
 395								+ HZ/100);
 396		/* move new_hw_ptr according jiffies not pos variable */
 397		new_hw_ptr = old_hw_ptr;
 398		hw_base = delta;
 399		/* use loop to avoid checks for delta overflows */
 400		/* the delta value is small or zero in most cases */
 401		while (delta > 0) {
 402			new_hw_ptr += runtime->period_size;
 403			if (new_hw_ptr >= runtime->boundary)
 404				new_hw_ptr -= runtime->boundary;
 405			delta--;
 406		}
 407		/* align hw_base to buffer_size */
 408		hw_ptr_error(substream,
 409			     "hw_ptr skipping! %s"
 410			     "(pos=%ld, delta=%ld, period=%ld, "
 411			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 412			     in_interrupt ? "[Q] " : "",
 413			     (long)pos, (long)hdelta,
 414			     (long)runtime->period_size, jdelta,
 415			     ((hdelta * HZ) / runtime->rate), hw_base,
 416			     (unsigned long)old_hw_ptr,
 417			     (unsigned long)new_hw_ptr);
 418		/* reset values to proper state */
 419		delta = 0;
 420		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 421	}
 422 no_jiffies_check:
 423	if (delta > runtime->period_size + runtime->period_size / 2) {
 424		hw_ptr_error(substream,
 425			     "Lost interrupts? %s"
 426			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 427			     "old_hw_ptr=%ld)\n",
 428			     in_interrupt ? "[Q] " : "",
 429			     substream->stream, (long)delta,
 430			     (long)new_hw_ptr,
 431			     (long)old_hw_ptr);
 432	}
 433
 434	if (runtime->status->hw_ptr == new_hw_ptr)
 435		return 0;
 436
 437	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 438	    runtime->silence_size > 0)
 439		snd_pcm_playback_silence(substream, new_hw_ptr);
 440
 441	if (in_interrupt) {
 442		runtime->hw_ptr_interrupt = new_hw_ptr -
 443				(new_hw_ptr % runtime->period_size);
 444	}
 445	runtime->hw_ptr_base = hw_base;
 446	runtime->status->hw_ptr = new_hw_ptr;
 447	runtime->hw_ptr_jiffies = jiffies;
 448	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 449		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 450
 451	return snd_pcm_update_state(substream, runtime);
 452}
 453
 454/* CAUTION: call it with irq disabled */
 455int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 456{
 457	return snd_pcm_update_hw_ptr0(substream, 0);
 458}
 459
 460/**
 461 * snd_pcm_set_ops - set the PCM operators
 462 * @pcm: the pcm instance
 463 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 464 * @ops: the operator table
 465 *
 466 * Sets the given PCM operators to the pcm instance.
 467 */
 468void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 469{
 470	struct snd_pcm_str *stream = &pcm->streams[direction];
 471	struct snd_pcm_substream *substream;
 472	
 473	for (substream = stream->substream; substream != NULL; substream = substream->next)
 474		substream->ops = ops;
 475}
 476
 477EXPORT_SYMBOL(snd_pcm_set_ops);
 478
 479/**
 480 * snd_pcm_sync - set the PCM sync id
 481 * @substream: the pcm substream
 482 *
 483 * Sets the PCM sync identifier for the card.
 484 */
 485void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 486{
 487	struct snd_pcm_runtime *runtime = substream->runtime;
 488	
 489	runtime->sync.id32[0] = substream->pcm->card->number;
 490	runtime->sync.id32[1] = -1;
 491	runtime->sync.id32[2] = -1;
 492	runtime->sync.id32[3] = -1;
 493}
 494
 495EXPORT_SYMBOL(snd_pcm_set_sync);
 496
 497/*
 498 *  Standard ioctl routine
 499 */
 500
 501static inline unsigned int div32(unsigned int a, unsigned int b, 
 502				 unsigned int *r)
 503{
 504	if (b == 0) {
 505		*r = 0;
 506		return UINT_MAX;
 507	}
 508	*r = a % b;
 509	return a / b;
 510}
 511
 512static inline unsigned int div_down(unsigned int a, unsigned int b)
 513{
 514	if (b == 0)
 515		return UINT_MAX;
 516	return a / b;
 517}
 518
 519static inline unsigned int div_up(unsigned int a, unsigned int b)
 520{
 521	unsigned int r;
 522	unsigned int q;
 523	if (b == 0)
 524		return UINT_MAX;
 525	q = div32(a, b, &r);
 526	if (r)
 527		++q;
 528	return q;
 529}
 530
 531static inline unsigned int mul(unsigned int a, unsigned int b)
 532{
 533	if (a == 0)
 534		return 0;
 535	if (div_down(UINT_MAX, a) < b)
 536		return UINT_MAX;
 537	return a * b;
 538}
 539
 540static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 541				    unsigned int c, unsigned int *r)
 542{
 543	u_int64_t n = (u_int64_t) a * b;
 544	if (c == 0) {
 545		snd_BUG_ON(!n);
 546		*r = 0;
 547		return UINT_MAX;
 548	}
 549	n = div_u64_rem(n, c, r);
 550	if (n >= UINT_MAX) {
 551		*r = 0;
 552		return UINT_MAX;
 553	}
 554	return n;
 555}
 556
 557/**
 558 * snd_interval_refine - refine the interval value of configurator
 559 * @i: the interval value to refine
 560 * @v: the interval value to refer to
 561 *
 562 * Refines the interval value with the reference value.
 563 * The interval is changed to the range satisfying both intervals.
 564 * The interval status (min, max, integer, etc.) are evaluated.
 565 *
 566 * Returns non-zero if the value is changed, zero if not changed.
 567 */
 568int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 569{
 570	int changed = 0;
 571	if (snd_BUG_ON(snd_interval_empty(i)))
 572		return -EINVAL;
 573	if (i->min < v->min) {
 574		i->min = v->min;
 575		i->openmin = v->openmin;
 576		changed = 1;
 577	} else if (i->min == v->min && !i->openmin && v->openmin) {
 578		i->openmin = 1;
 579		changed = 1;
 580	}
 581	if (i->max > v->max) {
 582		i->max = v->max;
 583		i->openmax = v->openmax;
 584		changed = 1;
 585	} else if (i->max == v->max && !i->openmax && v->openmax) {
 586		i->openmax = 1;
 587		changed = 1;
 588	}
 589	if (!i->integer && v->integer) {
 590		i->integer = 1;
 591		changed = 1;
 592	}
 593	if (i->integer) {
 594		if (i->openmin) {
 595			i->min++;
 596			i->openmin = 0;
 597		}
 598		if (i->openmax) {
 599			i->max--;
 600			i->openmax = 0;
 601		}
 602	} else if (!i->openmin && !i->openmax && i->min == i->max)
 603		i->integer = 1;
 604	if (snd_interval_checkempty(i)) {
 605		snd_interval_none(i);
 606		return -EINVAL;
 607	}
 608	return changed;
 609}
 610
 611EXPORT_SYMBOL(snd_interval_refine);
 612
 613static int snd_interval_refine_first(struct snd_interval *i)
 614{
 615	if (snd_BUG_ON(snd_interval_empty(i)))
 616		return -EINVAL;
 617	if (snd_interval_single(i))
 618		return 0;
 619	i->max = i->min;
 620	i->openmax = i->openmin;
 621	if (i->openmax)
 622		i->max++;
 623	return 1;
 624}
 625
 626static int snd_interval_refine_last(struct snd_interval *i)
 627{
 628	if (snd_BUG_ON(snd_interval_empty(i)))
 629		return -EINVAL;
 630	if (snd_interval_single(i))
 631		return 0;
 632	i->min = i->max;
 633	i->openmin = i->openmax;
 634	if (i->openmin)
 635		i->min--;
 636	return 1;
 637}
 638
 639void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 640{
 641	if (a->empty || b->empty) {
 642		snd_interval_none(c);
 643		return;
 644	}
 645	c->empty = 0;
 646	c->min = mul(a->min, b->min);
 647	c->openmin = (a->openmin || b->openmin);
 648	c->max = mul(a->max,  b->max);
 649	c->openmax = (a->openmax || b->openmax);
 650	c->integer = (a->integer && b->integer);
 651}
 652
 653/**
 654 * snd_interval_div - refine the interval value with division
 655 * @a: dividend
 656 * @b: divisor
 657 * @c: quotient
 658 *
 659 * c = a / b
 660 *
 661 * Returns non-zero if the value is changed, zero if not changed.
 662 */
 663void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 664{
 665	unsigned int r;
 666	if (a->empty || b->empty) {
 667		snd_interval_none(c);
 668		return;
 669	}
 670	c->empty = 0;
 671	c->min = div32(a->min, b->max, &r);
 672	c->openmin = (r || a->openmin || b->openmax);
 673	if (b->min > 0) {
 674		c->max = div32(a->max, b->min, &r);
 675		if (r) {
 676			c->max++;
 677			c->openmax = 1;
 678		} else
 679			c->openmax = (a->openmax || b->openmin);
 680	} else {
 681		c->max = UINT_MAX;
 682		c->openmax = 0;
 683	}
 684	c->integer = 0;
 685}
 686
 687/**
 688 * snd_interval_muldivk - refine the interval value
 689 * @a: dividend 1
 690 * @b: dividend 2
 691 * @k: divisor (as integer)
 692 * @c: result
 693  *
 694 * c = a * b / k
 695 *
 696 * Returns non-zero if the value is changed, zero if not changed.
 697 */
 698void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 699		      unsigned int k, struct snd_interval *c)
 700{
 701	unsigned int r;
 702	if (a->empty || b->empty) {
 703		snd_interval_none(c);
 704		return;
 705	}
 706	c->empty = 0;
 707	c->min = muldiv32(a->min, b->min, k, &r);
 708	c->openmin = (r || a->openmin || b->openmin);
 709	c->max = muldiv32(a->max, b->max, k, &r);
 710	if (r) {
 711		c->max++;
 712		c->openmax = 1;
 713	} else
 714		c->openmax = (a->openmax || b->openmax);
 715	c->integer = 0;
 716}
 717
 718/**
 719 * snd_interval_mulkdiv - refine the interval value
 720 * @a: dividend 1
 721 * @k: dividend 2 (as integer)
 722 * @b: divisor
 723 * @c: result
 724 *
 725 * c = a * k / b
 726 *
 727 * Returns non-zero if the value is changed, zero if not changed.
 728 */
 729void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 730		      const struct snd_interval *b, struct snd_interval *c)
 731{
 732	unsigned int r;
 733	if (a->empty || b->empty) {
 734		snd_interval_none(c);
 735		return;
 736	}
 737	c->empty = 0;
 738	c->min = muldiv32(a->min, k, b->max, &r);
 739	c->openmin = (r || a->openmin || b->openmax);
 740	if (b->min > 0) {
 741		c->max = muldiv32(a->max, k, b->min, &r);
 742		if (r) {
 743			c->max++;
 744			c->openmax = 1;
 745		} else
 746			c->openmax = (a->openmax || b->openmin);
 747	} else {
 748		c->max = UINT_MAX;
 749		c->openmax = 0;
 750	}
 751	c->integer = 0;
 752}
 753
 754/* ---- */
 755
 756
 757/**
 758 * snd_interval_ratnum - refine the interval value
 759 * @i: interval to refine
 760 * @rats_count: number of ratnum_t 
 761 * @rats: ratnum_t array
 762 * @nump: pointer to store the resultant numerator
 763 * @denp: pointer to store the resultant denominator
 764 *
 765 * Returns non-zero if the value is changed, zero if not changed.
 766 */
 767int snd_interval_ratnum(struct snd_interval *i,
 768			unsigned int rats_count, struct snd_ratnum *rats,
 769			unsigned int *nump, unsigned int *denp)
 770{
 771	unsigned int best_num, best_den;
 772	int best_diff;
 773	unsigned int k;
 774	struct snd_interval t;
 775	int err;
 776	unsigned int result_num, result_den;
 777	int result_diff;
 778
 779	best_num = best_den = best_diff = 0;
 780	for (k = 0; k < rats_count; ++k) {
 781		unsigned int num = rats[k].num;
 782		unsigned int den;
 783		unsigned int q = i->min;
 784		int diff;
 785		if (q == 0)
 786			q = 1;
 787		den = div_up(num, q);
 788		if (den < rats[k].den_min)
 789			continue;
 790		if (den > rats[k].den_max)
 791			den = rats[k].den_max;
 792		else {
 793			unsigned int r;
 794			r = (den - rats[k].den_min) % rats[k].den_step;
 795			if (r != 0)
 796				den -= r;
 797		}
 798		diff = num - q * den;
 799		if (diff < 0)
 800			diff = -diff;
 801		if (best_num == 0 ||
 802		    diff * best_den < best_diff * den) {
 803			best_diff = diff;
 804			best_den = den;
 805			best_num = num;
 806		}
 807	}
 808	if (best_den == 0) {
 809		i->empty = 1;
 810		return -EINVAL;
 811	}
 812	t.min = div_down(best_num, best_den);
 813	t.openmin = !!(best_num % best_den);
 814	
 815	result_num = best_num;
 816	result_diff = best_diff;
 817	result_den = best_den;
 818	best_num = best_den = best_diff = 0;
 819	for (k = 0; k < rats_count; ++k) {
 820		unsigned int num = rats[k].num;
 821		unsigned int den;
 822		unsigned int q = i->max;
 823		int diff;
 824		if (q == 0) {
 825			i->empty = 1;
 826			return -EINVAL;
 827		}
 828		den = div_down(num, q);
 829		if (den > rats[k].den_max)
 830			continue;
 831		if (den < rats[k].den_min)
 832			den = rats[k].den_min;
 833		else {
 834			unsigned int r;
 835			r = (den - rats[k].den_min) % rats[k].den_step;
 836			if (r != 0)
 837				den += rats[k].den_step - r;
 838		}
 839		diff = q * den - num;
 840		if (diff < 0)
 841			diff = -diff;
 842		if (best_num == 0 ||
 843		    diff * best_den < best_diff * den) {
 844			best_diff = diff;
 845			best_den = den;
 846			best_num = num;
 847		}
 848	}
 849	if (best_den == 0) {
 850		i->empty = 1;
 851		return -EINVAL;
 852	}
 853	t.max = div_up(best_num, best_den);
 854	t.openmax = !!(best_num % best_den);
 855	t.integer = 0;
 856	err = snd_interval_refine(i, &t);
 857	if (err < 0)
 858		return err;
 859
 860	if (snd_interval_single(i)) {
 861		if (best_diff * result_den < result_diff * best_den) {
 862			result_num = best_num;
 863			result_den = best_den;
 864		}
 865		if (nump)
 866			*nump = result_num;
 867		if (denp)
 868			*denp = result_den;
 869	}
 870	return err;
 871}
 872
 873EXPORT_SYMBOL(snd_interval_ratnum);
 874
 875/**
 876 * snd_interval_ratden - refine the interval value
 877 * @i: interval to refine
 878 * @rats_count: number of struct ratden
 879 * @rats: struct ratden array
 880 * @nump: pointer to store the resultant numerator
 881 * @denp: pointer to store the resultant denominator
 882 *
 883 * Returns non-zero if the value is changed, zero if not changed.
 884 */
 885static int snd_interval_ratden(struct snd_interval *i,
 886			       unsigned int rats_count, struct snd_ratden *rats,
 887			       unsigned int *nump, unsigned int *denp)
 888{
 889	unsigned int best_num, best_diff, best_den;
 890	unsigned int k;
 891	struct snd_interval t;
 892	int err;
 893
 894	best_num = best_den = best_diff = 0;
 895	for (k = 0; k < rats_count; ++k) {
 896		unsigned int num;
 897		unsigned int den = rats[k].den;
 898		unsigned int q = i->min;
 899		int diff;
 900		num = mul(q, den);
 901		if (num > rats[k].num_max)
 902			continue;
 903		if (num < rats[k].num_min)
 904			num = rats[k].num_max;
 905		else {
 906			unsigned int r;
 907			r = (num - rats[k].num_min) % rats[k].num_step;
 908			if (r != 0)
 909				num += rats[k].num_step - r;
 910		}
 911		diff = num - q * den;
 912		if (best_num == 0 ||
 913		    diff * best_den < best_diff * den) {
 914			best_diff = diff;
 915			best_den = den;
 916			best_num = num;
 917		}
 918	}
 919	if (best_den == 0) {
 920		i->empty = 1;
 921		return -EINVAL;
 922	}
 923	t.min = div_down(best_num, best_den);
 924	t.openmin = !!(best_num % best_den);
 925	
 926	best_num = best_den = best_diff = 0;
 927	for (k = 0; k < rats_count; ++k) {
 928		unsigned int num;
 929		unsigned int den = rats[k].den;
 930		unsigned int q = i->max;
 931		int diff;
 932		num = mul(q, den);
 933		if (num < rats[k].num_min)
 934			continue;
 935		if (num > rats[k].num_max)
 936			num = rats[k].num_max;
 937		else {
 938			unsigned int r;
 939			r = (num - rats[k].num_min) % rats[k].num_step;
 940			if (r != 0)
 941				num -= r;
 942		}
 943		diff = q * den - num;
 944		if (best_num == 0 ||
 945		    diff * best_den < best_diff * den) {
 946			best_diff = diff;
 947			best_den = den;
 948			best_num = num;
 949		}
 950	}
 951	if (best_den == 0) {
 952		i->empty = 1;
 953		return -EINVAL;
 954	}
 955	t.max = div_up(best_num, best_den);
 956	t.openmax = !!(best_num % best_den);
 957	t.integer = 0;
 958	err = snd_interval_refine(i, &t);
 959	if (err < 0)
 960		return err;
 961
 962	if (snd_interval_single(i)) {
 963		if (nump)
 964			*nump = best_num;
 965		if (denp)
 966			*denp = best_den;
 967	}
 968	return err;
 969}
 970
 971/**
 972 * snd_interval_list - refine the interval value from the list
 973 * @i: the interval value to refine
 974 * @count: the number of elements in the list
 975 * @list: the value list
 976 * @mask: the bit-mask to evaluate
 977 *
 978 * Refines the interval value from the list.
 979 * When mask is non-zero, only the elements corresponding to bit 1 are
 980 * evaluated.
 981 *
 982 * Returns non-zero if the value is changed, zero if not changed.
 983 */
 984int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
 985{
 986        unsigned int k;
 987	struct snd_interval list_range;
 988
 989	if (!count) {
 990		i->empty = 1;
 991		return -EINVAL;
 992	}
 993	snd_interval_any(&list_range);
 994	list_range.min = UINT_MAX;
 995	list_range.max = 0;
 996        for (k = 0; k < count; k++) {
 997		if (mask && !(mask & (1 << k)))
 998			continue;
 999		if (!snd_interval_test(i, list[k]))
1000			continue;
1001		list_range.min = min(list_range.min, list[k]);
1002		list_range.max = max(list_range.max, list[k]);
1003        }
1004	return snd_interval_refine(i, &list_range);
1005}
1006
1007EXPORT_SYMBOL(snd_interval_list);
1008
1009static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1010{
1011	unsigned int n;
1012	int changed = 0;
1013	n = (i->min - min) % step;
1014	if (n != 0 || i->openmin) {
1015		i->min += step - n;
1016		changed = 1;
1017	}
1018	n = (i->max - min) % step;
1019	if (n != 0 || i->openmax) {
1020		i->max -= n;
1021		changed = 1;
1022	}
1023	if (snd_interval_checkempty(i)) {
1024		i->empty = 1;
1025		return -EINVAL;
1026	}
1027	return changed;
1028}
1029
1030/* Info constraints helpers */
1031
1032/**
1033 * snd_pcm_hw_rule_add - add the hw-constraint rule
1034 * @runtime: the pcm runtime instance
1035 * @cond: condition bits
1036 * @var: the variable to evaluate
1037 * @func: the evaluation function
1038 * @private: the private data pointer passed to function
1039 * @dep: the dependent variables
1040 *
1041 * Returns zero if successful, or a negative error code on failure.
1042 */
1043int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1044			int var,
1045			snd_pcm_hw_rule_func_t func, void *private,
1046			int dep, ...)
1047{
1048	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1049	struct snd_pcm_hw_rule *c;
1050	unsigned int k;
1051	va_list args;
1052	va_start(args, dep);
1053	if (constrs->rules_num >= constrs->rules_all) {
1054		struct snd_pcm_hw_rule *new;
1055		unsigned int new_rules = constrs->rules_all + 16;
1056		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1057		if (!new)
1058			return -ENOMEM;
1059		if (constrs->rules) {
1060			memcpy(new, constrs->rules,
1061			       constrs->rules_num * sizeof(*c));
1062			kfree(constrs->rules);
1063		}
1064		constrs->rules = new;
1065		constrs->rules_all = new_rules;
1066	}
1067	c = &constrs->rules[constrs->rules_num];
1068	c->cond = cond;
1069	c->func = func;
1070	c->var = var;
1071	c->private = private;
1072	k = 0;
1073	while (1) {
1074		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1075			return -EINVAL;
1076		c->deps[k++] = dep;
1077		if (dep < 0)
1078			break;
1079		dep = va_arg(args, int);
1080	}
1081	constrs->rules_num++;
1082	va_end(args);
1083	return 0;
1084}				    
1085
1086EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1087
1088/**
1089 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1090 * @runtime: PCM runtime instance
1091 * @var: hw_params variable to apply the mask
1092 * @mask: the bitmap mask
1093 *
1094 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1095 */
1096int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1097			       u_int32_t mask)
1098{
1099	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1100	struct snd_mask *maskp = constrs_mask(constrs, var);
1101	*maskp->bits &= mask;
1102	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1103	if (*maskp->bits == 0)
1104		return -EINVAL;
1105	return 0;
1106}
1107
1108/**
1109 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1110 * @runtime: PCM runtime instance
1111 * @var: hw_params variable to apply the mask
1112 * @mask: the 64bit bitmap mask
1113 *
1114 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1115 */
1116int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1117				 u_int64_t mask)
1118{
1119	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1120	struct snd_mask *maskp = constrs_mask(constrs, var);
1121	maskp->bits[0] &= (u_int32_t)mask;
1122	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1123	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1124	if (! maskp->bits[0] && ! maskp->bits[1])
1125		return -EINVAL;
1126	return 0;
1127}
1128
1129/**
1130 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1131 * @runtime: PCM runtime instance
1132 * @var: hw_params variable to apply the integer constraint
1133 *
1134 * Apply the constraint of integer to an interval parameter.
1135 */
1136int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1137{
1138	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139	return snd_interval_setinteger(constrs_interval(constrs, var));
1140}
1141
1142EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1143
1144/**
1145 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1146 * @runtime: PCM runtime instance
1147 * @var: hw_params variable to apply the range
1148 * @min: the minimal value
1149 * @max: the maximal value
1150 * 
1151 * Apply the min/max range constraint to an interval parameter.
1152 */
1153int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1154				 unsigned int min, unsigned int max)
1155{
1156	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157	struct snd_interval t;
1158	t.min = min;
1159	t.max = max;
1160	t.openmin = t.openmax = 0;
1161	t.integer = 0;
1162	return snd_interval_refine(constrs_interval(constrs, var), &t);
1163}
1164
1165EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1166
1167static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1168				struct snd_pcm_hw_rule *rule)
1169{
1170	struct snd_pcm_hw_constraint_list *list = rule->private;
1171	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1172}		
1173
1174
1175/**
1176 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1177 * @runtime: PCM runtime instance
1178 * @cond: condition bits
1179 * @var: hw_params variable to apply the list constraint
1180 * @l: list
1181 * 
1182 * Apply the list of constraints to an interval parameter.
1183 */
1184int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1185			       unsigned int cond,
1186			       snd_pcm_hw_param_t var,
1187			       struct snd_pcm_hw_constraint_list *l)
1188{
1189	return snd_pcm_hw_rule_add(runtime, cond, var,
1190				   snd_pcm_hw_rule_list, l,
1191				   var, -1);
1192}
1193
1194EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1195
1196static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1197				   struct snd_pcm_hw_rule *rule)
1198{
1199	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1200	unsigned int num = 0, den = 0;
1201	int err;
1202	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1203				  r->nrats, r->rats, &num, &den);
1204	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1205		params->rate_num = num;
1206		params->rate_den = den;
1207	}
1208	return err;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1213 * @runtime: PCM runtime instance
1214 * @cond: condition bits
1215 * @var: hw_params variable to apply the ratnums constraint
1216 * @r: struct snd_ratnums constriants
1217 */
1218int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1219				  unsigned int cond,
1220				  snd_pcm_hw_param_t var,
1221				  struct snd_pcm_hw_constraint_ratnums *r)
1222{
1223	return snd_pcm_hw_rule_add(runtime, cond, var,
1224				   snd_pcm_hw_rule_ratnums, r,
1225				   var, -1);
1226}
1227
1228EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1229
1230static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1231				   struct snd_pcm_hw_rule *rule)
1232{
1233	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1234	unsigned int num = 0, den = 0;
1235	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1236				  r->nrats, r->rats, &num, &den);
1237	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1238		params->rate_num = num;
1239		params->rate_den = den;
1240	}
1241	return err;
1242}
1243
1244/**
1245 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1246 * @runtime: PCM runtime instance
1247 * @cond: condition bits
1248 * @var: hw_params variable to apply the ratdens constraint
1249 * @r: struct snd_ratdens constriants
1250 */
1251int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1252				  unsigned int cond,
1253				  snd_pcm_hw_param_t var,
1254				  struct snd_pcm_hw_constraint_ratdens *r)
1255{
1256	return snd_pcm_hw_rule_add(runtime, cond, var,
1257				   snd_pcm_hw_rule_ratdens, r,
1258				   var, -1);
1259}
1260
1261EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1262
1263static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1264				  struct snd_pcm_hw_rule *rule)
1265{
1266	unsigned int l = (unsigned long) rule->private;
1267	int width = l & 0xffff;
1268	unsigned int msbits = l >> 16;
1269	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1270	if (snd_interval_single(i) && snd_interval_value(i) == width)
1271		params->msbits = msbits;
1272	return 0;
1273}
1274
1275/**
1276 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1277 * @runtime: PCM runtime instance
1278 * @cond: condition bits
1279 * @width: sample bits width
1280 * @msbits: msbits width
1281 */
1282int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1283				 unsigned int cond,
1284				 unsigned int width,
1285				 unsigned int msbits)
1286{
1287	unsigned long l = (msbits << 16) | width;
1288	return snd_pcm_hw_rule_add(runtime, cond, -1,
1289				    snd_pcm_hw_rule_msbits,
1290				    (void*) l,
1291				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1295
1296static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1297				struct snd_pcm_hw_rule *rule)
1298{
1299	unsigned long step = (unsigned long) rule->private;
1300	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1301}
1302
1303/**
1304 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1305 * @runtime: PCM runtime instance
1306 * @cond: condition bits
1307 * @var: hw_params variable to apply the step constraint
1308 * @step: step size
1309 */
1310int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1311			       unsigned int cond,
1312			       snd_pcm_hw_param_t var,
1313			       unsigned long step)
1314{
1315	return snd_pcm_hw_rule_add(runtime, cond, var, 
1316				   snd_pcm_hw_rule_step, (void *) step,
1317				   var, -1);
1318}
1319
1320EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1321
1322static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1323{
1324	static unsigned int pow2_sizes[] = {
1325		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1326		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1327		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1328		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1329	};
1330	return snd_interval_list(hw_param_interval(params, rule->var),
1331				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1332}		
1333
1334/**
1335 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1336 * @runtime: PCM runtime instance
1337 * @cond: condition bits
1338 * @var: hw_params variable to apply the power-of-2 constraint
1339 */
1340int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1341			       unsigned int cond,
1342			       snd_pcm_hw_param_t var)
1343{
1344	return snd_pcm_hw_rule_add(runtime, cond, var, 
1345				   snd_pcm_hw_rule_pow2, NULL,
1346				   var, -1);
1347}
1348
1349EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1350
1351static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1352				  snd_pcm_hw_param_t var)
1353{
1354	if (hw_is_mask(var)) {
1355		snd_mask_any(hw_param_mask(params, var));
1356		params->cmask |= 1 << var;
1357		params->rmask |= 1 << var;
1358		return;
1359	}
1360	if (hw_is_interval(var)) {
1361		snd_interval_any(hw_param_interval(params, var));
1362		params->cmask |= 1 << var;
1363		params->rmask |= 1 << var;
1364		return;
1365	}
1366	snd_BUG();
1367}
1368
1369void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1370{
1371	unsigned int k;
1372	memset(params, 0, sizeof(*params));
1373	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1374		_snd_pcm_hw_param_any(params, k);
1375	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1376		_snd_pcm_hw_param_any(params, k);
1377	params->info = ~0U;
1378}
1379
1380EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1381
1382/**
1383 * snd_pcm_hw_param_value - return @params field @var value
1384 * @params: the hw_params instance
1385 * @var: parameter to retrieve
1386 * @dir: pointer to the direction (-1,0,1) or %NULL
1387 *
1388 * Return the value for field @var if it's fixed in configuration space
1389 * defined by @params. Return -%EINVAL otherwise.
1390 */
1391int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1392			   snd_pcm_hw_param_t var, int *dir)
1393{
1394	if (hw_is_mask(var)) {
1395		const struct snd_mask *mask = hw_param_mask_c(params, var);
1396		if (!snd_mask_single(mask))
1397			return -EINVAL;
1398		if (dir)
1399			*dir = 0;
1400		return snd_mask_value(mask);
1401	}
1402	if (hw_is_interval(var)) {
1403		const struct snd_interval *i = hw_param_interval_c(params, var);
1404		if (!snd_interval_single(i))
1405			return -EINVAL;
1406		if (dir)
1407			*dir = i->openmin;
1408		return snd_interval_value(i);
1409	}
1410	return -EINVAL;
1411}
1412
1413EXPORT_SYMBOL(snd_pcm_hw_param_value);
1414
1415void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1416				snd_pcm_hw_param_t var)
1417{
1418	if (hw_is_mask(var)) {
1419		snd_mask_none(hw_param_mask(params, var));
1420		params->cmask |= 1 << var;
1421		params->rmask |= 1 << var;
1422	} else if (hw_is_interval(var)) {
1423		snd_interval_none(hw_param_interval(params, var));
1424		params->cmask |= 1 << var;
1425		params->rmask |= 1 << var;
1426	} else {
1427		snd_BUG();
1428	}
1429}
1430
1431EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1432
1433static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1434				   snd_pcm_hw_param_t var)
1435{
1436	int changed;
1437	if (hw_is_mask(var))
1438		changed = snd_mask_refine_first(hw_param_mask(params, var));
1439	else if (hw_is_interval(var))
1440		changed = snd_interval_refine_first(hw_param_interval(params, var));
1441	else
1442		return -EINVAL;
1443	if (changed) {
1444		params->cmask |= 1 << var;
1445		params->rmask |= 1 << var;
1446	}
1447	return changed;
1448}
1449
1450
1451/**
1452 * snd_pcm_hw_param_first - refine config space and return minimum value
1453 * @pcm: PCM instance
1454 * @params: the hw_params instance
1455 * @var: parameter to retrieve
1456 * @dir: pointer to the direction (-1,0,1) or %NULL
1457 *
1458 * Inside configuration space defined by @params remove from @var all
1459 * values > minimum. Reduce configuration space accordingly.
1460 * Return the minimum.
1461 */
1462int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1463			   struct snd_pcm_hw_params *params, 
1464			   snd_pcm_hw_param_t var, int *dir)
1465{
1466	int changed = _snd_pcm_hw_param_first(params, var);
1467	if (changed < 0)
1468		return changed;
1469	if (params->rmask) {
1470		int err = snd_pcm_hw_refine(pcm, params);
1471		if (snd_BUG_ON(err < 0))
1472			return err;
1473	}
1474	return snd_pcm_hw_param_value(params, var, dir);
1475}
1476
1477EXPORT_SYMBOL(snd_pcm_hw_param_first);
1478
1479static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1480				  snd_pcm_hw_param_t var)
1481{
1482	int changed;
1483	if (hw_is_mask(var))
1484		changed = snd_mask_refine_last(hw_param_mask(params, var));
1485	else if (hw_is_interval(var))
1486		changed = snd_interval_refine_last(hw_param_interval(params, var));
1487	else
1488		return -EINVAL;
1489	if (changed) {
1490		params->cmask |= 1 << var;
1491		params->rmask |= 1 << var;
1492	}
1493	return changed;
1494}
1495
1496
1497/**
1498 * snd_pcm_hw_param_last - refine config space and return maximum value
1499 * @pcm: PCM instance
1500 * @params: the hw_params instance
1501 * @var: parameter to retrieve
1502 * @dir: pointer to the direction (-1,0,1) or %NULL
1503 *
1504 * Inside configuration space defined by @params remove from @var all
1505 * values < maximum. Reduce configuration space accordingly.
1506 * Return the maximum.
1507 */
1508int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1509			  struct snd_pcm_hw_params *params,
1510			  snd_pcm_hw_param_t var, int *dir)
1511{
1512	int changed = _snd_pcm_hw_param_last(params, var);
1513	if (changed < 0)
1514		return changed;
1515	if (params->rmask) {
1516		int err = snd_pcm_hw_refine(pcm, params);
1517		if (snd_BUG_ON(err < 0))
1518			return err;
1519	}
1520	return snd_pcm_hw_param_value(params, var, dir);
1521}
1522
1523EXPORT_SYMBOL(snd_pcm_hw_param_last);
1524
1525/**
1526 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1527 * @pcm: PCM instance
1528 * @params: the hw_params instance
1529 *
1530 * Choose one configuration from configuration space defined by @params.
1531 * The configuration chosen is that obtained fixing in this order:
1532 * first access, first format, first subformat, min channels,
1533 * min rate, min period time, max buffer size, min tick time
1534 */
1535int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1536			     struct snd_pcm_hw_params *params)
1537{
1538	static int vars[] = {
1539		SNDRV_PCM_HW_PARAM_ACCESS,
1540		SNDRV_PCM_HW_PARAM_FORMAT,
1541		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1542		SNDRV_PCM_HW_PARAM_CHANNELS,
1543		SNDRV_PCM_HW_PARAM_RATE,
1544		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1545		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1546		SNDRV_PCM_HW_PARAM_TICK_TIME,
1547		-1
1548	};
1549	int err, *v;
1550
1551	for (v = vars; *v != -1; v++) {
1552		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1553			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1554		else
1555			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1556		if (snd_BUG_ON(err < 0))
1557			return err;
1558	}
1559	return 0;
1560}
1561
1562static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1563				   void *arg)
1564{
1565	struct snd_pcm_runtime *runtime = substream->runtime;
1566	unsigned long flags;
1567	snd_pcm_stream_lock_irqsave(substream, flags);
1568	if (snd_pcm_running(substream) &&
1569	    snd_pcm_update_hw_ptr(substream) >= 0)
1570		runtime->status->hw_ptr %= runtime->buffer_size;
1571	else
1572		runtime->status->hw_ptr = 0;
1573	snd_pcm_stream_unlock_irqrestore(substream, flags);
1574	return 0;
1575}
1576
1577static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1578					  void *arg)
1579{
1580	struct snd_pcm_channel_info *info = arg;
1581	struct snd_pcm_runtime *runtime = substream->runtime;
1582	int width;
1583	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1584		info->offset = -1;
1585		return 0;
1586	}
1587	width = snd_pcm_format_physical_width(runtime->format);
1588	if (width < 0)
1589		return width;
1590	info->offset = 0;
1591	switch (runtime->access) {
1592	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1593	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1594		info->first = info->channel * width;
1595		info->step = runtime->channels * width;
1596		break;
1597	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1598	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1599	{
1600		size_t size = runtime->dma_bytes / runtime->channels;
1601		info->first = info->channel * size * 8;
1602		info->step = width;
1603		break;
1604	}
1605	default:
1606		snd_BUG();
1607		break;
1608	}
1609	return 0;
1610}
1611
1612static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1613				       void *arg)
1614{
1615	struct snd_pcm_hw_params *params = arg;
1616	snd_pcm_format_t format;
1617	int channels, width;
1618
1619	params->fifo_size = substream->runtime->hw.fifo_size;
1620	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1621		format = params_format(params);
1622		channels = params_channels(params);
1623		width = snd_pcm_format_physical_width(format);
1624		params->fifo_size /= width * channels;
1625	}
1626	return 0;
1627}
1628
1629/**
1630 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1631 * @substream: the pcm substream instance
1632 * @cmd: ioctl command
1633 * @arg: ioctl argument
1634 *
1635 * Processes the generic ioctl commands for PCM.
1636 * Can be passed as the ioctl callback for PCM ops.
1637 *
1638 * Returns zero if successful, or a negative error code on failure.
1639 */
1640int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1641		      unsigned int cmd, void *arg)
1642{
1643	switch (cmd) {
1644	case SNDRV_PCM_IOCTL1_INFO:
1645		return 0;
1646	case SNDRV_PCM_IOCTL1_RESET:
1647		return snd_pcm_lib_ioctl_reset(substream, arg);
1648	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1649		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1650	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1651		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1652	}
1653	return -ENXIO;
1654}
1655
1656EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1657
1658/**
1659 * snd_pcm_period_elapsed - update the pcm status for the next period
1660 * @substream: the pcm substream instance
1661 *
1662 * This function is called from the interrupt handler when the
1663 * PCM has processed the period size.  It will update the current
1664 * pointer, wake up sleepers, etc.
1665 *
1666 * Even if more than one periods have elapsed since the last call, you
1667 * have to call this only once.
1668 */
1669void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1670{
1671	struct snd_pcm_runtime *runtime;
1672	unsigned long flags;
1673
1674	if (PCM_RUNTIME_CHECK(substream))
1675		return;
1676	runtime = substream->runtime;
1677
1678	if (runtime->transfer_ack_begin)
1679		runtime->transfer_ack_begin(substream);
1680
1681	snd_pcm_stream_lock_irqsave(substream, flags);
1682	if (!snd_pcm_running(substream) ||
1683	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1684		goto _end;
1685
1686	if (substream->timer_running)
1687		snd_timer_interrupt(substream->timer, 1);
1688 _end:
1689	snd_pcm_stream_unlock_irqrestore(substream, flags);
1690	if (runtime->transfer_ack_end)
1691		runtime->transfer_ack_end(substream);
1692	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1693}
1694
1695EXPORT_SYMBOL(snd_pcm_period_elapsed);
1696
1697/*
1698 * Wait until avail_min data becomes available
1699 * Returns a negative error code if any error occurs during operation.
1700 * The available space is stored on availp.  When err = 0 and avail = 0
1701 * on the capture stream, it indicates the stream is in DRAINING state.
1702 */
1703static int wait_for_avail_min(struct snd_pcm_substream *substream,
1704			      snd_pcm_uframes_t *availp)
1705{
1706	struct snd_pcm_runtime *runtime = substream->runtime;
1707	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1708	wait_queue_t wait;
1709	int err = 0;
1710	snd_pcm_uframes_t avail = 0;
1711	long tout;
1712
1713	init_waitqueue_entry(&wait, current);
1714	add_wait_queue(&runtime->tsleep, &wait);
1715	for (;;) {
1716		if (signal_pending(current)) {
1717			err = -ERESTARTSYS;
1718			break;
1719		}
1720		set_current_state(TASK_INTERRUPTIBLE);
1721		snd_pcm_stream_unlock_irq(substream);
1722		tout = schedule_timeout(msecs_to_jiffies(10000));
1723		snd_pcm_stream_lock_irq(substream);
1724		switch (runtime->status->state) {
1725		case SNDRV_PCM_STATE_SUSPENDED:
1726			err = -ESTRPIPE;
1727			goto _endloop;
1728		case SNDRV_PCM_STATE_XRUN:
1729			err = -EPIPE;
1730			goto _endloop;
1731		case SNDRV_PCM_STATE_DRAINING:
1732			if (is_playback)
1733				err = -EPIPE;
1734			else 
1735				avail = 0; /* indicate draining */
1736			goto _endloop;
1737		case SNDRV_PCM_STATE_OPEN:
1738		case SNDRV_PCM_STATE_SETUP:
1739		case SNDRV_PCM_STATE_DISCONNECTED:
1740			err = -EBADFD;
1741			goto _endloop;
1742		}
1743		if (!tout) {
1744			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1745				   is_playback ? "playback" : "capture");
1746			err = -EIO;
1747			break;
1748		}
1749		if (is_playback)
1750			avail = snd_pcm_playback_avail(runtime);
1751		else
1752			avail = snd_pcm_capture_avail(runtime);
1753		if (avail >= runtime->control->avail_min)
1754			break;
1755	}
1756 _endloop:
1757	remove_wait_queue(&runtime->tsleep, &wait);
1758	*availp = avail;
1759	return err;
1760}
1761	
1762static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1763				      unsigned int hwoff,
1764				      unsigned long data, unsigned int off,
1765				      snd_pcm_uframes_t frames)
1766{
1767	struct snd_pcm_runtime *runtime = substream->runtime;
1768	int err;
1769	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1770	if (substream->ops->copy) {
1771		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1772			return err;
1773	} else {
1774		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1775		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1776			return -EFAULT;
1777	}
1778	return 0;
1779}
1780 
1781typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1782			  unsigned long data, unsigned int off,
1783			  snd_pcm_uframes_t size);
1784
1785static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1786					    unsigned long data,
1787					    snd_pcm_uframes_t size,
1788					    int nonblock,
1789					    transfer_f transfer)
1790{
1791	struct snd_pcm_runtime *runtime = substream->runtime;
1792	snd_pcm_uframes_t xfer = 0;
1793	snd_pcm_uframes_t offset = 0;
1794	int err = 0;
1795
1796	if (size == 0)
1797		return 0;
1798
1799	snd_pcm_stream_lock_irq(substream);
1800	switch (runtime->status->state) {
1801	case SNDRV_PCM_STATE_PREPARED:
1802	case SNDRV_PCM_STATE_RUNNING:
1803	case SNDRV_PCM_STATE_PAUSED:
1804		break;
1805	case SNDRV_PCM_STATE_XRUN:
1806		err = -EPIPE;
1807		goto _end_unlock;
1808	case SNDRV_PCM_STATE_SUSPENDED:
1809		err = -ESTRPIPE;
1810		goto _end_unlock;
1811	default:
1812		err = -EBADFD;
1813		goto _end_unlock;
1814	}
1815
1816	runtime->twake = 1;
1817	while (size > 0) {
1818		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1819		snd_pcm_uframes_t avail;
1820		snd_pcm_uframes_t cont;
1821		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1822			snd_pcm_update_hw_ptr(substream);
1823		avail = snd_pcm_playback_avail(runtime);
1824		if (!avail) {
1825			if (nonblock) {
1826				err = -EAGAIN;
1827				goto _end_unlock;
1828			}
1829			err = wait_for_avail_min(substream, &avail);
1830			if (err < 0)
1831				goto _end_unlock;
1832		}
1833		frames = size > avail ? avail : size;
1834		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1835		if (frames > cont)
1836			frames = cont;
1837		if (snd_BUG_ON(!frames)) {
1838			runtime->twake = 0;
1839			snd_pcm_stream_unlock_irq(substream);
1840			return -EI

Large files files are truncated, but you can click here to view the full file