PageRenderTime 101ms CodeModel.GetById 17ms app.highlight 74ms RepoModel.GetById 0ms app.codeStats 1ms

/net/sunrpc/xprtrdma/rpc_rdma.c

https://bitbucket.org/abioy/linux
C | 882 lines | 562 code | 83 blank | 237 comment | 158 complexity | 7033242f6335c194a7e0c92a8e8d8b5c MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
  1/*
  2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the BSD-type
  8 * license below:
  9 *
 10 * Redistribution and use in source and binary forms, with or without
 11 * modification, are permitted provided that the following conditions
 12 * are met:
 13 *
 14 *      Redistributions of source code must retain the above copyright
 15 *      notice, this list of conditions and the following disclaimer.
 16 *
 17 *      Redistributions in binary form must reproduce the above
 18 *      copyright notice, this list of conditions and the following
 19 *      disclaimer in the documentation and/or other materials provided
 20 *      with the distribution.
 21 *
 22 *      Neither the name of the Network Appliance, Inc. nor the names of
 23 *      its contributors may be used to endorse or promote products
 24 *      derived from this software without specific prior written
 25 *      permission.
 26 *
 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 38 */
 39
 40/*
 41 * rpc_rdma.c
 42 *
 43 * This file contains the guts of the RPC RDMA protocol, and
 44 * does marshaling/unmarshaling, etc. It is also where interfacing
 45 * to the Linux RPC framework lives.
 46 */
 47
 48#include "xprt_rdma.h"
 49
 50#include <linux/highmem.h>
 51
 52#ifdef RPC_DEBUG
 53# define RPCDBG_FACILITY	RPCDBG_TRANS
 54#endif
 55
 56enum rpcrdma_chunktype {
 57	rpcrdma_noch = 0,
 58	rpcrdma_readch,
 59	rpcrdma_areadch,
 60	rpcrdma_writech,
 61	rpcrdma_replych
 62};
 63
 64#ifdef RPC_DEBUG
 65static const char transfertypes[][12] = {
 66	"pure inline",	/* no chunks */
 67	" read chunk",	/* some argument via rdma read */
 68	"*read chunk",	/* entire request via rdma read */
 69	"write chunk",	/* some result via rdma write */
 70	"reply chunk"	/* entire reply via rdma write */
 71};
 72#endif
 73
 74/*
 75 * Chunk assembly from upper layer xdr_buf.
 76 *
 77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 78 * elements. Segments are then coalesced when registered, if possible
 79 * within the selected memreg mode.
 80 *
 81 * Note, this routine is never called if the connection's memory
 82 * registration strategy is 0 (bounce buffers).
 83 */
 84
 85static int
 86rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 87	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
 88{
 89	int len, n = 0, p;
 90
 91	if (pos == 0 && xdrbuf->head[0].iov_len) {
 92		seg[n].mr_page = NULL;
 93		seg[n].mr_offset = xdrbuf->head[0].iov_base;
 94		seg[n].mr_len = xdrbuf->head[0].iov_len;
 95		++n;
 96	}
 97
 98	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
 99		if (n == nsegs)
100			return 0;
101		seg[n].mr_page = xdrbuf->pages[0];
102		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103		seg[n].mr_len = min_t(u32,
104			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105		len = xdrbuf->page_len - seg[n].mr_len;
106		++n;
107		p = 1;
108		while (len > 0) {
109			if (n == nsegs)
110				return 0;
111			seg[n].mr_page = xdrbuf->pages[p];
112			seg[n].mr_offset = NULL;
113			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114			len -= seg[n].mr_len;
115			++n;
116			++p;
117		}
118	}
119
120	if (xdrbuf->tail[0].iov_len) {
121		/* the rpcrdma protocol allows us to omit any trailing
122		 * xdr pad bytes, saving the server an RDMA operation. */
123		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
124			return n;
125		if (n == nsegs)
126			return 0;
127		seg[n].mr_page = NULL;
128		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129		seg[n].mr_len = xdrbuf->tail[0].iov_len;
130		++n;
131	}
132
133	return n;
134}
135
136/*
137 * Create read/write chunk lists, and reply chunks, for RDMA
138 *
139 *   Assume check against THRESHOLD has been done, and chunks are required.
140 *   Assume only encoding one list entry for read|write chunks. The NFSv3
141 *     protocol is simple enough to allow this as it only has a single "bulk
142 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144 *
145 * When used for a single reply chunk (which is a special write
146 * chunk used for the entire reply, rather than just the data), it
147 * is used primarily for READDIR and READLINK which would otherwise
148 * be severely size-limited by a small rdma inline read max. The server
149 * response will come back as an RDMA Write, followed by a message
150 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151 * chunks do not provide data alignment, however they do not require
152 * "fixup" (moving the response to the upper layer buffer) either.
153 *
154 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155 *
156 *  Read chunklist (a linked list):
157 *   N elements, position P (same P for all chunks of same arg!):
158 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159 *
160 *  Write chunklist (a list of (one) counted array):
161 *   N elements:
162 *    1 - N - HLOO - HLOO - ... - HLOO - 0
163 *
164 *  Reply chunk (a counted array):
165 *   N elements:
166 *    1 - N - HLOO - HLOO - ... - HLOO
167 */
168
169static unsigned int
170rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172{
173	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175	int nsegs, nchunks = 0;
176	unsigned int pos;
177	struct rpcrdma_mr_seg *seg = req->rl_segments;
178	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179	struct rpcrdma_write_array *warray = NULL;
180	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181	__be32 *iptr = headerp->rm_body.rm_chunks;
182
183	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184		/* a read chunk - server will RDMA Read our memory */
185		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186	} else {
187		/* a write or reply chunk - server will RDMA Write our memory */
188		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189		if (type == rpcrdma_replych)
190			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191		warray = (struct rpcrdma_write_array *) iptr;
192		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193	}
194
195	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196		pos = 0;
197	else
198		pos = target->head[0].iov_len;
199
200	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201	if (nsegs == 0)
202		return 0;
203
204	do {
205		/* bind/register the memory, then build chunk from result. */
206		int n = rpcrdma_register_external(seg, nsegs,
207						cur_wchunk != NULL, r_xprt);
208		if (n <= 0)
209			goto out;
210		if (cur_rchunk) {	/* read */
211			cur_rchunk->rc_discrim = xdr_one;
212			/* all read chunks have the same "position" */
213			cur_rchunk->rc_position = htonl(pos);
214			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216			xdr_encode_hyper(
217					(__be32 *)&cur_rchunk->rc_target.rs_offset,
218					seg->mr_base);
219			dprintk("RPC:       %s: read chunk "
220				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221				seg->mr_len, (unsigned long long)seg->mr_base,
222				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223			cur_rchunk++;
224			r_xprt->rx_stats.read_chunk_count++;
225		} else {		/* write/reply */
226			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228			xdr_encode_hyper(
229					(__be32 *)&cur_wchunk->wc_target.rs_offset,
230					seg->mr_base);
231			dprintk("RPC:       %s: %s chunk "
232				"elem %d@0x%llx:0x%x (%s)\n", __func__,
233				(type == rpcrdma_replych) ? "reply" : "write",
234				seg->mr_len, (unsigned long long)seg->mr_base,
235				seg->mr_rkey, n < nsegs ? "more" : "last");
236			cur_wchunk++;
237			if (type == rpcrdma_replych)
238				r_xprt->rx_stats.reply_chunk_count++;
239			else
240				r_xprt->rx_stats.write_chunk_count++;
241			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242		}
243		nchunks++;
244		seg   += n;
245		nsegs -= n;
246	} while (nsegs);
247
248	/* success. all failures return above */
249	req->rl_nchunks = nchunks;
250
251	BUG_ON(nchunks == 0);
252
253	/*
254	 * finish off header. If write, marshal discrim and nchunks.
255	 */
256	if (cur_rchunk) {
257		iptr = (__be32 *) cur_rchunk;
258		*iptr++ = xdr_zero;	/* finish the read chunk list */
259		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
260		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
261	} else {
262		warray->wc_discrim = xdr_one;
263		warray->wc_nchunks = htonl(nchunks);
264		iptr = (__be32 *) cur_wchunk;
265		if (type == rpcrdma_writech) {
266			*iptr++ = xdr_zero; /* finish the write chunk list */
267			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
268		}
269	}
270
271	/*
272	 * Return header size.
273	 */
274	return (unsigned char *)iptr - (unsigned char *)headerp;
275
276out:
277	for (pos = 0; nchunks--;)
278		pos += rpcrdma_deregister_external(
279				&req->rl_segments[pos], r_xprt, NULL);
280	return 0;
281}
282
283/*
284 * Copy write data inline.
285 * This function is used for "small" requests. Data which is passed
286 * to RPC via iovecs (or page list) is copied directly into the
287 * pre-registered memory buffer for this request. For small amounts
288 * of data, this is efficient. The cutoff value is tunable.
289 */
290static int
291rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
292{
293	int i, npages, curlen;
294	int copy_len;
295	unsigned char *srcp, *destp;
296	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
297
298	destp = rqst->rq_svec[0].iov_base;
299	curlen = rqst->rq_svec[0].iov_len;
300	destp += curlen;
301	/*
302	 * Do optional padding where it makes sense. Alignment of write
303	 * payload can help the server, if our setting is accurate.
304	 */
305	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
306	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
307		pad = 0;	/* don't pad this request */
308
309	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
310		__func__, pad, destp, rqst->rq_slen, curlen);
311
312	copy_len = rqst->rq_snd_buf.page_len;
313
314	if (rqst->rq_snd_buf.tail[0].iov_len) {
315		curlen = rqst->rq_snd_buf.tail[0].iov_len;
316		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
317			memmove(destp + copy_len,
318				rqst->rq_snd_buf.tail[0].iov_base, curlen);
319			r_xprt->rx_stats.pullup_copy_count += curlen;
320		}
321		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
322			__func__, destp + copy_len, curlen);
323		rqst->rq_svec[0].iov_len += curlen;
324	}
325
326	r_xprt->rx_stats.pullup_copy_count += copy_len;
327	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
328	for (i = 0; copy_len && i < npages; i++) {
329		if (i == 0)
330			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
331		else
332			curlen = PAGE_SIZE;
333		if (curlen > copy_len)
334			curlen = copy_len;
335		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
336			__func__, i, destp, copy_len, curlen);
337		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
338					KM_SKB_SUNRPC_DATA);
339		if (i == 0)
340			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
341		else
342			memcpy(destp, srcp, curlen);
343		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
344		rqst->rq_svec[0].iov_len += curlen;
345		destp += curlen;
346		copy_len -= curlen;
347	}
348	/* header now contains entire send message */
349	return pad;
350}
351
352/*
353 * Marshal a request: the primary job of this routine is to choose
354 * the transfer modes. See comments below.
355 *
356 * Uses multiple RDMA IOVs for a request:
357 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
358 *         preregistered buffer that already holds the RPC data in
359 *         its middle.
360 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
361 *  [2] -- optional padding.
362 *  [3] -- if padded, header only in [1] and data here.
363 */
364
365int
366rpcrdma_marshal_req(struct rpc_rqst *rqst)
367{
368	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
369	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
370	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
371	char *base;
372	size_t hdrlen, rpclen, padlen;
373	enum rpcrdma_chunktype rtype, wtype;
374	struct rpcrdma_msg *headerp;
375
376	/*
377	 * rpclen gets amount of data in first buffer, which is the
378	 * pre-registered buffer.
379	 */
380	base = rqst->rq_svec[0].iov_base;
381	rpclen = rqst->rq_svec[0].iov_len;
382
383	/* build RDMA header in private area at front */
384	headerp = (struct rpcrdma_msg *) req->rl_base;
385	/* don't htonl XID, it's already done in request */
386	headerp->rm_xid = rqst->rq_xid;
387	headerp->rm_vers = xdr_one;
388	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
389	headerp->rm_type = htonl(RDMA_MSG);
390
391	/*
392	 * Chunks needed for results?
393	 *
394	 * o If the expected result is under the inline threshold, all ops
395	 *   return as inline (but see later).
396	 * o Large non-read ops return as a single reply chunk.
397	 * o Large read ops return data as write chunk(s), header as inline.
398	 *
399	 * Note: the NFS code sending down multiple result segments implies
400	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
401	 */
402
403	/*
404	 * This code can handle read chunks, write chunks OR reply
405	 * chunks -- only one type. If the request is too big to fit
406	 * inline, then we will choose read chunks. If the request is
407	 * a READ, then use write chunks to separate the file data
408	 * into pages; otherwise use reply chunks.
409	 */
410	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
411		wtype = rpcrdma_noch;
412	else if (rqst->rq_rcv_buf.page_len == 0)
413		wtype = rpcrdma_replych;
414	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
415		wtype = rpcrdma_writech;
416	else
417		wtype = rpcrdma_replych;
418
419	/*
420	 * Chunks needed for arguments?
421	 *
422	 * o If the total request is under the inline threshold, all ops
423	 *   are sent as inline.
424	 * o Large non-write ops are sent with the entire message as a
425	 *   single read chunk (protocol 0-position special case).
426	 * o Large write ops transmit data as read chunk(s), header as
427	 *   inline.
428	 *
429	 * Note: the NFS code sending down multiple argument segments
430	 * implies the op is a write.
431	 * TBD check NFSv4 setacl
432	 */
433	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
434		rtype = rpcrdma_noch;
435	else if (rqst->rq_snd_buf.page_len == 0)
436		rtype = rpcrdma_areadch;
437	else
438		rtype = rpcrdma_readch;
439
440	/* The following simplification is not true forever */
441	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
442		wtype = rpcrdma_noch;
443	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
444
445	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
446	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
447		/* forced to "pure inline"? */
448		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
449			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
450		return -1;
451	}
452
453	hdrlen = 28; /*sizeof *headerp;*/
454	padlen = 0;
455
456	/*
457	 * Pull up any extra send data into the preregistered buffer.
458	 * When padding is in use and applies to the transfer, insert
459	 * it and change the message type.
460	 */
461	if (rtype == rpcrdma_noch) {
462
463		padlen = rpcrdma_inline_pullup(rqst,
464						RPCRDMA_INLINE_PAD_VALUE(rqst));
465
466		if (padlen) {
467			headerp->rm_type = htonl(RDMA_MSGP);
468			headerp->rm_body.rm_padded.rm_align =
469				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
470			headerp->rm_body.rm_padded.rm_thresh =
471				htonl(RPCRDMA_INLINE_PAD_THRESH);
472			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
473			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
474			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
475			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
476			BUG_ON(wtype != rpcrdma_noch);
477
478		} else {
479			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
480			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
481			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
482			/* new length after pullup */
483			rpclen = rqst->rq_svec[0].iov_len;
484			/*
485			 * Currently we try to not actually use read inline.
486			 * Reply chunks have the desirable property that
487			 * they land, packed, directly in the target buffers
488			 * without headers, so they require no fixup. The
489			 * additional RDMA Write op sends the same amount
490			 * of data, streams on-the-wire and adds no overhead
491			 * on receive. Therefore, we request a reply chunk
492			 * for non-writes wherever feasible and efficient.
493			 */
494			if (wtype == rpcrdma_noch &&
495			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
496				wtype = rpcrdma_replych;
497		}
498	}
499
500	/*
501	 * Marshal chunks. This routine will return the header length
502	 * consumed by marshaling.
503	 */
504	if (rtype != rpcrdma_noch) {
505		hdrlen = rpcrdma_create_chunks(rqst,
506					&rqst->rq_snd_buf, headerp, rtype);
507		wtype = rtype;	/* simplify dprintk */
508
509	} else if (wtype != rpcrdma_noch) {
510		hdrlen = rpcrdma_create_chunks(rqst,
511					&rqst->rq_rcv_buf, headerp, wtype);
512	}
513
514	if (hdrlen == 0)
515		return -1;
516
517	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
518		" headerp 0x%p base 0x%p lkey 0x%x\n",
519		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
520		headerp, base, req->rl_iov.lkey);
521
522	/*
523	 * initialize send_iov's - normally only two: rdma chunk header and
524	 * single preregistered RPC header buffer, but if padding is present,
525	 * then use a preregistered (and zeroed) pad buffer between the RPC
526	 * header and any write data. In all non-rdma cases, any following
527	 * data has been copied into the RPC header buffer.
528	 */
529	req->rl_send_iov[0].addr = req->rl_iov.addr;
530	req->rl_send_iov[0].length = hdrlen;
531	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
532
533	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
534	req->rl_send_iov[1].length = rpclen;
535	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
536
537	req->rl_niovs = 2;
538
539	if (padlen) {
540		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
541
542		req->rl_send_iov[2].addr = ep->rep_pad.addr;
543		req->rl_send_iov[2].length = padlen;
544		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
545
546		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
547		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
548		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
549
550		req->rl_niovs = 4;
551	}
552
553	return 0;
554}
555
556/*
557 * Chase down a received write or reply chunklist to get length
558 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
559 */
560static int
561rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
562{
563	unsigned int i, total_len;
564	struct rpcrdma_write_chunk *cur_wchunk;
565
566	i = ntohl(**iptrp);	/* get array count */
567	if (i > max)
568		return -1;
569	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
570	total_len = 0;
571	while (i--) {
572		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
573		ifdebug(FACILITY) {
574			u64 off;
575			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
576			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
577				__func__,
578				ntohl(seg->rs_length),
579				(unsigned long long)off,
580				ntohl(seg->rs_handle));
581		}
582		total_len += ntohl(seg->rs_length);
583		++cur_wchunk;
584	}
585	/* check and adjust for properly terminated write chunk */
586	if (wrchunk) {
587		__be32 *w = (__be32 *) cur_wchunk;
588		if (*w++ != xdr_zero)
589			return -1;
590		cur_wchunk = (struct rpcrdma_write_chunk *) w;
591	}
592	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
593		return -1;
594
595	*iptrp = (__be32 *) cur_wchunk;
596	return total_len;
597}
598
599/*
600 * Scatter inline received data back into provided iov's.
601 */
602static void
603rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
604{
605	int i, npages, curlen, olen;
606	char *destp;
607
608	curlen = rqst->rq_rcv_buf.head[0].iov_len;
609	if (curlen > copy_len) {	/* write chunk header fixup */
610		curlen = copy_len;
611		rqst->rq_rcv_buf.head[0].iov_len = curlen;
612	}
613
614	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
615		__func__, srcp, copy_len, curlen);
616
617	/* Shift pointer for first receive segment only */
618	rqst->rq_rcv_buf.head[0].iov_base = srcp;
619	srcp += curlen;
620	copy_len -= curlen;
621
622	olen = copy_len;
623	i = 0;
624	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
625	if (copy_len && rqst->rq_rcv_buf.page_len) {
626		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
627			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
628		for (; i < npages; i++) {
629			if (i == 0)
630				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
631			else
632				curlen = PAGE_SIZE;
633			if (curlen > copy_len)
634				curlen = copy_len;
635			dprintk("RPC:       %s: page %d"
636				" srcp 0x%p len %d curlen %d\n",
637				__func__, i, srcp, copy_len, curlen);
638			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
639						KM_SKB_SUNRPC_DATA);
640			if (i == 0)
641				memcpy(destp + rqst->rq_rcv_buf.page_base,
642						srcp, curlen);
643			else
644				memcpy(destp, srcp, curlen);
645			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
646			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
647			srcp += curlen;
648			copy_len -= curlen;
649			if (copy_len == 0)
650				break;
651		}
652		rqst->rq_rcv_buf.page_len = olen - copy_len;
653	} else
654		rqst->rq_rcv_buf.page_len = 0;
655
656	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
657		curlen = copy_len;
658		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
659			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
660		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
661			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
662		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
663			__func__, srcp, copy_len, curlen);
664		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
665		copy_len -= curlen; ++i;
666	} else
667		rqst->rq_rcv_buf.tail[0].iov_len = 0;
668
669	if (pad) {
670		/* implicit padding on terminal chunk */
671		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
672		while (pad--)
673			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
674	}
675
676	if (copy_len)
677		dprintk("RPC:       %s: %d bytes in"
678			" %d extra segments (%d lost)\n",
679			__func__, olen, i, copy_len);
680
681	/* TBD avoid a warning from call_decode() */
682	rqst->rq_private_buf = rqst->rq_rcv_buf;
683}
684
685/*
686 * This function is called when an async event is posted to
687 * the connection which changes the connection state. All it
688 * does at this point is mark the connection up/down, the rpc
689 * timers do the rest.
690 */
691void
692rpcrdma_conn_func(struct rpcrdma_ep *ep)
693{
694	struct rpc_xprt *xprt = ep->rep_xprt;
695
696	spin_lock_bh(&xprt->transport_lock);
697	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
698		++xprt->connect_cookie;
699	if (ep->rep_connected > 0) {
700		if (!xprt_test_and_set_connected(xprt))
701			xprt_wake_pending_tasks(xprt, 0);
702	} else {
703		if (xprt_test_and_clear_connected(xprt))
704			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705	}
706	spin_unlock_bh(&xprt->transport_lock);
707}
708
709/*
710 * This function is called when memory window unbind which we are waiting
711 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
712 */
713static void
714rpcrdma_unbind_func(struct rpcrdma_rep *rep)
715{
716	wake_up(&rep->rr_unbind);
717}
718
719/*
720 * Called as a tasklet to do req/reply match and complete a request
721 * Errors must result in the RPC task either being awakened, or
722 * allowed to timeout, to discover the errors at that time.
723 */
724void
725rpcrdma_reply_handler(struct rpcrdma_rep *rep)
726{
727	struct rpcrdma_msg *headerp;
728	struct rpcrdma_req *req;
729	struct rpc_rqst *rqst;
730	struct rpc_xprt *xprt = rep->rr_xprt;
731	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
732	__be32 *iptr;
733	int i, rdmalen, status;
734
735	/* Check status. If bad, signal disconnect and return rep to pool */
736	if (rep->rr_len == ~0U) {
737		rpcrdma_recv_buffer_put(rep);
738		if (r_xprt->rx_ep.rep_connected == 1) {
739			r_xprt->rx_ep.rep_connected = -EIO;
740			rpcrdma_conn_func(&r_xprt->rx_ep);
741		}
742		return;
743	}
744	if (rep->rr_len < 28) {
745		dprintk("RPC:       %s: short/invalid reply\n", __func__);
746		goto repost;
747	}
748	headerp = (struct rpcrdma_msg *) rep->rr_base;
749	if (headerp->rm_vers != xdr_one) {
750		dprintk("RPC:       %s: invalid version %d\n",
751			__func__, ntohl(headerp->rm_vers));
752		goto repost;
753	}
754
755	/* Get XID and try for a match. */
756	spin_lock(&xprt->transport_lock);
757	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
758	if (rqst == NULL) {
759		spin_unlock(&xprt->transport_lock);
760		dprintk("RPC:       %s: reply 0x%p failed "
761			"to match any request xid 0x%08x len %d\n",
762			__func__, rep, headerp->rm_xid, rep->rr_len);
763repost:
764		r_xprt->rx_stats.bad_reply_count++;
765		rep->rr_func = rpcrdma_reply_handler;
766		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
767			rpcrdma_recv_buffer_put(rep);
768
769		return;
770	}
771
772	/* get request object */
773	req = rpcr_to_rdmar(rqst);
774
775	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
776		"                   RPC request 0x%p xid 0x%08x\n",
777			__func__, rep, req, rqst, headerp->rm_xid);
778
779	BUG_ON(!req || req->rl_reply);
780
781	/* from here on, the reply is no longer an orphan */
782	req->rl_reply = rep;
783
784	/* check for expected message types */
785	/* The order of some of these tests is important. */
786	switch (headerp->rm_type) {
787	case htonl(RDMA_MSG):
788		/* never expect read chunks */
789		/* never expect reply chunks (two ways to check) */
790		/* never expect write chunks without having offered RDMA */
791		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
792		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
793		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
794		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
795		     req->rl_nchunks == 0))
796			goto badheader;
797		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
798			/* count any expected write chunks in read reply */
799			/* start at write chunk array count */
800			iptr = &headerp->rm_body.rm_chunks[2];
801			rdmalen = rpcrdma_count_chunks(rep,
802						req->rl_nchunks, 1, &iptr);
803			/* check for validity, and no reply chunk after */
804			if (rdmalen < 0 || *iptr++ != xdr_zero)
805				goto badheader;
806			rep->rr_len -=
807			    ((unsigned char *)iptr - (unsigned char *)headerp);
808			status = rep->rr_len + rdmalen;
809			r_xprt->rx_stats.total_rdma_reply += rdmalen;
810			/* special case - last chunk may omit padding */
811			if (rdmalen &= 3) {
812				rdmalen = 4 - rdmalen;
813				status += rdmalen;
814			}
815		} else {
816			/* else ordinary inline */
817			rdmalen = 0;
818			iptr = (__be32 *)((unsigned char *)headerp + 28);
819			rep->rr_len -= 28; /*sizeof *headerp;*/
820			status = rep->rr_len;
821		}
822		/* Fix up the rpc results for upper layer */
823		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
824		break;
825
826	case htonl(RDMA_NOMSG):
827		/* never expect read or write chunks, always reply chunks */
828		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
829		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
830		    headerp->rm_body.rm_chunks[2] != xdr_one ||
831		    req->rl_nchunks == 0)
832			goto badheader;
833		iptr = (__be32 *)((unsigned char *)headerp + 28);
834		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
835		if (rdmalen < 0)
836			goto badheader;
837		r_xprt->rx_stats.total_rdma_reply += rdmalen;
838		/* Reply chunk buffer already is the reply vector - no fixup. */
839		status = rdmalen;
840		break;
841
842badheader:
843	default:
844		dprintk("%s: invalid rpcrdma reply header (type %d):"
845				" chunks[012] == %d %d %d"
846				" expected chunks <= %d\n",
847				__func__, ntohl(headerp->rm_type),
848				headerp->rm_body.rm_chunks[0],
849				headerp->rm_body.rm_chunks[1],
850				headerp->rm_body.rm_chunks[2],
851				req->rl_nchunks);
852		status = -EIO;
853		r_xprt->rx_stats.bad_reply_count++;
854		break;
855	}
856
857	/* If using mw bind, start the deregister process now. */
858	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
859	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
860	case RPCRDMA_MEMWINDOWS:
861		for (i = 0; req->rl_nchunks-- > 1;)
862			i += rpcrdma_deregister_external(
863				&req->rl_segments[i], r_xprt, NULL);
864		/* Optionally wait (not here) for unbinds to complete */
865		rep->rr_func = rpcrdma_unbind_func;
866		(void) rpcrdma_deregister_external(&req->rl_segments[i],
867						   r_xprt, rep);
868		break;
869	case RPCRDMA_MEMWINDOWS_ASYNC:
870		for (i = 0; req->rl_nchunks--;)
871			i += rpcrdma_deregister_external(&req->rl_segments[i],
872							 r_xprt, NULL);
873		break;
874	default:
875		break;
876	}
877
878	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
879			__func__, xprt, rqst, status);
880	xprt_complete_rqst(rqst->rq_task, status);
881	spin_unlock(&xprt->transport_lock);
882}