PageRenderTime 67ms CodeModel.GetById 20ms app.highlight 37ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/md/dm-crypt.c

https://bitbucket.org/abioy/linux
C | 1438 lines | 1028 code | 253 blank | 157 comment | 165 complexity | f9ed0b62ff80aa323966eb90b414e8ca MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
  20#include <linux/backing-dev.h>
  21#include <asm/atomic.h>
  22#include <linux/scatterlist.h>
  23#include <asm/page.h>
  24#include <asm/unaligned.h>
  25
  26#include <linux/device-mapper.h>
  27
  28#define DM_MSG_PREFIX "crypt"
  29#define MESG_STR(x) x, sizeof(x)
  30
  31/*
  32 * context holding the current state of a multi-part conversion
  33 */
  34struct convert_context {
  35	struct completion restart;
  36	struct bio *bio_in;
  37	struct bio *bio_out;
  38	unsigned int offset_in;
  39	unsigned int offset_out;
  40	unsigned int idx_in;
  41	unsigned int idx_out;
  42	sector_t sector;
  43	atomic_t pending;
  44};
  45
  46/*
  47 * per bio private data
  48 */
  49struct dm_crypt_io {
  50	struct dm_target *target;
  51	struct bio *base_bio;
  52	struct work_struct work;
  53
  54	struct convert_context ctx;
  55
  56	atomic_t pending;
  57	int error;
  58	sector_t sector;
  59	struct dm_crypt_io *base_io;
  60};
  61
  62struct dm_crypt_request {
  63	struct convert_context *ctx;
  64	struct scatterlist sg_in;
  65	struct scatterlist sg_out;
  66};
  67
  68struct crypt_config;
  69
  70struct crypt_iv_operations {
  71	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  72		   const char *opts);
  73	void (*dtr)(struct crypt_config *cc);
  74	int (*init)(struct crypt_config *cc);
  75	int (*wipe)(struct crypt_config *cc);
  76	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  77};
  78
  79struct iv_essiv_private {
  80	struct crypto_cipher *tfm;
  81	struct crypto_hash *hash_tfm;
  82	u8 *salt;
  83};
  84
  85struct iv_benbi_private {
  86	int shift;
  87};
  88
  89/*
  90 * Crypt: maps a linear range of a block device
  91 * and encrypts / decrypts at the same time.
  92 */
  93enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  94struct crypt_config {
  95	struct dm_dev *dev;
  96	sector_t start;
  97
  98	/*
  99	 * pool for per bio private data, crypto requests and
 100	 * encryption requeusts/buffer pages
 101	 */
 102	mempool_t *io_pool;
 103	mempool_t *req_pool;
 104	mempool_t *page_pool;
 105	struct bio_set *bs;
 106
 107	struct workqueue_struct *io_queue;
 108	struct workqueue_struct *crypt_queue;
 109
 110	/*
 111	 * crypto related data
 112	 */
 113	struct crypt_iv_operations *iv_gen_ops;
 114	char *iv_mode;
 115	union {
 116		struct iv_essiv_private essiv;
 117		struct iv_benbi_private benbi;
 118	} iv_gen_private;
 119	sector_t iv_offset;
 120	unsigned int iv_size;
 121
 122	/*
 123	 * Layout of each crypto request:
 124	 *
 125	 *   struct ablkcipher_request
 126	 *      context
 127	 *      padding
 128	 *   struct dm_crypt_request
 129	 *      padding
 130	 *   IV
 131	 *
 132	 * The padding is added so that dm_crypt_request and the IV are
 133	 * correctly aligned.
 134	 */
 135	unsigned int dmreq_start;
 136	struct ablkcipher_request *req;
 137
 138	char cipher[CRYPTO_MAX_ALG_NAME];
 139	char chainmode[CRYPTO_MAX_ALG_NAME];
 140	struct crypto_ablkcipher *tfm;
 141	unsigned long flags;
 142	unsigned int key_size;
 143	u8 key[0];
 144};
 145
 146#define MIN_IOS        16
 147#define MIN_POOL_PAGES 32
 148#define MIN_BIO_PAGES  8
 149
 150static struct kmem_cache *_crypt_io_pool;
 151
 152static void clone_init(struct dm_crypt_io *, struct bio *);
 153static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 154
 155/*
 156 * Different IV generation algorithms:
 157 *
 158 * plain: the initial vector is the 32-bit little-endian version of the sector
 159 *        number, padded with zeros if necessary.
 160 *
 161 * plain64: the initial vector is the 64-bit little-endian version of the sector
 162 *        number, padded with zeros if necessary.
 163 *
 164 * essiv: "encrypted sector|salt initial vector", the sector number is
 165 *        encrypted with the bulk cipher using a salt as key. The salt
 166 *        should be derived from the bulk cipher's key via hashing.
 167 *
 168 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 169 *        (needed for LRW-32-AES and possible other narrow block modes)
 170 *
 171 * null: the initial vector is always zero.  Provides compatibility with
 172 *       obsolete loop_fish2 devices.  Do not use for new devices.
 173 *
 174 * plumb: unimplemented, see:
 175 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 176 */
 177
 178static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 179{
 180	memset(iv, 0, cc->iv_size);
 181	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
 182
 183	return 0;
 184}
 185
 186static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 187				sector_t sector)
 188{
 189	memset(iv, 0, cc->iv_size);
 190	*(u64 *)iv = cpu_to_le64(sector);
 191
 192	return 0;
 193}
 194
 195/* Initialise ESSIV - compute salt but no local memory allocations */
 196static int crypt_iv_essiv_init(struct crypt_config *cc)
 197{
 198	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 199	struct hash_desc desc;
 200	struct scatterlist sg;
 201	int err;
 202
 203	sg_init_one(&sg, cc->key, cc->key_size);
 204	desc.tfm = essiv->hash_tfm;
 205	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 206
 207	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 208	if (err)
 209		return err;
 210
 211	return crypto_cipher_setkey(essiv->tfm, essiv->salt,
 212				    crypto_hash_digestsize(essiv->hash_tfm));
 213}
 214
 215/* Wipe salt and reset key derived from volume key */
 216static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 217{
 218	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 219	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 220
 221	memset(essiv->salt, 0, salt_size);
 222
 223	return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
 224}
 225
 226static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 227{
 228	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 229
 230	crypto_free_cipher(essiv->tfm);
 231	essiv->tfm = NULL;
 232
 233	crypto_free_hash(essiv->hash_tfm);
 234	essiv->hash_tfm = NULL;
 235
 236	kzfree(essiv->salt);
 237	essiv->salt = NULL;
 238}
 239
 240static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 241			      const char *opts)
 242{
 243	struct crypto_cipher *essiv_tfm = NULL;
 244	struct crypto_hash *hash_tfm = NULL;
 245	u8 *salt = NULL;
 246	int err;
 247
 248	if (!opts) {
 249		ti->error = "Digest algorithm missing for ESSIV mode";
 250		return -EINVAL;
 251	}
 252
 253	/* Allocate hash algorithm */
 254	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 255	if (IS_ERR(hash_tfm)) {
 256		ti->error = "Error initializing ESSIV hash";
 257		err = PTR_ERR(hash_tfm);
 258		goto bad;
 259	}
 260
 261	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 262	if (!salt) {
 263		ti->error = "Error kmallocing salt storage in ESSIV";
 264		err = -ENOMEM;
 265		goto bad;
 266	}
 267
 268	/* Allocate essiv_tfm */
 269	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 270	if (IS_ERR(essiv_tfm)) {
 271		ti->error = "Error allocating crypto tfm for ESSIV";
 272		err = PTR_ERR(essiv_tfm);
 273		goto bad;
 274	}
 275	if (crypto_cipher_blocksize(essiv_tfm) !=
 276	    crypto_ablkcipher_ivsize(cc->tfm)) {
 277		ti->error = "Block size of ESSIV cipher does "
 278			    "not match IV size of block cipher";
 279		err = -EINVAL;
 280		goto bad;
 281	}
 282
 283	cc->iv_gen_private.essiv.salt = salt;
 284	cc->iv_gen_private.essiv.tfm = essiv_tfm;
 285	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 286
 287	return 0;
 288
 289bad:
 290	if (essiv_tfm && !IS_ERR(essiv_tfm))
 291		crypto_free_cipher(essiv_tfm);
 292	if (hash_tfm && !IS_ERR(hash_tfm))
 293		crypto_free_hash(hash_tfm);
 294	kfree(salt);
 295	return err;
 296}
 297
 298static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 299{
 300	memset(iv, 0, cc->iv_size);
 301	*(u64 *)iv = cpu_to_le64(sector);
 302	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
 303	return 0;
 304}
 305
 306static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 307			      const char *opts)
 308{
 309	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
 310	int log = ilog2(bs);
 311
 312	/* we need to calculate how far we must shift the sector count
 313	 * to get the cipher block count, we use this shift in _gen */
 314
 315	if (1 << log != bs) {
 316		ti->error = "cypher blocksize is not a power of 2";
 317		return -EINVAL;
 318	}
 319
 320	if (log > 9) {
 321		ti->error = "cypher blocksize is > 512";
 322		return -EINVAL;
 323	}
 324
 325	cc->iv_gen_private.benbi.shift = 9 - log;
 326
 327	return 0;
 328}
 329
 330static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 331{
 332}
 333
 334static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 335{
 336	__be64 val;
 337
 338	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 339
 340	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
 341	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 342
 343	return 0;
 344}
 345
 346static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 347{
 348	memset(iv, 0, cc->iv_size);
 349
 350	return 0;
 351}
 352
 353static struct crypt_iv_operations crypt_iv_plain_ops = {
 354	.generator = crypt_iv_plain_gen
 355};
 356
 357static struct crypt_iv_operations crypt_iv_plain64_ops = {
 358	.generator = crypt_iv_plain64_gen
 359};
 360
 361static struct crypt_iv_operations crypt_iv_essiv_ops = {
 362	.ctr       = crypt_iv_essiv_ctr,
 363	.dtr       = crypt_iv_essiv_dtr,
 364	.init      = crypt_iv_essiv_init,
 365	.wipe      = crypt_iv_essiv_wipe,
 366	.generator = crypt_iv_essiv_gen
 367};
 368
 369static struct crypt_iv_operations crypt_iv_benbi_ops = {
 370	.ctr	   = crypt_iv_benbi_ctr,
 371	.dtr	   = crypt_iv_benbi_dtr,
 372	.generator = crypt_iv_benbi_gen
 373};
 374
 375static struct crypt_iv_operations crypt_iv_null_ops = {
 376	.generator = crypt_iv_null_gen
 377};
 378
 379static void crypt_convert_init(struct crypt_config *cc,
 380			       struct convert_context *ctx,
 381			       struct bio *bio_out, struct bio *bio_in,
 382			       sector_t sector)
 383{
 384	ctx->bio_in = bio_in;
 385	ctx->bio_out = bio_out;
 386	ctx->offset_in = 0;
 387	ctx->offset_out = 0;
 388	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 389	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 390	ctx->sector = sector + cc->iv_offset;
 391	init_completion(&ctx->restart);
 392}
 393
 394static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 395					     struct ablkcipher_request *req)
 396{
 397	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 398}
 399
 400static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 401					       struct dm_crypt_request *dmreq)
 402{
 403	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 404}
 405
 406static int crypt_convert_block(struct crypt_config *cc,
 407			       struct convert_context *ctx,
 408			       struct ablkcipher_request *req)
 409{
 410	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 411	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 412	struct dm_crypt_request *dmreq;
 413	u8 *iv;
 414	int r = 0;
 415
 416	dmreq = dmreq_of_req(cc, req);
 417	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
 418			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
 419
 420	dmreq->ctx = ctx;
 421	sg_init_table(&dmreq->sg_in, 1);
 422	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 423		    bv_in->bv_offset + ctx->offset_in);
 424
 425	sg_init_table(&dmreq->sg_out, 1);
 426	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 427		    bv_out->bv_offset + ctx->offset_out);
 428
 429	ctx->offset_in += 1 << SECTOR_SHIFT;
 430	if (ctx->offset_in >= bv_in->bv_len) {
 431		ctx->offset_in = 0;
 432		ctx->idx_in++;
 433	}
 434
 435	ctx->offset_out += 1 << SECTOR_SHIFT;
 436	if (ctx->offset_out >= bv_out->bv_len) {
 437		ctx->offset_out = 0;
 438		ctx->idx_out++;
 439	}
 440
 441	if (cc->iv_gen_ops) {
 442		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
 443		if (r < 0)
 444			return r;
 445	}
 446
 447	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 448				     1 << SECTOR_SHIFT, iv);
 449
 450	if (bio_data_dir(ctx->bio_in) == WRITE)
 451		r = crypto_ablkcipher_encrypt(req);
 452	else
 453		r = crypto_ablkcipher_decrypt(req);
 454
 455	return r;
 456}
 457
 458static void kcryptd_async_done(struct crypto_async_request *async_req,
 459			       int error);
 460static void crypt_alloc_req(struct crypt_config *cc,
 461			    struct convert_context *ctx)
 462{
 463	if (!cc->req)
 464		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 465	ablkcipher_request_set_tfm(cc->req, cc->tfm);
 466	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
 467					CRYPTO_TFM_REQ_MAY_SLEEP,
 468					kcryptd_async_done,
 469					dmreq_of_req(cc, cc->req));
 470}
 471
 472/*
 473 * Encrypt / decrypt data from one bio to another one (can be the same one)
 474 */
 475static int crypt_convert(struct crypt_config *cc,
 476			 struct convert_context *ctx)
 477{
 478	int r;
 479
 480	atomic_set(&ctx->pending, 1);
 481
 482	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 483	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
 484
 485		crypt_alloc_req(cc, ctx);
 486
 487		atomic_inc(&ctx->pending);
 488
 489		r = crypt_convert_block(cc, ctx, cc->req);
 490
 491		switch (r) {
 492		/* async */
 493		case -EBUSY:
 494			wait_for_completion(&ctx->restart);
 495			INIT_COMPLETION(ctx->restart);
 496			/* fall through*/
 497		case -EINPROGRESS:
 498			cc->req = NULL;
 499			ctx->sector++;
 500			continue;
 501
 502		/* sync */
 503		case 0:
 504			atomic_dec(&ctx->pending);
 505			ctx->sector++;
 506			cond_resched();
 507			continue;
 508
 509		/* error */
 510		default:
 511			atomic_dec(&ctx->pending);
 512			return r;
 513		}
 514	}
 515
 516	return 0;
 517}
 518
 519static void dm_crypt_bio_destructor(struct bio *bio)
 520{
 521	struct dm_crypt_io *io = bio->bi_private;
 522	struct crypt_config *cc = io->target->private;
 523
 524	bio_free(bio, cc->bs);
 525}
 526
 527/*
 528 * Generate a new unfragmented bio with the given size
 529 * This should never violate the device limitations
 530 * May return a smaller bio when running out of pages, indicated by
 531 * *out_of_pages set to 1.
 532 */
 533static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 534				      unsigned *out_of_pages)
 535{
 536	struct crypt_config *cc = io->target->private;
 537	struct bio *clone;
 538	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 539	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 540	unsigned i, len;
 541	struct page *page;
 542
 543	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 544	if (!clone)
 545		return NULL;
 546
 547	clone_init(io, clone);
 548	*out_of_pages = 0;
 549
 550	for (i = 0; i < nr_iovecs; i++) {
 551		page = mempool_alloc(cc->page_pool, gfp_mask);
 552		if (!page) {
 553			*out_of_pages = 1;
 554			break;
 555		}
 556
 557		/*
 558		 * if additional pages cannot be allocated without waiting,
 559		 * return a partially allocated bio, the caller will then try
 560		 * to allocate additional bios while submitting this partial bio
 561		 */
 562		if (i == (MIN_BIO_PAGES - 1))
 563			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 564
 565		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 566
 567		if (!bio_add_page(clone, page, len, 0)) {
 568			mempool_free(page, cc->page_pool);
 569			break;
 570		}
 571
 572		size -= len;
 573	}
 574
 575	if (!clone->bi_size) {
 576		bio_put(clone);
 577		return NULL;
 578	}
 579
 580	return clone;
 581}
 582
 583static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 584{
 585	unsigned int i;
 586	struct bio_vec *bv;
 587
 588	for (i = 0; i < clone->bi_vcnt; i++) {
 589		bv = bio_iovec_idx(clone, i);
 590		BUG_ON(!bv->bv_page);
 591		mempool_free(bv->bv_page, cc->page_pool);
 592		bv->bv_page = NULL;
 593	}
 594}
 595
 596static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 597					  struct bio *bio, sector_t sector)
 598{
 599	struct crypt_config *cc = ti->private;
 600	struct dm_crypt_io *io;
 601
 602	io = mempool_alloc(cc->io_pool, GFP_NOIO);
 603	io->target = ti;
 604	io->base_bio = bio;
 605	io->sector = sector;
 606	io->error = 0;
 607	io->base_io = NULL;
 608	atomic_set(&io->pending, 0);
 609
 610	return io;
 611}
 612
 613static void crypt_inc_pending(struct dm_crypt_io *io)
 614{
 615	atomic_inc(&io->pending);
 616}
 617
 618/*
 619 * One of the bios was finished. Check for completion of
 620 * the whole request and correctly clean up the buffer.
 621 * If base_io is set, wait for the last fragment to complete.
 622 */
 623static void crypt_dec_pending(struct dm_crypt_io *io)
 624{
 625	struct crypt_config *cc = io->target->private;
 626	struct bio *base_bio = io->base_bio;
 627	struct dm_crypt_io *base_io = io->base_io;
 628	int error = io->error;
 629
 630	if (!atomic_dec_and_test(&io->pending))
 631		return;
 632
 633	mempool_free(io, cc->io_pool);
 634
 635	if (likely(!base_io))
 636		bio_endio(base_bio, error);
 637	else {
 638		if (error && !base_io->error)
 639			base_io->error = error;
 640		crypt_dec_pending(base_io);
 641	}
 642}
 643
 644/*
 645 * kcryptd/kcryptd_io:
 646 *
 647 * Needed because it would be very unwise to do decryption in an
 648 * interrupt context.
 649 *
 650 * kcryptd performs the actual encryption or decryption.
 651 *
 652 * kcryptd_io performs the IO submission.
 653 *
 654 * They must be separated as otherwise the final stages could be
 655 * starved by new requests which can block in the first stages due
 656 * to memory allocation.
 657 */
 658static void crypt_endio(struct bio *clone, int error)
 659{
 660	struct dm_crypt_io *io = clone->bi_private;
 661	struct crypt_config *cc = io->target->private;
 662	unsigned rw = bio_data_dir(clone);
 663
 664	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 665		error = -EIO;
 666
 667	/*
 668	 * free the processed pages
 669	 */
 670	if (rw == WRITE)
 671		crypt_free_buffer_pages(cc, clone);
 672
 673	bio_put(clone);
 674
 675	if (rw == READ && !error) {
 676		kcryptd_queue_crypt(io);
 677		return;
 678	}
 679
 680	if (unlikely(error))
 681		io->error = error;
 682
 683	crypt_dec_pending(io);
 684}
 685
 686static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 687{
 688	struct crypt_config *cc = io->target->private;
 689
 690	clone->bi_private = io;
 691	clone->bi_end_io  = crypt_endio;
 692	clone->bi_bdev    = cc->dev->bdev;
 693	clone->bi_rw      = io->base_bio->bi_rw;
 694	clone->bi_destructor = dm_crypt_bio_destructor;
 695}
 696
 697static void kcryptd_io_read(struct dm_crypt_io *io)
 698{
 699	struct crypt_config *cc = io->target->private;
 700	struct bio *base_bio = io->base_bio;
 701	struct bio *clone;
 702
 703	crypt_inc_pending(io);
 704
 705	/*
 706	 * The block layer might modify the bvec array, so always
 707	 * copy the required bvecs because we need the original
 708	 * one in order to decrypt the whole bio data *afterwards*.
 709	 */
 710	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
 711	if (unlikely(!clone)) {
 712		io->error = -ENOMEM;
 713		crypt_dec_pending(io);
 714		return;
 715	}
 716
 717	clone_init(io, clone);
 718	clone->bi_idx = 0;
 719	clone->bi_vcnt = bio_segments(base_bio);
 720	clone->bi_size = base_bio->bi_size;
 721	clone->bi_sector = cc->start + io->sector;
 722	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
 723	       sizeof(struct bio_vec) * clone->bi_vcnt);
 724
 725	generic_make_request(clone);
 726}
 727
 728static void kcryptd_io_write(struct dm_crypt_io *io)
 729{
 730	struct bio *clone = io->ctx.bio_out;
 731	generic_make_request(clone);
 732}
 733
 734static void kcryptd_io(struct work_struct *work)
 735{
 736	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
 737
 738	if (bio_data_dir(io->base_bio) == READ)
 739		kcryptd_io_read(io);
 740	else
 741		kcryptd_io_write(io);
 742}
 743
 744static void kcryptd_queue_io(struct dm_crypt_io *io)
 745{
 746	struct crypt_config *cc = io->target->private;
 747
 748	INIT_WORK(&io->work, kcryptd_io);
 749	queue_work(cc->io_queue, &io->work);
 750}
 751
 752static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
 753					  int error, int async)
 754{
 755	struct bio *clone = io->ctx.bio_out;
 756	struct crypt_config *cc = io->target->private;
 757
 758	if (unlikely(error < 0)) {
 759		crypt_free_buffer_pages(cc, clone);
 760		bio_put(clone);
 761		io->error = -EIO;
 762		crypt_dec_pending(io);
 763		return;
 764	}
 765
 766	/* crypt_convert should have filled the clone bio */
 767	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
 768
 769	clone->bi_sector = cc->start + io->sector;
 770
 771	if (async)
 772		kcryptd_queue_io(io);
 773	else
 774		generic_make_request(clone);
 775}
 776
 777static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
 778{
 779	struct crypt_config *cc = io->target->private;
 780	struct bio *clone;
 781	struct dm_crypt_io *new_io;
 782	int crypt_finished;
 783	unsigned out_of_pages = 0;
 784	unsigned remaining = io->base_bio->bi_size;
 785	sector_t sector = io->sector;
 786	int r;
 787
 788	/*
 789	 * Prevent io from disappearing until this function completes.
 790	 */
 791	crypt_inc_pending(io);
 792	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
 793
 794	/*
 795	 * The allocated buffers can be smaller than the whole bio,
 796	 * so repeat the whole process until all the data can be handled.
 797	 */
 798	while (remaining) {
 799		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
 800		if (unlikely(!clone)) {
 801			io->error = -ENOMEM;
 802			break;
 803		}
 804
 805		io->ctx.bio_out = clone;
 806		io->ctx.idx_out = 0;
 807
 808		remaining -= clone->bi_size;
 809		sector += bio_sectors(clone);
 810
 811		crypt_inc_pending(io);
 812		r = crypt_convert(cc, &io->ctx);
 813		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
 814
 815		/* Encryption was already finished, submit io now */
 816		if (crypt_finished) {
 817			kcryptd_crypt_write_io_submit(io, r, 0);
 818
 819			/*
 820			 * If there was an error, do not try next fragments.
 821			 * For async, error is processed in async handler.
 822			 */
 823			if (unlikely(r < 0))
 824				break;
 825
 826			io->sector = sector;
 827		}
 828
 829		/*
 830		 * Out of memory -> run queues
 831		 * But don't wait if split was due to the io size restriction
 832		 */
 833		if (unlikely(out_of_pages))
 834			congestion_wait(BLK_RW_ASYNC, HZ/100);
 835
 836		/*
 837		 * With async crypto it is unsafe to share the crypto context
 838		 * between fragments, so switch to a new dm_crypt_io structure.
 839		 */
 840		if (unlikely(!crypt_finished && remaining)) {
 841			new_io = crypt_io_alloc(io->target, io->base_bio,
 842						sector);
 843			crypt_inc_pending(new_io);
 844			crypt_convert_init(cc, &new_io->ctx, NULL,
 845					   io->base_bio, sector);
 846			new_io->ctx.idx_in = io->ctx.idx_in;
 847			new_io->ctx.offset_in = io->ctx.offset_in;
 848
 849			/*
 850			 * Fragments after the first use the base_io
 851			 * pending count.
 852			 */
 853			if (!io->base_io)
 854				new_io->base_io = io;
 855			else {
 856				new_io->base_io = io->base_io;
 857				crypt_inc_pending(io->base_io);
 858				crypt_dec_pending(io);
 859			}
 860
 861			io = new_io;
 862		}
 863	}
 864
 865	crypt_dec_pending(io);
 866}
 867
 868static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
 869{
 870	if (unlikely(error < 0))
 871		io->error = -EIO;
 872
 873	crypt_dec_pending(io);
 874}
 875
 876static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
 877{
 878	struct crypt_config *cc = io->target->private;
 879	int r = 0;
 880
 881	crypt_inc_pending(io);
 882
 883	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
 884			   io->sector);
 885
 886	r = crypt_convert(cc, &io->ctx);
 887
 888	if (atomic_dec_and_test(&io->ctx.pending))
 889		kcryptd_crypt_read_done(io, r);
 890
 891	crypt_dec_pending(io);
 892}
 893
 894static void kcryptd_async_done(struct crypto_async_request *async_req,
 895			       int error)
 896{
 897	struct dm_crypt_request *dmreq = async_req->data;
 898	struct convert_context *ctx = dmreq->ctx;
 899	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
 900	struct crypt_config *cc = io->target->private;
 901
 902	if (error == -EINPROGRESS) {
 903		complete(&ctx->restart);
 904		return;
 905	}
 906
 907	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
 908
 909	if (!atomic_dec_and_test(&ctx->pending))
 910		return;
 911
 912	if (bio_data_dir(io->base_bio) == READ)
 913		kcryptd_crypt_read_done(io, error);
 914	else
 915		kcryptd_crypt_write_io_submit(io, error, 1);
 916}
 917
 918static void kcryptd_crypt(struct work_struct *work)
 919{
 920	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
 921
 922	if (bio_data_dir(io->base_bio) == READ)
 923		kcryptd_crypt_read_convert(io);
 924	else
 925		kcryptd_crypt_write_convert(io);
 926}
 927
 928static void kcryptd_queue_crypt(struct dm_crypt_io *io)
 929{
 930	struct crypt_config *cc = io->target->private;
 931
 932	INIT_WORK(&io->work, kcryptd_crypt);
 933	queue_work(cc->crypt_queue, &io->work);
 934}
 935
 936/*
 937 * Decode key from its hex representation
 938 */
 939static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
 940{
 941	char buffer[3];
 942	char *endp;
 943	unsigned int i;
 944
 945	buffer[2] = '\0';
 946
 947	for (i = 0; i < size; i++) {
 948		buffer[0] = *hex++;
 949		buffer[1] = *hex++;
 950
 951		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
 952
 953		if (endp != &buffer[2])
 954			return -EINVAL;
 955	}
 956
 957	if (*hex != '\0')
 958		return -EINVAL;
 959
 960	return 0;
 961}
 962
 963/*
 964 * Encode key into its hex representation
 965 */
 966static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
 967{
 968	unsigned int i;
 969
 970	for (i = 0; i < size; i++) {
 971		sprintf(hex, "%02x", *key);
 972		hex += 2;
 973		key++;
 974	}
 975}
 976
 977static int crypt_set_key(struct crypt_config *cc, char *key)
 978{
 979	unsigned key_size = strlen(key) >> 1;
 980
 981	if (cc->key_size && cc->key_size != key_size)
 982		return -EINVAL;
 983
 984	cc->key_size = key_size; /* initial settings */
 985
 986	if ((!key_size && strcmp(key, "-")) ||
 987	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
 988		return -EINVAL;
 989
 990	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 991
 992	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
 993}
 994
 995static int crypt_wipe_key(struct crypt_config *cc)
 996{
 997	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 998	memset(&cc->key, 0, cc->key_size * sizeof(u8));
 999	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
1000}
1001
1002/*
1003 * Construct an encryption mapping:
1004 * <cipher> <key> <iv_offset> <dev_path> <start>
1005 */
1006static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1007{
1008	struct crypt_config *cc;
1009	struct crypto_ablkcipher *tfm;
1010	char *tmp;
1011	char *cipher;
1012	char *chainmode;
1013	char *ivmode;
1014	char *ivopts;
1015	unsigned int key_size;
1016	unsigned long long tmpll;
1017
1018	if (argc != 5) {
1019		ti->error = "Not enough arguments";
1020		return -EINVAL;
1021	}
1022
1023	tmp = argv[0];
1024	cipher = strsep(&tmp, "-");
1025	chainmode = strsep(&tmp, "-");
1026	ivopts = strsep(&tmp, "-");
1027	ivmode = strsep(&ivopts, ":");
1028
1029	if (tmp)
1030		DMWARN("Unexpected additional cipher options");
1031
1032	key_size = strlen(argv[1]) >> 1;
1033
1034 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1035	if (cc == NULL) {
1036		ti->error =
1037			"Cannot allocate transparent encryption context";
1038		return -ENOMEM;
1039	}
1040
1041	/* Compatibility mode for old dm-crypt cipher strings */
1042	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
1043		chainmode = "cbc";
1044		ivmode = "plain";
1045	}
1046
1047	if (strcmp(chainmode, "ecb") && !ivmode) {
1048		ti->error = "This chaining mode requires an IV mechanism";
1049		goto bad_cipher;
1050	}
1051
1052	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1053		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1054		ti->error = "Chain mode + cipher name is too long";
1055		goto bad_cipher;
1056	}
1057
1058	tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1059	if (IS_ERR(tfm)) {
1060		ti->error = "Error allocating crypto tfm";
1061		goto bad_cipher;
1062	}
1063
1064	strcpy(cc->cipher, cipher);
1065	strcpy(cc->chainmode, chainmode);
1066	cc->tfm = tfm;
1067
1068	if (crypt_set_key(cc, argv[1]) < 0) {
1069		ti->error = "Error decoding and setting key";
1070		goto bad_ivmode;
1071	}
1072
1073	/*
1074	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1075	 * See comments at iv code
1076	 */
1077
1078	if (ivmode == NULL)
1079		cc->iv_gen_ops = NULL;
1080	else if (strcmp(ivmode, "plain") == 0)
1081		cc->iv_gen_ops = &crypt_iv_plain_ops;
1082	else if (strcmp(ivmode, "plain64") == 0)
1083		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1084	else if (strcmp(ivmode, "essiv") == 0)
1085		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1086	else if (strcmp(ivmode, "benbi") == 0)
1087		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1088	else if (strcmp(ivmode, "null") == 0)
1089		cc->iv_gen_ops = &crypt_iv_null_ops;
1090	else {
1091		ti->error = "Invalid IV mode";
1092		goto bad_ivmode;
1093	}
1094
1095	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1096	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1097		goto bad_ivmode;
1098
1099	if (cc->iv_gen_ops && cc->iv_gen_ops->init &&
1100	    cc->iv_gen_ops->init(cc) < 0) {
1101		ti->error = "Error initialising IV";
1102		goto bad_slab_pool;
1103	}
1104
1105	cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1106	if (cc->iv_size)
1107		/* at least a 64 bit sector number should fit in our buffer */
1108		cc->iv_size = max(cc->iv_size,
1109				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1110	else {
1111		if (cc->iv_gen_ops) {
1112			DMWARN("Selected cipher does not support IVs");
1113			if (cc->iv_gen_ops->dtr)
1114				cc->iv_gen_ops->dtr(cc);
1115			cc->iv_gen_ops = NULL;
1116		}
1117	}
1118
1119	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1120	if (!cc->io_pool) {
1121		ti->error = "Cannot allocate crypt io mempool";
1122		goto bad_slab_pool;
1123	}
1124
1125	cc->dmreq_start = sizeof(struct ablkcipher_request);
1126	cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1127	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1128	cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1129			   ~(crypto_tfm_ctx_alignment() - 1);
1130
1131	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1132			sizeof(struct dm_crypt_request) + cc->iv_size);
1133	if (!cc->req_pool) {
1134		ti->error = "Cannot allocate crypt request mempool";
1135		goto bad_req_pool;
1136	}
1137	cc->req = NULL;
1138
1139	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1140	if (!cc->page_pool) {
1141		ti->error = "Cannot allocate page mempool";
1142		goto bad_page_pool;
1143	}
1144
1145	cc->bs = bioset_create(MIN_IOS, 0);
1146	if (!cc->bs) {
1147		ti->error = "Cannot allocate crypt bioset";
1148		goto bad_bs;
1149	}
1150
1151	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1152		ti->error = "Invalid iv_offset sector";
1153		goto bad_device;
1154	}
1155	cc->iv_offset = tmpll;
1156
1157	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1158		ti->error = "Invalid device sector";
1159		goto bad_device;
1160	}
1161	cc->start = tmpll;
1162
1163	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1164		ti->error = "Device lookup failed";
1165		goto bad_device;
1166	}
1167
1168	if (ivmode && cc->iv_gen_ops) {
1169		if (ivopts)
1170			*(ivopts - 1) = ':';
1171		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1172		if (!cc->iv_mode) {
1173			ti->error = "Error kmallocing iv_mode string";
1174			goto bad_ivmode_string;
1175		}
1176		strcpy(cc->iv_mode, ivmode);
1177	} else
1178		cc->iv_mode = NULL;
1179
1180	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1181	if (!cc->io_queue) {
1182		ti->error = "Couldn't create kcryptd io queue";
1183		goto bad_io_queue;
1184	}
1185
1186	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1187	if (!cc->crypt_queue) {
1188		ti->error = "Couldn't create kcryptd queue";
1189		goto bad_crypt_queue;
1190	}
1191
1192	ti->num_flush_requests = 1;
1193	ti->private = cc;
1194	return 0;
1195
1196bad_crypt_queue:
1197	destroy_workqueue(cc->io_queue);
1198bad_io_queue:
1199	kfree(cc->iv_mode);
1200bad_ivmode_string:
1201	dm_put_device(ti, cc->dev);
1202bad_device:
1203	bioset_free(cc->bs);
1204bad_bs:
1205	mempool_destroy(cc->page_pool);
1206bad_page_pool:
1207	mempool_destroy(cc->req_pool);
1208bad_req_pool:
1209	mempool_destroy(cc->io_pool);
1210bad_slab_pool:
1211	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1212		cc->iv_gen_ops->dtr(cc);
1213bad_ivmode:
1214	crypto_free_ablkcipher(tfm);
1215bad_cipher:
1216	/* Must zero key material before freeing */
1217	kzfree(cc);
1218	return -EINVAL;
1219}
1220
1221static void crypt_dtr(struct dm_target *ti)
1222{
1223	struct crypt_config *cc = (struct crypt_config *) ti->private;
1224
1225	destroy_workqueue(cc->io_queue);
1226	destroy_workqueue(cc->crypt_queue);
1227
1228	if (cc->req)
1229		mempool_free(cc->req, cc->req_pool);
1230
1231	bioset_free(cc->bs);
1232	mempool_destroy(cc->page_pool);
1233	mempool_destroy(cc->req_pool);
1234	mempool_destroy(cc->io_pool);
1235
1236	kfree(cc->iv_mode);
1237	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1238		cc->iv_gen_ops->dtr(cc);
1239	crypto_free_ablkcipher(cc->tfm);
1240	dm_put_device(ti, cc->dev);
1241
1242	/* Must zero key material before freeing */
1243	kzfree(cc);
1244}
1245
1246static int crypt_map(struct dm_target *ti, struct bio *bio,
1247		     union map_info *map_context)
1248{
1249	struct dm_crypt_io *io;
1250	struct crypt_config *cc;
1251
1252	if (unlikely(bio_empty_barrier(bio))) {
1253		cc = ti->private;
1254		bio->bi_bdev = cc->dev->bdev;
1255		return DM_MAPIO_REMAPPED;
1256	}
1257
1258	io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1259
1260	if (bio_data_dir(io->base_bio) == READ)
1261		kcryptd_queue_io(io);
1262	else
1263		kcryptd_queue_crypt(io);
1264
1265	return DM_MAPIO_SUBMITTED;
1266}
1267
1268static int crypt_status(struct dm_target *ti, status_type_t type,
1269			char *result, unsigned int maxlen)
1270{
1271	struct crypt_config *cc = (struct crypt_config *) ti->private;
1272	unsigned int sz = 0;
1273
1274	switch (type) {
1275	case STATUSTYPE_INFO:
1276		result[0] = '\0';
1277		break;
1278
1279	case STATUSTYPE_TABLE:
1280		if (cc->iv_mode)
1281			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1282			       cc->iv_mode);
1283		else
1284			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1285
1286		if (cc->key_size > 0) {
1287			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1288				return -ENOMEM;
1289
1290			crypt_encode_key(result + sz, cc->key, cc->key_size);
1291			sz += cc->key_size << 1;
1292		} else {
1293			if (sz >= maxlen)
1294				return -ENOMEM;
1295			result[sz++] = '-';
1296		}
1297
1298		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1299				cc->dev->name, (unsigned long long)cc->start);
1300		break;
1301	}
1302	return 0;
1303}
1304
1305static void crypt_postsuspend(struct dm_target *ti)
1306{
1307	struct crypt_config *cc = ti->private;
1308
1309	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1310}
1311
1312static int crypt_preresume(struct dm_target *ti)
1313{
1314	struct crypt_config *cc = ti->private;
1315
1316	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1317		DMERR("aborting resume - crypt key is not set.");
1318		return -EAGAIN;
1319	}
1320
1321	return 0;
1322}
1323
1324static void crypt_resume(struct dm_target *ti)
1325{
1326	struct crypt_config *cc = ti->private;
1327
1328	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1329}
1330
1331/* Message interface
1332 *	key set <key>
1333 *	key wipe
1334 */
1335static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1336{
1337	struct crypt_config *cc = ti->private;
1338	int ret = -EINVAL;
1339
1340	if (argc < 2)
1341		goto error;
1342
1343	if (!strnicmp(argv[0], MESG_STR("key"))) {
1344		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1345			DMWARN("not suspended during key manipulation.");
1346			return -EINVAL;
1347		}
1348		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1349			ret = crypt_set_key(cc, argv[2]);
1350			if (ret)
1351				return ret;
1352			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1353				ret = cc->iv_gen_ops->init(cc);
1354			return ret;
1355		}
1356		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1357			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1358				ret = cc->iv_gen_ops->wipe(cc);
1359				if (ret)
1360					return ret;
1361			}
1362			return crypt_wipe_key(cc);
1363		}
1364	}
1365
1366error:
1367	DMWARN("unrecognised message received.");
1368	return -EINVAL;
1369}
1370
1371static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1372		       struct bio_vec *biovec, int max_size)
1373{
1374	struct crypt_config *cc = ti->private;
1375	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1376
1377	if (!q->merge_bvec_fn)
1378		return max_size;
1379
1380	bvm->bi_bdev = cc->dev->bdev;
1381	bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1382
1383	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1384}
1385
1386static int crypt_iterate_devices(struct dm_target *ti,
1387				 iterate_devices_callout_fn fn, void *data)
1388{
1389	struct crypt_config *cc = ti->private;
1390
1391	return fn(ti, cc->dev, cc->start, ti->len, data);
1392}
1393
1394static struct target_type crypt_target = {
1395	.name   = "crypt",
1396	.version = {1, 7, 0},
1397	.module = THIS_MODULE,
1398	.ctr    = crypt_ctr,
1399	.dtr    = crypt_dtr,
1400	.map    = crypt_map,
1401	.status = crypt_status,
1402	.postsuspend = crypt_postsuspend,
1403	.preresume = crypt_preresume,
1404	.resume = crypt_resume,
1405	.message = crypt_message,
1406	.merge  = crypt_merge,
1407	.iterate_devices = crypt_iterate_devices,
1408};
1409
1410static int __init dm_crypt_init(void)
1411{
1412	int r;
1413
1414	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1415	if (!_crypt_io_pool)
1416		return -ENOMEM;
1417
1418	r = dm_register_target(&crypt_target);
1419	if (r < 0) {
1420		DMERR("register failed %d", r);
1421		kmem_cache_destroy(_crypt_io_pool);
1422	}
1423
1424	return r;
1425}
1426
1427static void __exit dm_crypt_exit(void)
1428{
1429	dm_unregister_target(&crypt_target);
1430	kmem_cache_destroy(_crypt_io_pool);
1431}
1432
1433module_init(dm_crypt_init);
1434module_exit(dm_crypt_exit);
1435
1436MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1437MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1438MODULE_LICENSE("GPL");