/drivers/scsi/lpfc/lpfc_scsi.c
C | 3658 lines | 2408 code | 346 blank | 904 comment | 397 complexity | d91239933dccdd38e2ea663db82a2018 MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
Large files files are truncated, but you can click here to view the full file
1/*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2009 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21#include <linux/pci.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <asm/unaligned.h>
26
27#include <scsi/scsi.h>
28#include <scsi/scsi_device.h>
29#include <scsi/scsi_eh.h>
30#include <scsi/scsi_host.h>
31#include <scsi/scsi_tcq.h>
32#include <scsi/scsi_transport_fc.h>
33
34#include "lpfc_version.h"
35#include "lpfc_hw4.h"
36#include "lpfc_hw.h"
37#include "lpfc_sli.h"
38#include "lpfc_sli4.h"
39#include "lpfc_nl.h"
40#include "lpfc_disc.h"
41#include "lpfc_scsi.h"
42#include "lpfc.h"
43#include "lpfc_logmsg.h"
44#include "lpfc_crtn.h"
45#include "lpfc_vport.h"
46
47#define LPFC_RESET_WAIT 2
48#define LPFC_ABORT_WAIT 2
49
50int _dump_buf_done;
51
52static char *dif_op_str[] = {
53 "SCSI_PROT_NORMAL",
54 "SCSI_PROT_READ_INSERT",
55 "SCSI_PROT_WRITE_STRIP",
56 "SCSI_PROT_READ_STRIP",
57 "SCSI_PROT_WRITE_INSERT",
58 "SCSI_PROT_READ_PASS",
59 "SCSI_PROT_WRITE_PASS",
60};
61static void
62lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63static void
64lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65
66static void
67lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68{
69 void *src, *dst;
70 struct scatterlist *sgde = scsi_sglist(cmnd);
71
72 if (!_dump_buf_data) {
73 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 __func__);
76 return;
77 }
78
79
80 if (!sgde) {
81 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 "9051 BLKGRD: ERROR: data scatterlist is null\n");
83 return;
84 }
85
86 dst = (void *) _dump_buf_data;
87 while (sgde) {
88 src = sg_virt(sgde);
89 memcpy(dst, src, sgde->length);
90 dst += sgde->length;
91 sgde = sg_next(sgde);
92 }
93}
94
95static void
96lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97{
98 void *src, *dst;
99 struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100
101 if (!_dump_buf_dif) {
102 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 __func__);
105 return;
106 }
107
108 if (!sgde) {
109 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 "9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 return;
112 }
113
114 dst = _dump_buf_dif;
115 while (sgde) {
116 src = sg_virt(sgde);
117 memcpy(dst, src, sgde->length);
118 dst += sgde->length;
119 sgde = sg_next(sgde);
120 }
121}
122
123/**
124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125 * @phba: Pointer to HBA object.
126 * @lpfc_cmd: lpfc scsi command object pointer.
127 *
128 * This function is called from the lpfc_prep_task_mgmt_cmd function to
129 * set the last bit in the response sge entry.
130 **/
131static void
132lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 struct lpfc_scsi_buf *lpfc_cmd)
134{
135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 if (sgl) {
137 sgl += 1;
138 sgl->word2 = le32_to_cpu(sgl->word2);
139 bf_set(lpfc_sli4_sge_last, sgl, 1);
140 sgl->word2 = cpu_to_le32(sgl->word2);
141 }
142}
143
144/**
145 * lpfc_update_stats - Update statistical data for the command completion
146 * @phba: Pointer to HBA object.
147 * @lpfc_cmd: lpfc scsi command object pointer.
148 *
149 * This function is called when there is a command completion and this
150 * function updates the statistical data for the command completion.
151 **/
152static void
153lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
154{
155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 struct lpfc_nodelist *pnode = rdata->pnode;
157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 unsigned long flags;
159 struct Scsi_Host *shost = cmd->device->host;
160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 unsigned long latency;
162 int i;
163
164 if (cmd->result)
165 return;
166
167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168
169 spin_lock_irqsave(shost->host_lock, flags);
170 if (!vport->stat_data_enabled ||
171 vport->stat_data_blocked ||
172 !pnode->lat_data ||
173 (phba->bucket_type == LPFC_NO_BUCKET)) {
174 spin_unlock_irqrestore(shost->host_lock, flags);
175 return;
176 }
177
178 if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
179 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
180 phba->bucket_step;
181 /* check array subscript bounds */
182 if (i < 0)
183 i = 0;
184 else if (i >= LPFC_MAX_BUCKET_COUNT)
185 i = LPFC_MAX_BUCKET_COUNT - 1;
186 } else {
187 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
188 if (latency <= (phba->bucket_base +
189 ((1<<i)*phba->bucket_step)))
190 break;
191 }
192
193 pnode->lat_data[i].cmd_count++;
194 spin_unlock_irqrestore(shost->host_lock, flags);
195}
196
197/**
198 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
199 * @phba: Pointer to HBA context object.
200 * @vport: Pointer to vport object.
201 * @ndlp: Pointer to FC node associated with the target.
202 * @lun: Lun number of the scsi device.
203 * @old_val: Old value of the queue depth.
204 * @new_val: New value of the queue depth.
205 *
206 * This function sends an event to the mgmt application indicating
207 * there is a change in the scsi device queue depth.
208 **/
209static void
210lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
211 struct lpfc_vport *vport,
212 struct lpfc_nodelist *ndlp,
213 uint32_t lun,
214 uint32_t old_val,
215 uint32_t new_val)
216{
217 struct lpfc_fast_path_event *fast_path_evt;
218 unsigned long flags;
219
220 fast_path_evt = lpfc_alloc_fast_evt(phba);
221 if (!fast_path_evt)
222 return;
223
224 fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
225 FC_REG_SCSI_EVENT;
226 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
227 LPFC_EVENT_VARQUEDEPTH;
228
229 /* Report all luns with change in queue depth */
230 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
231 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
232 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
233 &ndlp->nlp_portname, sizeof(struct lpfc_name));
234 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
235 &ndlp->nlp_nodename, sizeof(struct lpfc_name));
236 }
237
238 fast_path_evt->un.queue_depth_evt.oldval = old_val;
239 fast_path_evt->un.queue_depth_evt.newval = new_val;
240 fast_path_evt->vport = vport;
241
242 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
243 spin_lock_irqsave(&phba->hbalock, flags);
244 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
245 spin_unlock_irqrestore(&phba->hbalock, flags);
246 lpfc_worker_wake_up(phba);
247
248 return;
249}
250
251/**
252 * lpfc_change_queue_depth - Alter scsi device queue depth
253 * @sdev: Pointer the scsi device on which to change the queue depth.
254 * @qdepth: New queue depth to set the sdev to.
255 * @reason: The reason for the queue depth change.
256 *
257 * This function is called by the midlayer and the LLD to alter the queue
258 * depth for a scsi device. This function sets the queue depth to the new
259 * value and sends an event out to log the queue depth change.
260 **/
261int
262lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
263{
264 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
265 struct lpfc_hba *phba = vport->phba;
266 struct lpfc_rport_data *rdata;
267 unsigned long new_queue_depth, old_queue_depth;
268
269 old_queue_depth = sdev->queue_depth;
270 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
271 new_queue_depth = sdev->queue_depth;
272 rdata = sdev->hostdata;
273 if (rdata)
274 lpfc_send_sdev_queuedepth_change_event(phba, vport,
275 rdata->pnode, sdev->lun,
276 old_queue_depth,
277 new_queue_depth);
278 return sdev->queue_depth;
279}
280
281/**
282 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
283 * @phba: The Hba for which this call is being executed.
284 *
285 * This routine is called when there is resource error in driver or firmware.
286 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
287 * posts at most 1 event each second. This routine wakes up worker thread of
288 * @phba to process WORKER_RAM_DOWN_EVENT event.
289 *
290 * This routine should be called with no lock held.
291 **/
292void
293lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
294{
295 unsigned long flags;
296 uint32_t evt_posted;
297
298 spin_lock_irqsave(&phba->hbalock, flags);
299 atomic_inc(&phba->num_rsrc_err);
300 phba->last_rsrc_error_time = jiffies;
301
302 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
303 spin_unlock_irqrestore(&phba->hbalock, flags);
304 return;
305 }
306
307 phba->last_ramp_down_time = jiffies;
308
309 spin_unlock_irqrestore(&phba->hbalock, flags);
310
311 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
312 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
313 if (!evt_posted)
314 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
315 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
316
317 if (!evt_posted)
318 lpfc_worker_wake_up(phba);
319 return;
320}
321
322/**
323 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
324 * @phba: The Hba for which this call is being executed.
325 *
326 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
327 * post at most 1 event every 5 minute after last_ramp_up_time or
328 * last_rsrc_error_time. This routine wakes up worker thread of @phba
329 * to process WORKER_RAM_DOWN_EVENT event.
330 *
331 * This routine should be called with no lock held.
332 **/
333static inline void
334lpfc_rampup_queue_depth(struct lpfc_vport *vport,
335 uint32_t queue_depth)
336{
337 unsigned long flags;
338 struct lpfc_hba *phba = vport->phba;
339 uint32_t evt_posted;
340 atomic_inc(&phba->num_cmd_success);
341
342 if (vport->cfg_lun_queue_depth <= queue_depth)
343 return;
344 spin_lock_irqsave(&phba->hbalock, flags);
345 if (time_before(jiffies,
346 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
347 time_before(jiffies,
348 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
349 spin_unlock_irqrestore(&phba->hbalock, flags);
350 return;
351 }
352 phba->last_ramp_up_time = jiffies;
353 spin_unlock_irqrestore(&phba->hbalock, flags);
354
355 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
356 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
357 if (!evt_posted)
358 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
359 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
360
361 if (!evt_posted)
362 lpfc_worker_wake_up(phba);
363 return;
364}
365
366/**
367 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
368 * @phba: The Hba for which this call is being executed.
369 *
370 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker
371 * thread.This routine reduces queue depth for all scsi device on each vport
372 * associated with @phba.
373 **/
374void
375lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
376{
377 struct lpfc_vport **vports;
378 struct Scsi_Host *shost;
379 struct scsi_device *sdev;
380 unsigned long new_queue_depth;
381 unsigned long num_rsrc_err, num_cmd_success;
382 int i;
383
384 num_rsrc_err = atomic_read(&phba->num_rsrc_err);
385 num_cmd_success = atomic_read(&phba->num_cmd_success);
386
387 vports = lpfc_create_vport_work_array(phba);
388 if (vports != NULL)
389 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
390 shost = lpfc_shost_from_vport(vports[i]);
391 shost_for_each_device(sdev, shost) {
392 new_queue_depth =
393 sdev->queue_depth * num_rsrc_err /
394 (num_rsrc_err + num_cmd_success);
395 if (!new_queue_depth)
396 new_queue_depth = sdev->queue_depth - 1;
397 else
398 new_queue_depth = sdev->queue_depth -
399 new_queue_depth;
400 lpfc_change_queue_depth(sdev, new_queue_depth,
401 SCSI_QDEPTH_DEFAULT);
402 }
403 }
404 lpfc_destroy_vport_work_array(phba, vports);
405 atomic_set(&phba->num_rsrc_err, 0);
406 atomic_set(&phba->num_cmd_success, 0);
407}
408
409/**
410 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
411 * @phba: The Hba for which this call is being executed.
412 *
413 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker
414 * thread.This routine increases queue depth for all scsi device on each vport
415 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
416 * num_cmd_success to zero.
417 **/
418void
419lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
420{
421 struct lpfc_vport **vports;
422 struct Scsi_Host *shost;
423 struct scsi_device *sdev;
424 int i;
425
426 vports = lpfc_create_vport_work_array(phba);
427 if (vports != NULL)
428 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
429 shost = lpfc_shost_from_vport(vports[i]);
430 shost_for_each_device(sdev, shost) {
431 if (vports[i]->cfg_lun_queue_depth <=
432 sdev->queue_depth)
433 continue;
434 lpfc_change_queue_depth(sdev,
435 sdev->queue_depth+1,
436 SCSI_QDEPTH_RAMP_UP);
437 }
438 }
439 lpfc_destroy_vport_work_array(phba, vports);
440 atomic_set(&phba->num_rsrc_err, 0);
441 atomic_set(&phba->num_cmd_success, 0);
442}
443
444/**
445 * lpfc_scsi_dev_block - set all scsi hosts to block state
446 * @phba: Pointer to HBA context object.
447 *
448 * This function walks vport list and set each SCSI host to block state
449 * by invoking fc_remote_port_delete() routine. This function is invoked
450 * with EEH when device's PCI slot has been permanently disabled.
451 **/
452void
453lpfc_scsi_dev_block(struct lpfc_hba *phba)
454{
455 struct lpfc_vport **vports;
456 struct Scsi_Host *shost;
457 struct scsi_device *sdev;
458 struct fc_rport *rport;
459 int i;
460
461 vports = lpfc_create_vport_work_array(phba);
462 if (vports != NULL)
463 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
464 shost = lpfc_shost_from_vport(vports[i]);
465 shost_for_each_device(sdev, shost) {
466 rport = starget_to_rport(scsi_target(sdev));
467 fc_remote_port_delete(rport);
468 }
469 }
470 lpfc_destroy_vport_work_array(phba, vports);
471}
472
473/**
474 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
475 * @vport: The virtual port for which this call being executed.
476 * @num_to_allocate: The requested number of buffers to allocate.
477 *
478 * This routine allocates a scsi buffer for device with SLI-3 interface spec,
479 * the scsi buffer contains all the necessary information needed to initiate
480 * a SCSI I/O. The non-DMAable buffer region contains information to build
481 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
482 * and the initial BPL. In addition to allocating memory, the FCP CMND and
483 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
484 *
485 * Return codes:
486 * int - number of scsi buffers that were allocated.
487 * 0 = failure, less than num_to_alloc is a partial failure.
488 **/
489static int
490lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
491{
492 struct lpfc_hba *phba = vport->phba;
493 struct lpfc_scsi_buf *psb;
494 struct ulp_bde64 *bpl;
495 IOCB_t *iocb;
496 dma_addr_t pdma_phys_fcp_cmd;
497 dma_addr_t pdma_phys_fcp_rsp;
498 dma_addr_t pdma_phys_bpl;
499 uint16_t iotag;
500 int bcnt;
501
502 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
503 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
504 if (!psb)
505 break;
506
507 /*
508 * Get memory from the pci pool to map the virt space to pci
509 * bus space for an I/O. The DMA buffer includes space for the
510 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
511 * necessary to support the sg_tablesize.
512 */
513 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
514 GFP_KERNEL, &psb->dma_handle);
515 if (!psb->data) {
516 kfree(psb);
517 break;
518 }
519
520 /* Initialize virtual ptrs to dma_buf region. */
521 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
522
523 /* Allocate iotag for psb->cur_iocbq. */
524 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
525 if (iotag == 0) {
526 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
527 psb->data, psb->dma_handle);
528 kfree(psb);
529 break;
530 }
531 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
532
533 psb->fcp_cmnd = psb->data;
534 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
535 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
536 sizeof(struct fcp_rsp);
537
538 /* Initialize local short-hand pointers. */
539 bpl = psb->fcp_bpl;
540 pdma_phys_fcp_cmd = psb->dma_handle;
541 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
542 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
543 sizeof(struct fcp_rsp);
544
545 /*
546 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
547 * are sg list bdes. Initialize the first two and leave the
548 * rest for queuecommand.
549 */
550 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
551 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
552 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
553 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
554 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
555
556 /* Setup the physical region for the FCP RSP */
557 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
558 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
559 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
560 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
561 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
562
563 /*
564 * Since the IOCB for the FCP I/O is built into this
565 * lpfc_scsi_buf, initialize it with all known data now.
566 */
567 iocb = &psb->cur_iocbq.iocb;
568 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
569 if ((phba->sli_rev == 3) &&
570 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
571 /* fill in immediate fcp command BDE */
572 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
573 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
574 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
575 unsli3.fcp_ext.icd);
576 iocb->un.fcpi64.bdl.addrHigh = 0;
577 iocb->ulpBdeCount = 0;
578 iocb->ulpLe = 0;
579 /* fill in responce BDE */
580 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
581 BUFF_TYPE_BDE_64;
582 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
583 sizeof(struct fcp_rsp);
584 iocb->unsli3.fcp_ext.rbde.addrLow =
585 putPaddrLow(pdma_phys_fcp_rsp);
586 iocb->unsli3.fcp_ext.rbde.addrHigh =
587 putPaddrHigh(pdma_phys_fcp_rsp);
588 } else {
589 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
590 iocb->un.fcpi64.bdl.bdeSize =
591 (2 * sizeof(struct ulp_bde64));
592 iocb->un.fcpi64.bdl.addrLow =
593 putPaddrLow(pdma_phys_bpl);
594 iocb->un.fcpi64.bdl.addrHigh =
595 putPaddrHigh(pdma_phys_bpl);
596 iocb->ulpBdeCount = 1;
597 iocb->ulpLe = 1;
598 }
599 iocb->ulpClass = CLASS3;
600 psb->status = IOSTAT_SUCCESS;
601 /* Put it back into the SCSI buffer list */
602 lpfc_release_scsi_buf_s3(phba, psb);
603
604 }
605
606 return bcnt;
607}
608
609/**
610 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
611 * @phba: pointer to lpfc hba data structure.
612 * @axri: pointer to the fcp xri abort wcqe structure.
613 *
614 * This routine is invoked by the worker thread to process a SLI4 fast-path
615 * FCP aborted xri.
616 **/
617void
618lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
619 struct sli4_wcqe_xri_aborted *axri)
620{
621 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
622 struct lpfc_scsi_buf *psb, *next_psb;
623 unsigned long iflag = 0;
624 struct lpfc_iocbq *iocbq;
625 int i;
626
627 spin_lock_irqsave(&phba->hbalock, iflag);
628 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
629 list_for_each_entry_safe(psb, next_psb,
630 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
631 if (psb->cur_iocbq.sli4_xritag == xri) {
632 list_del(&psb->list);
633 psb->exch_busy = 0;
634 psb->status = IOSTAT_SUCCESS;
635 spin_unlock(
636 &phba->sli4_hba.abts_scsi_buf_list_lock);
637 spin_unlock_irqrestore(&phba->hbalock, iflag);
638 lpfc_release_scsi_buf_s4(phba, psb);
639 return;
640 }
641 }
642 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
643 for (i = 1; i <= phba->sli.last_iotag; i++) {
644 iocbq = phba->sli.iocbq_lookup[i];
645
646 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
647 (iocbq->iocb_flag & LPFC_IO_LIBDFC))
648 continue;
649 if (iocbq->sli4_xritag != xri)
650 continue;
651 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
652 psb->exch_busy = 0;
653 spin_unlock_irqrestore(&phba->hbalock, iflag);
654 return;
655
656 }
657 spin_unlock_irqrestore(&phba->hbalock, iflag);
658}
659
660/**
661 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
662 * @phba: pointer to lpfc hba data structure.
663 *
664 * This routine walks the list of scsi buffers that have been allocated and
665 * repost them to the HBA by using SGL block post. This is needed after a
666 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
667 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
668 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
669 *
670 * Returns: 0 = success, non-zero failure.
671 **/
672int
673lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
674{
675 struct lpfc_scsi_buf *psb;
676 int index, status, bcnt = 0, rcnt = 0, rc = 0;
677 LIST_HEAD(sblist);
678
679 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
680 psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
681 if (psb) {
682 /* Remove from SCSI buffer list */
683 list_del(&psb->list);
684 /* Add it to a local SCSI buffer list */
685 list_add_tail(&psb->list, &sblist);
686 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
687 bcnt = rcnt;
688 rcnt = 0;
689 }
690 } else
691 /* A hole present in the XRI array, need to skip */
692 bcnt = rcnt;
693
694 if (index == phba->sli4_hba.scsi_xri_cnt - 1)
695 /* End of XRI array for SCSI buffer, complete */
696 bcnt = rcnt;
697
698 /* Continue until collect up to a nembed page worth of sgls */
699 if (bcnt == 0)
700 continue;
701 /* Now, post the SCSI buffer list sgls as a block */
702 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
703 /* Reset SCSI buffer count for next round of posting */
704 bcnt = 0;
705 while (!list_empty(&sblist)) {
706 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
707 list);
708 if (status) {
709 /* Put this back on the abort scsi list */
710 psb->exch_busy = 1;
711 rc++;
712 } else {
713 psb->exch_busy = 0;
714 psb->status = IOSTAT_SUCCESS;
715 }
716 /* Put it back into the SCSI buffer list */
717 lpfc_release_scsi_buf_s4(phba, psb);
718 }
719 }
720 return rc;
721}
722
723/**
724 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
725 * @vport: The virtual port for which this call being executed.
726 * @num_to_allocate: The requested number of buffers to allocate.
727 *
728 * This routine allocates a scsi buffer for device with SLI-4 interface spec,
729 * the scsi buffer contains all the necessary information needed to initiate
730 * a SCSI I/O.
731 *
732 * Return codes:
733 * int - number of scsi buffers that were allocated.
734 * 0 = failure, less than num_to_alloc is a partial failure.
735 **/
736static int
737lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
738{
739 struct lpfc_hba *phba = vport->phba;
740 struct lpfc_scsi_buf *psb;
741 struct sli4_sge *sgl;
742 IOCB_t *iocb;
743 dma_addr_t pdma_phys_fcp_cmd;
744 dma_addr_t pdma_phys_fcp_rsp;
745 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
746 uint16_t iotag, last_xritag = NO_XRI;
747 int status = 0, index;
748 int bcnt;
749 int non_sequential_xri = 0;
750 int rc = 0;
751 LIST_HEAD(sblist);
752
753 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
754 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
755 if (!psb)
756 break;
757
758 /*
759 * Get memory from the pci pool to map the virt space to pci bus
760 * space for an I/O. The DMA buffer includes space for the
761 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
762 * necessary to support the sg_tablesize.
763 */
764 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
765 GFP_KERNEL, &psb->dma_handle);
766 if (!psb->data) {
767 kfree(psb);
768 break;
769 }
770
771 /* Initialize virtual ptrs to dma_buf region. */
772 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
773
774 /* Allocate iotag for psb->cur_iocbq. */
775 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
776 if (iotag == 0) {
777 kfree(psb);
778 break;
779 }
780
781 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
782 if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
783 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
784 psb->data, psb->dma_handle);
785 kfree(psb);
786 break;
787 }
788 if (last_xritag != NO_XRI
789 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
790 non_sequential_xri = 1;
791 } else
792 list_add_tail(&psb->list, &sblist);
793 last_xritag = psb->cur_iocbq.sli4_xritag;
794
795 index = phba->sli4_hba.scsi_xri_cnt++;
796 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
797
798 psb->fcp_bpl = psb->data;
799 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
800 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
801 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
802 sizeof(struct fcp_cmnd));
803
804 /* Initialize local short-hand pointers. */
805 sgl = (struct sli4_sge *)psb->fcp_bpl;
806 pdma_phys_bpl = psb->dma_handle;
807 pdma_phys_fcp_cmd =
808 (psb->dma_handle + phba->cfg_sg_dma_buf_size)
809 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
810 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
811
812 /*
813 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
814 * are sg list bdes. Initialize the first two and leave the
815 * rest for queuecommand.
816 */
817 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
818 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
819 bf_set(lpfc_sli4_sge_last, sgl, 0);
820 sgl->word2 = cpu_to_le32(sgl->word2);
821 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
822 sgl++;
823
824 /* Setup the physical region for the FCP RSP */
825 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
826 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
827 bf_set(lpfc_sli4_sge_last, sgl, 1);
828 sgl->word2 = cpu_to_le32(sgl->word2);
829 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
830
831 /*
832 * Since the IOCB for the FCP I/O is built into this
833 * lpfc_scsi_buf, initialize it with all known data now.
834 */
835 iocb = &psb->cur_iocbq.iocb;
836 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
837 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
838 /* setting the BLP size to 2 * sizeof BDE may not be correct.
839 * We are setting the bpl to point to out sgl. An sgl's
840 * entries are 16 bytes, a bpl entries are 12 bytes.
841 */
842 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
843 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
844 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
845 iocb->ulpBdeCount = 1;
846 iocb->ulpLe = 1;
847 iocb->ulpClass = CLASS3;
848 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
849 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
850 else
851 pdma_phys_bpl1 = 0;
852 psb->dma_phys_bpl = pdma_phys_bpl;
853 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
854 if (non_sequential_xri) {
855 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
856 pdma_phys_bpl1,
857 psb->cur_iocbq.sli4_xritag);
858 if (status) {
859 /* Put this back on the abort scsi list */
860 psb->exch_busy = 1;
861 rc++;
862 } else {
863 psb->exch_busy = 0;
864 psb->status = IOSTAT_SUCCESS;
865 }
866 /* Put it back into the SCSI buffer list */
867 lpfc_release_scsi_buf_s4(phba, psb);
868 break;
869 }
870 }
871 if (bcnt) {
872 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
873 /* Reset SCSI buffer count for next round of posting */
874 while (!list_empty(&sblist)) {
875 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
876 list);
877 if (status) {
878 /* Put this back on the abort scsi list */
879 psb->exch_busy = 1;
880 rc++;
881 } else {
882 psb->exch_busy = 0;
883 psb->status = IOSTAT_SUCCESS;
884 }
885 /* Put it back into the SCSI buffer list */
886 lpfc_release_scsi_buf_s4(phba, psb);
887 }
888 }
889
890 return bcnt + non_sequential_xri - rc;
891}
892
893/**
894 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
895 * @vport: The virtual port for which this call being executed.
896 * @num_to_allocate: The requested number of buffers to allocate.
897 *
898 * This routine wraps the actual SCSI buffer allocator function pointer from
899 * the lpfc_hba struct.
900 *
901 * Return codes:
902 * int - number of scsi buffers that were allocated.
903 * 0 = failure, less than num_to_alloc is a partial failure.
904 **/
905static inline int
906lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
907{
908 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
909}
910
911/**
912 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
913 * @phba: The HBA for which this call is being executed.
914 *
915 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
916 * and returns to caller.
917 *
918 * Return codes:
919 * NULL - Error
920 * Pointer to lpfc_scsi_buf - Success
921 **/
922static struct lpfc_scsi_buf*
923lpfc_get_scsi_buf(struct lpfc_hba * phba)
924{
925 struct lpfc_scsi_buf * lpfc_cmd = NULL;
926 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
927 unsigned long iflag = 0;
928
929 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
930 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
931 if (lpfc_cmd) {
932 lpfc_cmd->seg_cnt = 0;
933 lpfc_cmd->nonsg_phys = 0;
934 lpfc_cmd->prot_seg_cnt = 0;
935 }
936 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
937 return lpfc_cmd;
938}
939
940/**
941 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
942 * @phba: The Hba for which this call is being executed.
943 * @psb: The scsi buffer which is being released.
944 *
945 * This routine releases @psb scsi buffer by adding it to tail of @phba
946 * lpfc_scsi_buf_list list.
947 **/
948static void
949lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
950{
951 unsigned long iflag = 0;
952
953 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
954 psb->pCmd = NULL;
955 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
956 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
957}
958
959/**
960 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
961 * @phba: The Hba for which this call is being executed.
962 * @psb: The scsi buffer which is being released.
963 *
964 * This routine releases @psb scsi buffer by adding it to tail of @phba
965 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
966 * and cannot be reused for at least RA_TOV amount of time if it was
967 * aborted.
968 **/
969static void
970lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
971{
972 unsigned long iflag = 0;
973
974 if (psb->exch_busy) {
975 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
976 iflag);
977 psb->pCmd = NULL;
978 list_add_tail(&psb->list,
979 &phba->sli4_hba.lpfc_abts_scsi_buf_list);
980 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
981 iflag);
982 } else {
983
984 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
985 psb->pCmd = NULL;
986 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
987 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
988 }
989}
990
991/**
992 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
993 * @phba: The Hba for which this call is being executed.
994 * @psb: The scsi buffer which is being released.
995 *
996 * This routine releases @psb scsi buffer by adding it to tail of @phba
997 * lpfc_scsi_buf_list list.
998 **/
999static void
1000lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1001{
1002
1003 phba->lpfc_release_scsi_buf(phba, psb);
1004}
1005
1006/**
1007 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1008 * @phba: The Hba for which this call is being executed.
1009 * @lpfc_cmd: The scsi buffer which is going to be mapped.
1010 *
1011 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1012 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1013 * through sg elements and format the bdea. This routine also initializes all
1014 * IOCB fields which are dependent on scsi command request buffer.
1015 *
1016 * Return codes:
1017 * 1 - Error
1018 * 0 - Success
1019 **/
1020static int
1021lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1022{
1023 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1024 struct scatterlist *sgel = NULL;
1025 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1026 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1027 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1028 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1029 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1030 dma_addr_t physaddr;
1031 uint32_t num_bde = 0;
1032 int nseg, datadir = scsi_cmnd->sc_data_direction;
1033
1034 /*
1035 * There are three possibilities here - use scatter-gather segment, use
1036 * the single mapping, or neither. Start the lpfc command prep by
1037 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1038 * data bde entry.
1039 */
1040 bpl += 2;
1041 if (scsi_sg_count(scsi_cmnd)) {
1042 /*
1043 * The driver stores the segment count returned from pci_map_sg
1044 * because this a count of dma-mappings used to map the use_sg
1045 * pages. They are not guaranteed to be the same for those
1046 * architectures that implement an IOMMU.
1047 */
1048
1049 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1050 scsi_sg_count(scsi_cmnd), datadir);
1051 if (unlikely(!nseg))
1052 return 1;
1053
1054 lpfc_cmd->seg_cnt = nseg;
1055 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1056 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1057 "9064 BLKGRD: %s: Too many sg segments from "
1058 "dma_map_sg. Config %d, seg_cnt %d\n",
1059 __func__, phba->cfg_sg_seg_cnt,
1060 lpfc_cmd->seg_cnt);
1061 scsi_dma_unmap(scsi_cmnd);
1062 return 1;
1063 }
1064
1065 /*
1066 * The driver established a maximum scatter-gather segment count
1067 * during probe that limits the number of sg elements in any
1068 * single scsi command. Just run through the seg_cnt and format
1069 * the bde's.
1070 * When using SLI-3 the driver will try to fit all the BDEs into
1071 * the IOCB. If it can't then the BDEs get added to a BPL as it
1072 * does for SLI-2 mode.
1073 */
1074 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1075 physaddr = sg_dma_address(sgel);
1076 if (phba->sli_rev == 3 &&
1077 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1078 !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1079 nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1080 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1081 data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1082 data_bde->addrLow = putPaddrLow(physaddr);
1083 data_bde->addrHigh = putPaddrHigh(physaddr);
1084 data_bde++;
1085 } else {
1086 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1087 bpl->tus.f.bdeSize = sg_dma_len(sgel);
1088 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1089 bpl->addrLow =
1090 le32_to_cpu(putPaddrLow(physaddr));
1091 bpl->addrHigh =
1092 le32_to_cpu(putPaddrHigh(physaddr));
1093 bpl++;
1094 }
1095 }
1096 }
1097
1098 /*
1099 * Finish initializing those IOCB fields that are dependent on the
1100 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
1101 * explicitly reinitialized and for SLI-3 the extended bde count is
1102 * explicitly reinitialized since all iocb memory resources are reused.
1103 */
1104 if (phba->sli_rev == 3 &&
1105 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1106 !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1107 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1108 /*
1109 * The extended IOCB format can only fit 3 BDE or a BPL.
1110 * This I/O has more than 3 BDE so the 1st data bde will
1111 * be a BPL that is filled in here.
1112 */
1113 physaddr = lpfc_cmd->dma_handle;
1114 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1115 data_bde->tus.f.bdeSize = (num_bde *
1116 sizeof(struct ulp_bde64));
1117 physaddr += (sizeof(struct fcp_cmnd) +
1118 sizeof(struct fcp_rsp) +
1119 (2 * sizeof(struct ulp_bde64)));
1120 data_bde->addrHigh = putPaddrHigh(physaddr);
1121 data_bde->addrLow = putPaddrLow(physaddr);
1122 /* ebde count includes the responce bde and data bpl */
1123 iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1124 } else {
1125 /* ebde count includes the responce bde and data bdes */
1126 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1127 }
1128 } else {
1129 iocb_cmd->un.fcpi64.bdl.bdeSize =
1130 ((num_bde + 2) * sizeof(struct ulp_bde64));
1131 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1132 }
1133 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1134
1135 /*
1136 * Due to difference in data length between DIF/non-DIF paths,
1137 * we need to set word 4 of IOCB here
1138 */
1139 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1140 return 0;
1141}
1142
1143/*
1144 * Given a scsi cmnd, determine the BlockGuard profile to be used
1145 * with the cmd
1146 */
1147static int
1148lpfc_sc_to_sli_prof(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1149{
1150 uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1151 uint8_t ret_prof = LPFC_PROF_INVALID;
1152
1153 if (guard_type == SHOST_DIX_GUARD_IP) {
1154 switch (scsi_get_prot_op(sc)) {
1155 case SCSI_PROT_READ_INSERT:
1156 case SCSI_PROT_WRITE_STRIP:
1157 ret_prof = LPFC_PROF_AST2;
1158 break;
1159
1160 case SCSI_PROT_READ_STRIP:
1161 case SCSI_PROT_WRITE_INSERT:
1162 ret_prof = LPFC_PROF_A1;
1163 break;
1164
1165 case SCSI_PROT_READ_PASS:
1166 case SCSI_PROT_WRITE_PASS:
1167 ret_prof = LPFC_PROF_AST1;
1168 break;
1169
1170 case SCSI_PROT_NORMAL:
1171 default:
1172 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1173 "9063 BLKGRD:Bad op/guard:%d/%d combination\n",
1174 scsi_get_prot_op(sc), guard_type);
1175 break;
1176
1177 }
1178 } else if (guard_type == SHOST_DIX_GUARD_CRC) {
1179 switch (scsi_get_prot_op(sc)) {
1180 case SCSI_PROT_READ_STRIP:
1181 case SCSI_PROT_WRITE_INSERT:
1182 ret_prof = LPFC_PROF_A1;
1183 break;
1184
1185 case SCSI_PROT_READ_PASS:
1186 case SCSI_PROT_WRITE_PASS:
1187 ret_prof = LPFC_PROF_C1;
1188 break;
1189
1190 case SCSI_PROT_READ_INSERT:
1191 case SCSI_PROT_WRITE_STRIP:
1192 case SCSI_PROT_NORMAL:
1193 default:
1194 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1195 "9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1196 scsi_get_prot_op(sc), guard_type);
1197 break;
1198 }
1199 } else {
1200 /* unsupported format */
1201 BUG();
1202 }
1203
1204 return ret_prof;
1205}
1206
1207struct scsi_dif_tuple {
1208 __be16 guard_tag; /* Checksum */
1209 __be16 app_tag; /* Opaque storage */
1210 __be32 ref_tag; /* Target LBA or indirect LBA */
1211};
1212
1213static inline unsigned
1214lpfc_cmd_blksize(struct scsi_cmnd *sc)
1215{
1216 return sc->device->sector_size;
1217}
1218
1219/**
1220 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1221 * @sc: in: SCSI command
1222 * @apptagmask: out: app tag mask
1223 * @apptagval: out: app tag value
1224 * @reftag: out: ref tag (reference tag)
1225 *
1226 * Description:
1227 * Extract DIF parameters from the command if possible. Otherwise,
1228 * use default parameters.
1229 *
1230 **/
1231static inline void
1232lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1233 uint16_t *apptagval, uint32_t *reftag)
1234{
1235 struct scsi_dif_tuple *spt;
1236 unsigned char op = scsi_get_prot_op(sc);
1237 unsigned int protcnt = scsi_prot_sg_count(sc);
1238 static int cnt;
1239
1240 if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1241 op == SCSI_PROT_WRITE_PASS)) {
1242
1243 cnt++;
1244 spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1245 scsi_prot_sglist(sc)[0].offset;
1246 *apptagmask = 0;
1247 *apptagval = 0;
1248 *reftag = cpu_to_be32(spt->ref_tag);
1249
1250 } else {
1251 /* SBC defines ref tag to be lower 32bits of LBA */
1252 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1253 *apptagmask = 0;
1254 *apptagval = 0;
1255 }
1256}
1257
1258/*
1259 * This function sets up buffer list for protection groups of
1260 * type LPFC_PG_TYPE_NO_DIF
1261 *
1262 * This is usually used when the HBA is instructed to generate
1263 * DIFs and insert them into data stream (or strip DIF from
1264 * incoming data stream)
1265 *
1266 * The buffer list consists of just one protection group described
1267 * below:
1268 * +-------------------------+
1269 * start of prot group --> | PDE_1 |
1270 * +-------------------------+
1271 * | Data BDE |
1272 * +-------------------------+
1273 * |more Data BDE's ... (opt)|
1274 * +-------------------------+
1275 *
1276 * @sc: pointer to scsi command we're working on
1277 * @bpl: pointer to buffer list for protection groups
1278 * @datacnt: number of segments of data that have been dma mapped
1279 *
1280 * Note: Data s/g buffers have been dma mapped
1281 */
1282static int
1283lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1284 struct ulp_bde64 *bpl, int datasegcnt)
1285{
1286 struct scatterlist *sgde = NULL; /* s/g data entry */
1287 struct lpfc_pde *pde1 = NULL;
1288 dma_addr_t physaddr;
1289 int i = 0, num_bde = 0;
1290 int datadir = sc->sc_data_direction;
1291 int prof = LPFC_PROF_INVALID;
1292 unsigned blksize;
1293 uint32_t reftag;
1294 uint16_t apptagmask, apptagval;
1295
1296 pde1 = (struct lpfc_pde *) bpl;
1297 prof = lpfc_sc_to_sli_prof(phba, sc);
1298
1299 if (prof == LPFC_PROF_INVALID)
1300 goto out;
1301
1302 /* extract some info from the scsi command for PDE1*/
1303 blksize = lpfc_cmd_blksize(sc);
1304 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1305
1306 /* setup PDE1 with what we have */
1307 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
1308 BG_EC_STOP_ERR);
1309 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);
1310
1311 num_bde++;
1312 bpl++;
1313
1314 /* assumption: caller has already run dma_map_sg on command data */
1315 scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1316 physaddr = sg_dma_address(sgde);
1317 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1318 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1319 bpl->tus.f.bdeSize = sg_dma_len(sgde);
1320 if (datadir == DMA_TO_DEVICE)
1321 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1322 else
1323 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1324 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1325 bpl++;
1326 num_bde++;
1327 }
1328
1329out:
1330 return num_bde;
1331}
1332
1333/*
1334 * This function sets up buffer list for protection groups of
1335 * type LPFC_PG_TYPE_DIF_BUF
1336 *
1337 * This is usually used when DIFs are in their own buffers,
1338 * separate from the data. The HBA can then by instructed
1339 * to place the DIFs in the outgoing stream. For read operations,
1340 * The HBA could extract the DIFs and place it in DIF buffers.
1341 *
1342 * The buffer list for this type consists of one or more of the
1343 * protection groups described below:
1344 * +-------------------------+
1345 * start of first prot group --> | PDE_1 |
1346 * +-------------------------+
1347 * | PDE_3 (Prot BDE) |
1348 * +-------------------------+
1349 * | Data BDE |
1350 * +-------------------------+
1351 * |more Data BDE's ... (opt)|
1352 * +-------------------------+
1353 * start of new prot group --> | PDE_1 |
1354 * +-------------------------+
1355 * | ... |
1356 * +-------------------------+
1357 *
1358 * @sc: pointer to scsi command we're working on
1359 * @bpl: pointer to buffer list for protection groups
1360 * @datacnt: number of segments of data that have been dma mapped
1361 * @protcnt: number of segment of protection data that have been dma mapped
1362 *
1363 * Note: It is assumed that both data and protection s/g buffers have been
1364 * mapped for DMA
1365 */
1366static int
1367lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1368 struct ulp_bde64 *bpl, int datacnt, int protcnt)
1369{
1370 struct scatterlist *sgde = NULL; /* s/g data entry */
1371 struct scatterlist *sgpe = NULL; /* s/g prot entry */
1372 struct lpfc_pde *pde1 = NULL;
1373 struct ulp_bde64 *prot_bde = NULL;
1374 dma_addr_t dataphysaddr, protphysaddr;
1375 unsigned short curr_data = 0, curr_prot = 0;
1376 unsigned int split_offset, protgroup_len;
1377 unsigned int protgrp_blks, protgrp_bytes;
1378 unsigned int remainder, subtotal;
1379 int prof = LPFC_PROF_INVALID;
1380 int datadir = sc->sc_data_direction;
1381 unsigned char pgdone = 0, alldone = 0;
1382 unsigned blksize;
1383 uint32_t reftag;
1384 uint16_t apptagmask, apptagval;
1385 int num_bde = 0;
1386
1387 sgpe = scsi_prot_sglist(sc);
1388 sgde = scsi_sglist(sc);
1389
1390 if (!sgpe || !sgde) {
1391 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1392 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1393 sgpe, sgde);
1394 return 0;
1395 }
1396
1397 prof = lpfc_sc_to_sli_prof(phba, sc);
1398 if (prof == LPFC_PROF_INVALID)
1399 goto out;
1400
1401 /* extract some info from the scsi command for PDE1*/
1402 blksize = lpfc_cmd_blksize(sc);
1403 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1404
1405 split_offset = 0;
1406 do {
1407 /* setup the first PDE_1 */
1408 pde1 = (struct lpfc_pde *) bpl;
1409
1410 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize,
1411 BG_EC_STOP_ERR);
1412 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag);
1413
1414 num_bde++;
1415 bpl++;
1416
1417 /* setup the first BDE that points to protection buffer */
1418 prot_bde = (struct ulp_bde64 *) bpl;
1419 protphysaddr = sg_dma_address(sgpe);
1420 prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr));
1421 prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr));
1422 protgroup_len = sg_dma_len(sgpe);
1423
1424
1425 /* must be integer multiple of the DIF block length */
1426 BUG_ON(protgroup_len % 8);
1427
1428 protgrp_blks = protgroup_len / 8;
1429 protgrp_bytes = protgrp_blks * blksize;
1430
1431 prot_bde->tus.f.bdeSize = protgroup_len;
1432 if (datadir == DMA_TO_DEVICE)
1433 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1434 else
1435 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1436 prot_bde->tus.w = le32_to_cpu(bpl->tus.w);
1437
1438 curr_prot++;
1439 num_bde++;
1440
1441 /* setup BDE's for data blocks associated with DIF data */
1442 pgdone = 0;
1443 subtotal = 0; /* total bytes processed for current prot grp */
1444 while (!pgdone) {
1445 if (!sgde) {
1446 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1447 "9065 BLKGRD:%s Invalid data segment\n",
1448 __func__);
1449 return 0;
1450 }
1451 bpl++;
1452 dataphysaddr = sg_dma_address(sgde) + split_offset;
1453 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1454 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1455
1456 remainder = sg_dma_len(sgde) - split_offset;
1457
1458 if ((subtotal + remainder) <= protgrp_bytes) {
1459 /* we can use this whole buffer */
1460 bpl->tus.f.bdeSize = remainder;
1461 split_offset = 0;
1462
1463 if ((subtotal + remainder) == protgrp_bytes)
1464 pgdone = 1;
1465 } else {
1466 /* must split this buffer with next prot grp */
1467 bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1468 split_offset += bpl->tus.f.bdeSize;
1469 }
1470
1471 subtotal += bpl->tus.f.bdeSize;
1472
1473 if (datadir == DMA_TO_DEVICE)
1474 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1475 else
1476 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1477 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1478
1479 num_bde++;
1480 curr_data++;
1481
1482 if (split_offset)
1483 break;
1484
1485 /* Move to the next s/g segment if possible */
1486 sgde = sg_next(sgde);
1487 }
1488
1489 /* are we done ? */
1490 if (curr_prot == protcnt) {
1491 alldone = 1;
1492 } else if (curr_prot < protcnt) {
1493 /* advance to next prot buffer */
1494 sgpe = sg_next(sgpe);
1495 bpl++;
1496
1497 /* update the reference tag */
1498 reftag += protgrp_blks;
1499 } else {
1500 /* if we're here, we have a bug */
1501 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1502 "9054 BLKGRD: bug in %s\n", __func__);
1503 }
1504
1505 } while (!alldone);
1506
1507out:
1508
1509
1510 return num_bde;
1511}
1512/*
1513 * Given a SCSI command that supports DIF, determine composition of protection
1514 * groups involved in setting up buffer lists
1515 *
1516 * Returns:
1517 * for DIF (for both read and write)
1518 * */
1519static int
1520lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1521{
1522 int ret = LPFC_PG_TYPE_INVALID;
1523 unsigned char op = scsi_get_prot_op(sc);
1524
1525 switch (op) {
1526 case SCSI_PROT_READ_STRIP:
1527 case SCSI_PROT_WRITE_INSERT:
1528 ret = LPFC_PG_TYPE_NO_DIF;
1529 break;
1530 case SCSI_PROT_READ_INSERT:
1531 case SCSI_PROT_WRITE_STRIP:
1532 case SCSI_PROT_READ_PASS:
1533 case SCSI_PROT_WRITE_PASS:
1534 ret = LPFC_PG_TYPE_DIF_BUF;
1535 break;
1536 default:
1537 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1538 "9021 Unsupported protection op:%d\n", op);
1539 break;
1540 }
1541
1542 return ret;
1543}
1544
1545/*
1546 * This is the protection/DIF aware version of
1547 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1548 * two functions eventually, but for now, it's here
1549 */
1550static int
1551lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1552 struct lpfc_scsi_buf *lpfc_cmd)
1553{
1554 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1555 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1556 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1557 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1558 uint32_t num_bde = 0;
1559 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1560 int prot_group_type = 0;
1561 int diflen, fcpdl;
1562 unsigned blksize;
1563
1564 /*
1565 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1566 * fcp_rsp regions to the first data bde entry
1567 */
1568 bpl += 2;
1569 if (scsi_sg_count(scsi_cmnd)) {
1570 /*
1571 * The driver stores the segment count returned from pci_map_sg
1572 * because this a count of dma-mappings used to map the use_sg
1573 * pages. They are not guaranteed to be the same for those
1574 * architectures that implement an IOMMU.
1575 */
1576 datasegcnt = dma_map_sg(&phba->pcidev->dev,
1577 scsi_sglist(scsi_cmnd),
1578 scsi_sg_count(scsi_cmnd), datadir);
1579 if (unlikely(!datasegcnt))
1580 return 1;
1581
1582 lpfc_cmd->seg_cnt = datasegcnt;
1583 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1584 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1585 "9067 BLKGRD: %s: Too many sg segments"
1586 " from dma_map_sg. Config %d, seg_cnt"
1587 " %d\n",
1588 __func__, phba->cfg_sg_seg_cnt,
1589 lpfc_cmd->seg_cnt);
1590 scsi_dma_unmap(scsi_cmnd);
1591 return 1;
1592 }
1593
1594 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1595
1596 switch (prot_group_type) {
1597 case LPFC_PG_TYPE_NO_DIF:
1598 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1599 datasegcnt);
1600 /* we should have 2 or more entries in buffer list */
1601 if (num_bde < 2)
1602 goto err;
1603 break;
1604 case LPFC_PG_TYPE_DIF_BUF:{
1605 /*
1606 * This type indicates that protection buffers are
1607 * passed to the driver, so that needs to be prepared
1608 * for DMA
1609 */
1610 protsegcnt = dma_map_sg(&phba->pcidev->dev,
1611 scsi_prot_sglist(scsi_cmnd),
1612 scsi_prot_sg_count(scsi_cmnd), datadir);
1613 if (unlikely(!protsegcnt)) {
1614 scsi_dma_unmap(scsi_cmnd);
1615 return 1;
1616 }
1617
1618 lpfc_cmd->prot_seg_cnt = protsegcnt;
1619 if (lpfc_cmd->prot_seg_cnt
1620 > phba->cfg_prot_sg_seg_cnt) {
1621 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1622 "9068 BLKGRD: %s: Too many prot sg "
1623 "segments from dma_map_sg. Config %d,"
1624 "prot_seg_cnt %d\n", __func__,
1625 …
Large files files are truncated, but you can click here to view the full file