PageRenderTime 78ms CodeModel.GetById 7ms app.highlight 57ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/media/dvb/frontends/mb86a16.c

https://bitbucket.org/abioy/linux
C | 1879 lines | 1584 code | 239 blank | 56 comment | 465 complexity | 1f83213b7e1000065455e865dfe8435f MD5 | raw file
Possible License(s): CC-BY-SA-3.0, GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*
   2	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
   3
   4	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
   5
   6	This program is free software; you can redistribute it and/or modify
   7	it under the terms of the GNU General Public License as published by
   8	the Free Software Foundation; either version 2 of the License, or
   9	(at your option) any later version.
  10
  11	This program is distributed in the hope that it will be useful,
  12	but WITHOUT ANY WARRANTY; without even the implied warranty of
  13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14	GNU General Public License for more details.
  15
  16	You should have received a copy of the GNU General Public License
  17	along with this program; if not, write to the Free Software
  18	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19*/
  20
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/moduleparam.h>
  25#include <linux/slab.h>
  26
  27#include "dvb_frontend.h"
  28#include "mb86a16.h"
  29#include "mb86a16_priv.h"
  30
  31unsigned int verbose = 5;
  32module_param(verbose, int, 0644);
  33
  34#define ABS(x)		((x) < 0 ? (-x) : (x))
  35
  36struct mb86a16_state {
  37	struct i2c_adapter		*i2c_adap;
  38	const struct mb86a16_config	*config;
  39	struct dvb_frontend		frontend;
  40
  41	/* tuning parameters */
  42	int				frequency;
  43	int				srate;
  44
  45	/* Internal stuff */
  46	int				master_clk;
  47	int				deci;
  48	int				csel;
  49	int				rsel;
  50};
  51
  52#define MB86A16_ERROR		0
  53#define MB86A16_NOTICE		1
  54#define MB86A16_INFO		2
  55#define MB86A16_DEBUG		3
  56
  57#define dprintk(x, y, z, format, arg...) do {						\
  58	if (z) {									\
  59		if	((x > MB86A16_ERROR) && (x > y))				\
  60			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
  61		else if ((x > MB86A16_NOTICE) && (x > y))				\
  62			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
  63		else if ((x > MB86A16_INFO) && (x > y))					\
  64			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
  65		else if ((x > MB86A16_DEBUG) && (x > y))				\
  66			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
  67	} else {									\
  68		if (x > y)								\
  69			printk(format, ##arg);						\
  70	}										\
  71} while (0)
  72
  73#define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
  74#define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
  75
  76static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
  77{
  78	int ret;
  79	u8 buf[] = { reg, val };
  80
  81	struct i2c_msg msg = {
  82		.addr = state->config->demod_address,
  83		.flags = 0,
  84		.buf = buf,
  85		.len = 2
  86	};
  87
  88	dprintk(verbose, MB86A16_DEBUG, 1,
  89		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
  90		state->config->demod_address, buf[0], buf[1]);
  91
  92	ret = i2c_transfer(state->i2c_adap, &msg, 1);
  93
  94	return (ret != 1) ? -EREMOTEIO : 0;
  95}
  96
  97static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
  98{
  99	int ret;
 100	u8 b0[] = { reg };
 101	u8 b1[] = { 0 };
 102
 103	struct i2c_msg msg[] = {
 104		{
 105			.addr = state->config->demod_address,
 106			.flags = 0,
 107			.buf = b0,
 108			.len = 1
 109		}, {
 110			.addr = state->config->demod_address,
 111			.flags = I2C_M_RD,
 112			.buf = b1,
 113			.len = 1
 114		}
 115	};
 116	ret = i2c_transfer(state->i2c_adap, msg, 2);
 117	if (ret != 2) {
 118		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
 119			reg, ret);
 120
 121		return -EREMOTEIO;
 122	}
 123	*val = b1[0];
 124
 125	return ret;
 126}
 127
 128static int CNTM_set(struct mb86a16_state *state,
 129		    unsigned char timint1,
 130		    unsigned char timint2,
 131		    unsigned char cnext)
 132{
 133	unsigned char val;
 134
 135	val = (timint1 << 4) | (timint2 << 2) | cnext;
 136	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
 137		goto err;
 138
 139	return 0;
 140
 141err:
 142	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 143	return -EREMOTEIO;
 144}
 145
 146static int smrt_set(struct mb86a16_state *state, int rate)
 147{
 148	int tmp ;
 149	int m ;
 150	unsigned char STOFS0, STOFS1;
 151
 152	m = 1 << state->deci;
 153	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
 154
 155	STOFS0 = tmp & 0x0ff;
 156	STOFS1 = (tmp & 0xf00) >> 8;
 157
 158	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
 159				       (state->csel << 1) |
 160					state->rsel) < 0)
 161		goto err;
 162	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
 163		goto err;
 164	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
 165		goto err;
 166
 167	return 0;
 168err:
 169	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 170	return -1;
 171}
 172
 173static int srst(struct mb86a16_state *state)
 174{
 175	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
 176		goto err;
 177
 178	return 0;
 179err:
 180	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 181	return -EREMOTEIO;
 182
 183}
 184
 185static int afcex_data_set(struct mb86a16_state *state,
 186			  unsigned char AFCEX_L,
 187			  unsigned char AFCEX_H)
 188{
 189	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
 190		goto err;
 191	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
 192		goto err;
 193
 194	return 0;
 195err:
 196	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 197
 198	return -1;
 199}
 200
 201static int afcofs_data_set(struct mb86a16_state *state,
 202			   unsigned char AFCEX_L,
 203			   unsigned char AFCEX_H)
 204{
 205	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
 206		goto err;
 207	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
 208		goto err;
 209
 210	return 0;
 211err:
 212	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 213	return -EREMOTEIO;
 214}
 215
 216static int stlp_set(struct mb86a16_state *state,
 217		    unsigned char STRAS,
 218		    unsigned char STRBS)
 219{
 220	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
 221		goto err;
 222
 223	return 0;
 224err:
 225	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 226	return -EREMOTEIO;
 227}
 228
 229static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
 230{
 231	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
 232		goto err;
 233	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
 234		goto err;
 235
 236	return 0;
 237err:
 238	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 239	return -EREMOTEIO;
 240}
 241
 242static int initial_set(struct mb86a16_state *state)
 243{
 244	if (stlp_set(state, 5, 7))
 245		goto err;
 246
 247	udelay(100);
 248	if (afcex_data_set(state, 0, 0))
 249		goto err;
 250
 251	udelay(100);
 252	if (afcofs_data_set(state, 0, 0))
 253		goto err;
 254
 255	udelay(100);
 256	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
 257		goto err;
 258	if (mb86a16_write(state, 0x2f, 0x21) < 0)
 259		goto err;
 260	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
 261		goto err;
 262	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
 263		goto err;
 264	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
 265		goto err;
 266	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
 267		goto err;
 268	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
 269		goto err;
 270	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
 271		goto err;
 272	if (mb86a16_write(state, 0x54, 0xff) < 0)
 273		goto err;
 274	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
 275		goto err;
 276
 277	return 0;
 278
 279err:
 280	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 281	return -EREMOTEIO;
 282}
 283
 284static int S01T_set(struct mb86a16_state *state,
 285		    unsigned char s1t,
 286		    unsigned s0t)
 287{
 288	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
 289		goto err;
 290
 291	return 0;
 292err:
 293	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 294	return -EREMOTEIO;
 295}
 296
 297
 298static int EN_set(struct mb86a16_state *state,
 299		  int cren,
 300		  int afcen)
 301{
 302	unsigned char val;
 303
 304	val = 0x7a | (cren << 7) | (afcen << 2);
 305	if (mb86a16_write(state, 0x49, val) < 0)
 306		goto err;
 307
 308	return 0;
 309err:
 310	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 311	return -EREMOTEIO;
 312}
 313
 314static int AFCEXEN_set(struct mb86a16_state *state,
 315		       int afcexen,
 316		       int smrt)
 317{
 318	unsigned char AFCA ;
 319
 320	if (smrt > 18875)
 321		AFCA = 4;
 322	else if (smrt > 9375)
 323		AFCA = 3;
 324	else if (smrt > 2250)
 325		AFCA = 2;
 326	else
 327		AFCA = 1;
 328
 329	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
 330		goto err;
 331
 332	return 0;
 333
 334err:
 335	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 336	return -EREMOTEIO;
 337}
 338
 339static int DAGC_data_set(struct mb86a16_state *state,
 340			 unsigned char DAGCA,
 341			 unsigned char DAGCW)
 342{
 343	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
 344		goto err;
 345
 346	return 0;
 347
 348err:
 349	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 350	return -EREMOTEIO;
 351}
 352
 353static void smrt_info_get(struct mb86a16_state *state, int rate)
 354{
 355	if (rate >= 37501) {
 356		state->deci = 0; state->csel = 0; state->rsel = 0;
 357	} else if (rate >= 30001) {
 358		state->deci = 0; state->csel = 0; state->rsel = 1;
 359	} else if (rate >= 26251) {
 360		state->deci = 0; state->csel = 1; state->rsel = 0;
 361	} else if (rate >= 22501) {
 362		state->deci = 0; state->csel = 1; state->rsel = 1;
 363	} else if (rate >= 18751) {
 364		state->deci = 1; state->csel = 0; state->rsel = 0;
 365	} else if (rate >= 15001) {
 366		state->deci = 1; state->csel = 0; state->rsel = 1;
 367	} else if (rate >= 13126) {
 368		state->deci = 1; state->csel = 1; state->rsel = 0;
 369	} else if (rate >= 11251) {
 370		state->deci = 1; state->csel = 1; state->rsel = 1;
 371	} else if (rate >= 9376) {
 372		state->deci = 2; state->csel = 0; state->rsel = 0;
 373	} else if (rate >= 7501) {
 374		state->deci = 2; state->csel = 0; state->rsel = 1;
 375	} else if (rate >= 6563) {
 376		state->deci = 2; state->csel = 1; state->rsel = 0;
 377	} else if (rate >= 5626) {
 378		state->deci = 2; state->csel = 1; state->rsel = 1;
 379	} else if (rate >= 4688) {
 380		state->deci = 3; state->csel = 0; state->rsel = 0;
 381	} else if (rate >= 3751) {
 382		state->deci = 3; state->csel = 0; state->rsel = 1;
 383	} else if (rate >= 3282) {
 384		state->deci = 3; state->csel = 1; state->rsel = 0;
 385	} else if (rate >= 2814) {
 386		state->deci = 3; state->csel = 1; state->rsel = 1;
 387	} else if (rate >= 2344) {
 388		state->deci = 4; state->csel = 0; state->rsel = 0;
 389	} else if (rate >= 1876) {
 390		state->deci = 4; state->csel = 0; state->rsel = 1;
 391	} else if (rate >= 1641) {
 392		state->deci = 4; state->csel = 1; state->rsel = 0;
 393	} else if (rate >= 1407) {
 394		state->deci = 4; state->csel = 1; state->rsel = 1;
 395	} else if (rate >= 1172) {
 396		state->deci = 5; state->csel = 0; state->rsel = 0;
 397	} else if (rate >=  939) {
 398		state->deci = 5; state->csel = 0; state->rsel = 1;
 399	} else if (rate >=  821) {
 400		state->deci = 5; state->csel = 1; state->rsel = 0;
 401	} else {
 402		state->deci = 5; state->csel = 1; state->rsel = 1;
 403	}
 404
 405	if (state->csel == 0)
 406		state->master_clk = 92000;
 407	else
 408		state->master_clk = 61333;
 409
 410}
 411
 412static int signal_det(struct mb86a16_state *state,
 413		      int smrt,
 414		      unsigned char *SIG)
 415{
 416
 417	int ret ;
 418	int smrtd ;
 419	int wait_sym ;
 420
 421	u32 wait_t;
 422	unsigned char S[3] ;
 423	int i ;
 424
 425	if (*SIG > 45) {
 426		if (CNTM_set(state, 2, 1, 2) < 0) {
 427			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
 428			return -1;
 429		}
 430		wait_sym = 40000;
 431	} else {
 432		if (CNTM_set(state, 3, 1, 2) < 0) {
 433			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
 434			return -1;
 435		}
 436		wait_sym = 80000;
 437	}
 438	for (i = 0; i < 3; i++) {
 439		if (i == 0)
 440			smrtd = smrt * 98 / 100;
 441		else if (i == 1)
 442			smrtd = smrt;
 443		else
 444			smrtd = smrt * 102 / 100;
 445		smrt_info_get(state, smrtd);
 446		smrt_set(state, smrtd);
 447		srst(state);
 448		wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
 449		if (wait_t == 0)
 450			wait_t = 1;
 451		msleep_interruptible(10);
 452		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
 453			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 454			return -EREMOTEIO;
 455		}
 456	}
 457	if ((S[1] > S[0] * 112 / 100) &&
 458	    (S[1] > S[2] * 112 / 100)) {
 459
 460		ret = 1;
 461	} else {
 462		ret = 0;
 463	}
 464	*SIG = S[1];
 465
 466	if (CNTM_set(state, 0, 1, 2) < 0) {
 467		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
 468		return -1;
 469	}
 470
 471	return ret;
 472}
 473
 474static int rf_val_set(struct mb86a16_state *state,
 475		      int f,
 476		      int smrt,
 477		      unsigned char R)
 478{
 479	unsigned char C, F, B;
 480	int M;
 481	unsigned char rf_val[5];
 482	int ack = -1;
 483
 484	if (smrt > 37750)
 485		C = 1;
 486	else if (smrt > 18875)
 487		C = 2;
 488	else if (smrt > 5500)
 489		C = 3;
 490	else
 491		C = 4;
 492
 493	if (smrt > 30500)
 494		F = 3;
 495	else if (smrt > 9375)
 496		F = 1;
 497	else if (smrt > 4625)
 498		F = 0;
 499	else
 500		F = 2;
 501
 502	if (f < 1060)
 503		B = 0;
 504	else if (f < 1175)
 505		B = 1;
 506	else if (f < 1305)
 507		B = 2;
 508	else if (f < 1435)
 509		B = 3;
 510	else if (f < 1570)
 511		B = 4;
 512	else if (f < 1715)
 513		B = 5;
 514	else if (f < 1845)
 515		B = 6;
 516	else if (f < 1980)
 517		B = 7;
 518	else if (f < 2080)
 519		B = 8;
 520	else
 521		B = 9;
 522
 523	M = f * (1 << R) / 2;
 524
 525	rf_val[0] = 0x01 | (C << 3) | (F << 1);
 526	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
 527	rf_val[2] = (M & 0x00ff0) >> 4;
 528	rf_val[3] = ((M & 0x0000f) << 4) | B;
 529
 530	/* Frequency Set */
 531	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
 532		ack = 0;
 533	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
 534		ack = 0;
 535	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
 536		ack = 0;
 537	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
 538		ack = 0;
 539	if (mb86a16_write(state, 0x25, 0x01) < 0)
 540		ack = 0;
 541	if (ack == 0) {
 542		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
 543		return -EREMOTEIO;
 544	}
 545
 546	return 0;
 547}
 548
 549static int afcerr_chk(struct mb86a16_state *state)
 550{
 551	unsigned char AFCM_L, AFCM_H ;
 552	int AFCM ;
 553	int afcm, afcerr ;
 554
 555	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
 556		goto err;
 557	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
 558		goto err;
 559
 560	AFCM = (AFCM_H << 8) + AFCM_L;
 561
 562	if (AFCM > 2048)
 563		afcm = AFCM - 4096;
 564	else
 565		afcm = AFCM;
 566	afcerr = afcm * state->master_clk / 8192;
 567
 568	return afcerr;
 569
 570err:
 571	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 572	return -EREMOTEIO;
 573}
 574
 575static int dagcm_val_get(struct mb86a16_state *state)
 576{
 577	int DAGCM;
 578	unsigned char DAGCM_H, DAGCM_L;
 579
 580	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
 581		goto err;
 582	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
 583		goto err;
 584
 585	DAGCM = (DAGCM_H << 8) + DAGCM_L;
 586
 587	return DAGCM;
 588
 589err:
 590	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 591	return -EREMOTEIO;
 592}
 593
 594static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
 595{
 596	u8 stat, stat2;
 597	struct mb86a16_state *state = fe->demodulator_priv;
 598
 599	*status = 0;
 600
 601	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
 602		goto err;
 603	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
 604		goto err;
 605	if ((stat > 25) && (stat2 > 25))
 606		*status |= FE_HAS_SIGNAL;
 607	if ((stat > 45) && (stat2 > 45))
 608		*status |= FE_HAS_CARRIER;
 609
 610	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
 611		goto err;
 612
 613	if (stat & 0x01)
 614		*status |= FE_HAS_SYNC;
 615	if (stat & 0x01)
 616		*status |= FE_HAS_VITERBI;
 617
 618	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
 619		goto err;
 620
 621	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
 622		*status |= FE_HAS_LOCK;
 623
 624	return 0;
 625
 626err:
 627	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 628	return -EREMOTEIO;
 629}
 630
 631static int sync_chk(struct mb86a16_state *state,
 632		    unsigned char *VIRM)
 633{
 634	unsigned char val;
 635	int sync;
 636
 637	if (mb86a16_read(state, 0x0d, &val) != 2)
 638		goto err;
 639
 640	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
 641	sync = val & 0x01;
 642	*VIRM = (val & 0x1c) >> 2;
 643
 644	return sync;
 645err:
 646	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 647	return -EREMOTEIO;
 648
 649}
 650
 651static int freqerr_chk(struct mb86a16_state *state,
 652		       int fTP,
 653		       int smrt,
 654		       int unit)
 655{
 656	unsigned char CRM, AFCML, AFCMH;
 657	unsigned char temp1, temp2, temp3;
 658	int crm, afcm, AFCM;
 659	int crrerr, afcerr;		/* kHz */
 660	int frqerr;			/* MHz */
 661	int afcen, afcexen = 0;
 662	int R, M, fOSC, fOSC_OFS;
 663
 664	if (mb86a16_read(state, 0x43, &CRM) != 2)
 665		goto err;
 666
 667	if (CRM > 127)
 668		crm = CRM - 256;
 669	else
 670		crm = CRM;
 671
 672	crrerr = smrt * crm / 256;
 673	if (mb86a16_read(state, 0x49, &temp1) != 2)
 674		goto err;
 675
 676	afcen = (temp1 & 0x04) >> 2;
 677	if (afcen == 0) {
 678		if (mb86a16_read(state, 0x2a, &temp1) != 2)
 679			goto err;
 680		afcexen = (temp1 & 0x20) >> 5;
 681	}
 682
 683	if (afcen == 1) {
 684		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
 685			goto err;
 686		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
 687			goto err;
 688	} else if (afcexen == 1) {
 689		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
 690			goto err;
 691		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
 692			goto err;
 693	}
 694	if ((afcen == 1) || (afcexen == 1)) {
 695		smrt_info_get(state, smrt);
 696		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
 697		if (AFCM > 255)
 698			afcm = AFCM - 512;
 699		else
 700			afcm = AFCM;
 701
 702		afcerr = afcm * state->master_clk / 8192;
 703	} else
 704		afcerr = 0;
 705
 706	if (mb86a16_read(state, 0x22, &temp1) != 2)
 707		goto err;
 708	if (mb86a16_read(state, 0x23, &temp2) != 2)
 709		goto err;
 710	if (mb86a16_read(state, 0x24, &temp3) != 2)
 711		goto err;
 712
 713	R = (temp1 & 0xe0) >> 5;
 714	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
 715	if (R == 0)
 716		fOSC = 2 * M;
 717	else
 718		fOSC = M;
 719
 720	fOSC_OFS = fOSC - fTP;
 721
 722	if (unit == 0) {	/* MHz */
 723		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
 724			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
 725		else
 726			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
 727	} else {	/* kHz */
 728		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
 729	}
 730
 731	return frqerr;
 732err:
 733	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 734	return -EREMOTEIO;
 735}
 736
 737static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
 738{
 739	unsigned char R;
 740
 741	if (smrt > 9375)
 742		R = 0;
 743	else
 744		R = 1;
 745
 746	return R;
 747}
 748
 749static void swp_info_get(struct mb86a16_state *state,
 750			 int fOSC_start,
 751			 int smrt,
 752			 int v, int R,
 753			 int swp_ofs,
 754			 int *fOSC,
 755			 int *afcex_freq,
 756			 unsigned char *AFCEX_L,
 757			 unsigned char *AFCEX_H)
 758{
 759	int AFCEX ;
 760	int crnt_swp_freq ;
 761
 762	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
 763
 764	if (R == 0)
 765		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
 766	else
 767		*fOSC = (crnt_swp_freq + 500) / 1000;
 768
 769	if (*fOSC >= crnt_swp_freq)
 770		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
 771	else
 772		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
 773
 774	AFCEX = *afcex_freq * 8192 / state->master_clk;
 775	*AFCEX_L =  AFCEX & 0x00ff;
 776	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
 777}
 778
 779
 780static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
 781			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
 782{
 783	int swp_freq ;
 784
 785	if ((i % 2 == 1) && (v <= vmax)) {
 786		/* positive v (case 1) */
 787		if ((v - 1 == vmin)				&&
 788		    (*(V + 30 + v) >= 0)			&&
 789		    (*(V + 30 + v - 1) >= 0)			&&
 790		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
 791		    (*(V + 30 + v - 1) > SIGMIN)) {
 792
 793			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
 794			*SIG1 = *(V + 30 + v - 1);
 795		} else if ((v == vmax)				&&
 796			   (*(V + 30 + v) >= 0)			&&
 797			   (*(V + 30 + v - 1) >= 0)		&&
 798			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
 799			   (*(V + 30 + v) > SIGMIN)) {
 800			/* (case 2) */
 801			swp_freq = fOSC * 1000 + afcex_freq;
 802			*SIG1 = *(V + 30 + v);
 803		} else if ((*(V + 30 + v) > 0)			&&
 804			   (*(V + 30 + v - 1) > 0)		&&
 805			   (*(V + 30 + v - 2) > 0)		&&
 806			   (*(V + 30 + v - 3) > 0)		&&
 807			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
 808			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
 809			   ((*(V + 30 + v - 1) > SIGMIN)	||
 810			   (*(V + 30 + v - 2) > SIGMIN))) {
 811			/* (case 3) */
 812			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
 813				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
 814				*SIG1 = *(V + 30 + v - 1);
 815			} else {
 816				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
 817				*SIG1 = *(V + 30 + v - 2);
 818			}
 819		} else if ((v == vmax)				&&
 820			   (*(V + 30 + v) >= 0)			&&
 821			   (*(V + 30 + v - 1) >= 0)		&&
 822			   (*(V + 30 + v - 2) >= 0)		&&
 823			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
 824			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
 825			   ((*(V + 30 + v) > SIGMIN)		||
 826			   (*(V + 30 + v - 1) > SIGMIN))) {
 827			/* (case 4) */
 828			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
 829				swp_freq = fOSC * 1000 + afcex_freq;
 830				*SIG1 = *(V + 30 + v);
 831			} else {
 832				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
 833				*SIG1 = *(V + 30 + v - 1);
 834			}
 835		} else  {
 836			swp_freq = -1 ;
 837		}
 838	} else if ((i % 2 == 0) && (v >= vmin)) {
 839		/* Negative v (case 1) */
 840		if ((*(V + 30 + v) > 0)				&&
 841		    (*(V + 30 + v + 1) > 0)			&&
 842		    (*(V + 30 + v + 2) > 0)			&&
 843		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
 844		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
 845		    (*(V + 30 + v + 1) > SIGMIN)) {
 846
 847			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
 848			*SIG1 = *(V + 30 + v + 1);
 849		} else if ((v + 1 == vmax)			&&
 850			   (*(V + 30 + v) >= 0)			&&
 851			   (*(V + 30 + v + 1) >= 0)		&&
 852			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
 853			   (*(V + 30 + v + 1) > SIGMIN)) {
 854			/* (case 2) */
 855			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
 856			*SIG1 = *(V + 30 + v);
 857		} else if ((v == vmin)				&&
 858			   (*(V + 30 + v) > 0)			&&
 859			   (*(V + 30 + v + 1) > 0)		&&
 860			   (*(V + 30 + v + 2) > 0)		&&
 861			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
 862			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
 863			   (*(V + 30 + v) > SIGMIN)) {
 864			/* (case 3) */
 865			swp_freq = fOSC * 1000 + afcex_freq;
 866			*SIG1 = *(V + 30 + v);
 867		} else if ((*(V + 30 + v) >= 0)			&&
 868			   (*(V + 30 + v + 1) >= 0)		&&
 869			   (*(V + 30 + v + 2) >= 0)		&&
 870			   (*(V + 30 + v + 3) >= 0)		&&
 871			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
 872			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
 873			   ((*(V + 30 + v + 1) > SIGMIN)	||
 874			    (*(V + 30 + v + 2) > SIGMIN))) {
 875			/* (case 4) */
 876			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
 877				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
 878				*SIG1 = *(V + 30 + v + 1);
 879			} else {
 880				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
 881				*SIG1 = *(V + 30 + v + 2);
 882			}
 883		} else if ((*(V + 30 + v) >= 0)			&&
 884			   (*(V + 30 + v + 1) >= 0)		&&
 885			   (*(V + 30 + v + 2) >= 0)		&&
 886			   (*(V + 30 + v + 3) >= 0)		&&
 887			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
 888			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
 889			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
 890			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
 891			   ((*(V + 30 + v) > SIGMIN)		||
 892			    (*(V + 30 + v + 1) > SIGMIN))) {
 893			/* (case 5) */
 894			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
 895				swp_freq = fOSC * 1000 + afcex_freq;
 896				*SIG1 = *(V + 30 + v);
 897			} else {
 898				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
 899				*SIG1 = *(V + 30 + v + 1);
 900			}
 901		} else if ((v + 2 == vmin)			&&
 902			   (*(V + 30 + v) >= 0)			&&
 903			   (*(V + 30 + v + 1) >= 0)		&&
 904			   (*(V + 30 + v + 2) >= 0)		&&
 905			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
 906			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
 907			   ((*(V + 30 + v + 1) > SIGMIN)	||
 908			    (*(V + 30 + v + 2) > SIGMIN))) {
 909			/* (case 6) */
 910			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
 911				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
 912				*SIG1 = *(V + 30 + v + 1);
 913			} else {
 914				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
 915				*SIG1 = *(V + 30 + v + 2);
 916			}
 917		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
 918			swp_freq = fOSC * 1000;
 919			*SIG1 = *(V + 30 + v);
 920		} else
 921			swp_freq = -1;
 922	} else
 923		swp_freq = -1;
 924
 925	return swp_freq;
 926}
 927
 928static void swp_info_get2(struct mb86a16_state *state,
 929			  int smrt,
 930			  int R,
 931			  int swp_freq,
 932			  int *afcex_freq,
 933			  int *fOSC,
 934			  unsigned char *AFCEX_L,
 935			  unsigned char *AFCEX_H)
 936{
 937	int AFCEX ;
 938
 939	if (R == 0)
 940		*fOSC = (swp_freq + 1000) / 2000 * 2;
 941	else
 942		*fOSC = (swp_freq + 500) / 1000;
 943
 944	if (*fOSC >= swp_freq)
 945		*afcex_freq = *fOSC * 1000 - swp_freq;
 946	else
 947		*afcex_freq = swp_freq - *fOSC * 1000;
 948
 949	AFCEX = *afcex_freq * 8192 / state->master_clk;
 950	*AFCEX_L =  AFCEX & 0x00ff;
 951	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
 952}
 953
 954static void afcex_info_get(struct mb86a16_state *state,
 955			   int afcex_freq,
 956			   unsigned char *AFCEX_L,
 957			   unsigned char *AFCEX_H)
 958{
 959	int AFCEX ;
 960
 961	AFCEX = afcex_freq * 8192 / state->master_clk;
 962	*AFCEX_L =  AFCEX & 0x00ff;
 963	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
 964}
 965
 966static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
 967{
 968	/* SLOCK0 = 0 */
 969	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
 970		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 971		return -EREMOTEIO;
 972	}
 973
 974	return 0;
 975}
 976
 977static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
 978{
 979	/* Viterbi Rate, IQ Settings */
 980	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
 981		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 982		return -EREMOTEIO;
 983	}
 984
 985	return 0;
 986}
 987
 988static int FEC_srst(struct mb86a16_state *state)
 989{
 990	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
 991		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
 992		return -EREMOTEIO;
 993	}
 994
 995	return 0;
 996}
 997
 998static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
 999{
1000	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
1001		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1002		return -EREMOTEIO;
1003	}
1004
1005	return 0;
1006}
1007
1008static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1009{
1010	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1011		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1012		return -EREMOTEIO;
1013	}
1014
1015	return 0;
1016}
1017
1018
1019static int mb86a16_set_fe(struct mb86a16_state *state)
1020{
1021	u8 agcval, cnmval;
1022
1023	int i, j;
1024	int fOSC = 0;
1025	int fOSC_start = 0;
1026	int wait_t;
1027	int fcp;
1028	int swp_ofs;
1029	int V[60];
1030	u8 SIG1MIN;
1031
1032	unsigned char CREN, AFCEN, AFCEXEN;
1033	unsigned char SIG1;
1034	unsigned char TIMINT1, TIMINT2, TIMEXT;
1035	unsigned char S0T, S1T;
1036	unsigned char S2T;
1037/*	unsigned char S2T, S3T; */
1038	unsigned char S4T, S5T;
1039	unsigned char AFCEX_L, AFCEX_H;
1040	unsigned char R;
1041	unsigned char VIRM;
1042	unsigned char ETH, VIA;
1043	unsigned char junk;
1044
1045	int loop;
1046	int ftemp;
1047	int v, vmax, vmin;
1048	int vmax_his, vmin_his;
1049	int swp_freq, prev_swp_freq[20];
1050	int prev_freq_num;
1051	int signal_dupl;
1052	int afcex_freq;
1053	int signal;
1054	int afcerr;
1055	int temp_freq, delta_freq;
1056	int dagcm[4];
1057	int smrt_d;
1058/*	int freq_err; */
1059	int n;
1060	int ret = -1;
1061	int sync;
1062
1063	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1064
1065	fcp = 3000;
1066	swp_ofs = state->srate / 4;
1067
1068	for (i = 0; i < 60; i++)
1069		V[i] = -1;
1070
1071	for (i = 0; i < 20; i++)
1072		prev_swp_freq[i] = 0;
1073
1074	SIG1MIN = 25;
1075
1076	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1077		SEQ_set(state, 0);
1078		iq_vt_set(state, 0);
1079
1080		CREN = 0;
1081		AFCEN = 0;
1082		AFCEXEN = 1;
1083		TIMINT1 = 0;
1084		TIMINT2 = 1;
1085		TIMEXT = 2;
1086		S1T = 0;
1087		S0T = 0;
1088
1089		if (initial_set(state) < 0) {
1090			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1091			return -1;
1092		}
1093		if (DAGC_data_set(state, 3, 2) < 0) {
1094			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1095			return -1;
1096		}
1097		if (EN_set(state, CREN, AFCEN) < 0) {
1098			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1099			return -1; /* (0, 0) */
1100		}
1101		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1102			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1103			return -1; /* (1, smrt) = (1, symbolrate) */
1104		}
1105		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1106			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1107			return -1; /* (0, 1, 2) */
1108		}
1109		if (S01T_set(state, S1T, S0T) < 0) {
1110			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1111			return -1; /* (0, 0) */
1112		}
1113		smrt_info_get(state, state->srate);
1114		if (smrt_set(state, state->srate) < 0) {
1115			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1116			return -1;
1117		}
1118
1119		R = vco_dev_get(state, state->srate);
1120		if (R == 1)
1121			fOSC_start = state->frequency;
1122
1123		else if (R == 0) {
1124			if (state->frequency % 2 == 0) {
1125				fOSC_start = state->frequency;
1126			} else {
1127				fOSC_start = state->frequency + 1;
1128				if (fOSC_start > 2150)
1129					fOSC_start = state->frequency - 1;
1130			}
1131		}
1132		loop = 1;
1133		ftemp = fOSC_start * 1000;
1134		vmax = 0 ;
1135		while (loop == 1) {
1136			ftemp = ftemp + swp_ofs;
1137			vmax++;
1138
1139			/* Upper bound */
1140			if (ftemp > 2150000) {
1141				loop = 0;
1142				vmax--;
1143			} else {
1144				if ((ftemp == 2150000) ||
1145				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1146					loop = 0;
1147			}
1148		}
1149
1150		loop = 1;
1151		ftemp = fOSC_start * 1000;
1152		vmin = 0 ;
1153		while (loop == 1) {
1154			ftemp = ftemp - swp_ofs;
1155			vmin--;
1156
1157			/* Lower bound */
1158			if (ftemp < 950000) {
1159				loop = 0;
1160				vmin++;
1161			} else {
1162				if ((ftemp == 950000) ||
1163				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1164					loop = 0;
1165			}
1166		}
1167
1168		wait_t = (8000 + state->srate / 2) / state->srate;
1169		if (wait_t == 0)
1170			wait_t = 1;
1171
1172		i = 0;
1173		j = 0;
1174		prev_freq_num = 0;
1175		loop = 1;
1176		signal = 0;
1177		vmax_his = 0;
1178		vmin_his = 0;
1179		v = 0;
1180
1181		while (loop == 1) {
1182			swp_info_get(state, fOSC_start, state->srate,
1183				     v, R, swp_ofs, &fOSC,
1184				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1185
1186			udelay(100);
1187			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1188				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1189				return -1;
1190			}
1191			udelay(100);
1192			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1193				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1194				return -1;
1195			}
1196			if (srst(state) < 0) {
1197				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1198				return -1;
1199			}
1200			msleep_interruptible(wait_t);
1201
1202			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1203				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1204				return -1;
1205			}
1206			V[30 + v] = SIG1 ;
1207			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1208						      SIG1MIN, fOSC, afcex_freq,
1209						      swp_ofs, &SIG1);	/* changed */
1210
1211			signal_dupl = 0;
1212			for (j = 0; j < prev_freq_num; j++) {
1213				if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1214					signal_dupl = 1;
1215					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1216				}
1217			}
1218			if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1219				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1220				prev_swp_freq[prev_freq_num] = swp_freq;
1221				prev_freq_num++;
1222				swp_info_get2(state, state->srate, R, swp_freq,
1223					      &afcex_freq, &fOSC,
1224					      &AFCEX_L, &AFCEX_H);
1225
1226				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1227					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1228					return -1;
1229				}
1230				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1231					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1232					return -1;
1233				}
1234				signal = signal_det(state, state->srate, &SIG1);
1235				if (signal == 1) {
1236					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1237					loop = 0;
1238				} else {
1239					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1240					smrt_info_get(state, state->srate);
1241					if (smrt_set(state, state->srate) < 0) {
1242						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1243						return -1;
1244					}
1245				}
1246			}
1247			if (v > vmax)
1248				vmax_his = 1 ;
1249			if (v < vmin)
1250				vmin_his = 1 ;
1251			i++;
1252
1253			if ((i % 2 == 1) && (vmax_his == 1))
1254				i++;
1255			if ((i % 2 == 0) && (vmin_his == 1))
1256				i++;
1257
1258			if (i % 2 == 1)
1259				v = (i + 1) / 2;
1260			else
1261				v = -i / 2;
1262
1263			if ((vmax_his == 1) && (vmin_his == 1))
1264				loop = 0 ;
1265		}
1266
1267		if (signal == 1) {
1268			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1269			S1T = 7 ;
1270			S0T = 1 ;
1271			CREN = 0 ;
1272			AFCEN = 1 ;
1273			AFCEXEN = 0 ;
1274
1275			if (S01T_set(state, S1T, S0T) < 0) {
1276				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1277				return -1;
1278			}
1279			smrt_info_get(state, state->srate);
1280			if (smrt_set(state, state->srate) < 0) {
1281				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1282				return -1;
1283			}
1284			if (EN_set(state, CREN, AFCEN) < 0) {
1285				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1286				return -1;
1287			}
1288			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1289				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1290				return -1;
1291			}
1292			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1293			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1294				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1295				return -1;
1296			}
1297			if (srst(state) < 0) {
1298				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1299				return -1;
1300			}
1301			/* delay 4~200 */
1302			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1303			msleep(wait_t);
1304			afcerr = afcerr_chk(state);
1305			if (afcerr == -1)
1306				return -1;
1307
1308			swp_freq = fOSC * 1000 + afcerr ;
1309			AFCEXEN = 1 ;
1310			if (state->srate >= 1500)
1311				smrt_d = state->srate / 3;
1312			else
1313				smrt_d = state->srate / 2;
1314			smrt_info_get(state, smrt_d);
1315			if (smrt_set(state, smrt_d) < 0) {
1316				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1317				return -1;
1318			}
1319			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1320				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1321				return -1;
1322			}
1323			R = vco_dev_get(state, smrt_d);
1324			if (DAGC_data_set(state, 2, 0) < 0) {
1325				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1326				return -1;
1327			}
1328			for (i = 0; i < 3; i++) {
1329				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1330				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1331				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1332					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1333					return -1;
1334				}
1335				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1336					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1337					return -1;
1338				}
1339				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1340				msleep(wait_t);
1341				dagcm[i] = dagcm_val_get(state);
1342			}
1343			if ((dagcm[0] > dagcm[1]) &&
1344			    (dagcm[0] > dagcm[2]) &&
1345			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1346
1347				temp_freq = swp_freq - 2 * state->srate / 8;
1348				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1349				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1350					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1351					return -1;
1352				}
1353				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1354					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1355					return -1;
1356				}
1357				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1358				msleep(wait_t);
1359				dagcm[3] = dagcm_val_get(state);
1360				if (dagcm[3] > dagcm[1])
1361					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1362				else
1363					delta_freq = 0;
1364			} else if ((dagcm[2] > dagcm[1]) &&
1365				   (dagcm[2] > dagcm[0]) &&
1366				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1367
1368				temp_freq = swp_freq + 2 * state->srate / 8;
1369				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1370				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1371					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1372					return -1;
1373				}
1374				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1375					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1376					return -1;
1377				}
1378				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1379				msleep(wait_t);
1380				dagcm[3] = dagcm_val_get(state);
1381				if (dagcm[3] > dagcm[1])
1382					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1383				else
1384					delta_freq = 0 ;
1385
1386			} else {
1387				delta_freq = 0 ;
1388			}
1389			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1390			swp_freq += delta_freq;
1391			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1392			if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1393				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1394			} else {
1395
1396				S1T = 0;
1397				S0T = 3;
1398				CREN = 1;
1399				AFCEN = 0;
1400				AFCEXEN = 1;
1401
1402				if (S01T_set(state, S1T, S0T) < 0) {
1403					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1404					return -1;
1405				}
1406				if (DAGC_data_set(state, 0, 0) < 0) {
1407					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1408					return -1;
1409				}
1410				R = vco_dev_get(state, state->srate);
1411				smrt_info_get(state, state->srate);
1412				if (smrt_set(state, state->srate) < 0) {
1413					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1414					return -1;
1415				}
1416				if (EN_set(state, CREN, AFCEN) < 0) {
1417					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1418					return -1;
1419				}
1420				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1421					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1422					return -1;
1423				}
1424				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1425				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1426					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1427					return -1;
1428				}
1429				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1430					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1431					return -1;
1432				}
1433				if (srst(state) < 0) {
1434					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1435					return -1;
1436				}
1437				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1438				if (wait_t == 0)
1439					wait_t = 1;
1440				msleep_interruptible(wait_t);
1441				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1442					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1443					return -EREMOTEIO;
1444				}
1445
1446				if (SIG1 > 110) {
1447					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1448					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1449				} else if (SIG1 > 105) {
1450					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1451					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1452				} else if (SIG1 > 85) {
1453					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1454					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1455				} else if (SIG1 > 65) {
1456					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1457					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1458				} else {
1459					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1460					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1461				}
1462				wait_t *= 2; /* FOS */
1463				S2T_set(state, S2T);
1464				S45T_set(state, S4T, S5T);
1465				Vi_set(state, ETH, VIA);
1466				srst(state);
1467				msleep_interruptible(wait_t);
1468				sync = sync_chk(state, &VIRM);
1469				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1470				if (VIRM) {
1471					if (VIRM == 4) {
1472						/* 5/6 */
1473						if (SIG1 > 110)
1474							wait_t = (786432 + state->srate / 2) / state->srate;
1475						else
1476							wait_t = (1572864 + state->srate / 2) / state->srate;
1477						if (state->srate < 5000)
1478							/* FIXME ! , should be a long wait ! */
1479							msleep_interruptible(wait_t);
1480						else
1481							msleep_interruptible(wait_t);
1482
1483						if (sync_chk(state, &junk) == 0) {
1484							iq_vt_set(state, 1);
1485							FEC_srst(state);
1486						}
1487					}
1488					/* 1/2, 2/3, 3/4, 7/8 */
1489					if (SIG1 > 110)
1490						wait_t = (786432 + state->srate / 2) / state->srate;
1491					else
1492						wait_t = (1572864 + state->srate / 2) / state->srate;
1493					msleep_interruptible(wait_t);
1494					SEQ_set(state, 1);
1495				} else {
1496					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1497					SEQ_set(state, 1);
1498					ret = -1;
1499				}
1500			}
1501		} else {
1502			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1503			ret = -1;
1504		}
1505
1506		sync = sync_chk(state, &junk);
1507		if (sync) {
1508			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1509			freqerr_chk(state, state->frequency, state->srate, 1);
1510			ret = 0;
1511			break;
1512		}
1513	}
1514
1515	mb86a16_read(state, 0x15, &agcval);
1516	mb86a16_read(state, 0x26, &cnmval);
1517	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1518
1519	return ret;
1520}
1521
1522static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1523				   struct dvb_diseqc_master_cmd *cmd)
1524{
1525	struct mb86a16_state *state = fe->demodulator_priv;
1526	int i;
1527	u8 regs;
1528
1529	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1530		goto err;
1531	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1532		goto err;
1533	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1534		goto err;
1535
1536	regs = 0x18;
1537
1538	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1539		return -EINVAL;
1540
1541	for (i = 0; i < cmd->msg_len; i++) {
1542		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1543			goto err;
1544
1545		regs++;
1546	}
1547	i += 0x90;
1548
1549	msleep_interruptible(10);
1550
1551	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1552		goto err;
1553	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1554		goto err;
1555
1556	return 0;
1557
1558err:
1559	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1560	return -EREMOTEIO;
1561}
1562
1563static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1564{
1565	struct mb86a16_state *state = fe->demodulator_priv;
1566
1567	switch (burst) {
1568	case SEC_MINI_A:
1569		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1570						       MB86A16_DCC1_TBEN  |
1571						       MB86A16_DCC1_TBO) < 0)
1572			goto err;
1573		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1574			goto err;
1575		break;
1576	case SEC_MINI_B:
1577		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1578						       MB86A16_DCC1_TBEN) < 0)
1579			goto err;
1580		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1581			goto err;
1582		break;
1583	}
1584
1585	return 0;
1586err:
1587	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1588	return -EREMOTEIO;
1589}
1590
1591static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1592{
1593	struct mb86a16_state *state = fe->demodulator_priv;
1594
1595	switch (tone) {
1596	case SEC_TONE_ON:
1597		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1598			goto err;
1599		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1600						       MB86A16_DCC1_CTOE) < 0)
1601
1602			goto err;
1603		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1604			goto err;
1605		break;
1606	case SEC_TONE_OFF:
1607		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1608			goto err;
1609		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1610			goto err;
1611		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1612			goto err;
1613		break;
1614	default:
1615		return -EINVAL;
1616	}
1617	return 0;
1618
1619err:
1620	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1621	return -EREMOTEIO;
1622}
1623
1624static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe,
1625					struct dvb_frontend_parameters *p)
1626{
1627	struct mb86a16_state *state = fe->demodulator_priv;
1628
1629	state->frequency = p->frequency / 1000;
1630	state->srate = p->u.qpsk.symbol_rate / 1000;
1631
1632	if (!mb86a16_set_fe(state)) {
1633		dprintk(verbose, MB86A16_ERROR, 1, "Succesfully acquired LOCK");
1634		return DVBFE_ALGO_SEARCH_SUCCESS;
1635	}
1636
1637	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1638	return DVBFE_ALGO_SEARCH_FAILED;
1639}
1640
1641static void mb86a16_release(struct dvb_frontend *fe)
1642{
1643	struct mb86a16_state *state = fe->demodulator_priv;
1644	kfree(state);
1645}
1646
1647static int mb86a16_init(struct dvb_frontend *fe)
1648{
1649	return 0;
1650}
1651
1652static int mb86a16_sleep(struct dvb_frontend *fe)
1653{
1654	return 0;
1655}
1656
1657static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1658{
1659	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1660	u32 timer;
1661
1662	struct mb86a16_state *state = fe->demodulator_priv;
1663
1664	*ber = 0;
1665	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1666		goto err;
1667	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1668		goto err;
1669	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1670		goto err;
1671	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1672		goto err;
1673	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1674		goto err;
1675	/* BER monitor invalid when BER_EN = 0	*/
1676	if (ber_mon & 0x04) {
1677		/* coarse, fast calculation	*/
1678		*ber = ber_tab & 0x1f;
1679		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1680		if (ber_mon & 0x01) {
1681			/*
1682			 * BER_SEL = 1, The monitored BER is the estimated
1683			 * value with a Reed-Solomon decoder error amount at
1684			 * the deinterleaver output.
1685			 * monitored BER is expressed as a 20 bit output in total
1686			 */
1687			ber_rst = ber_mon >> 3;
1688			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1689			if (ber_rst == 0)
1690				timer =  12500000;
1691			if (ber_rst == 1)
1692				timer =  25000000;
1693			if (ber_rst == 2)
1694				timer =  50000000;
1695			if (ber_rst == 3)
1696				timer = 100000000;
1697
1698			*ber /= timer;
1699			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1700		} else {
1701			/*
1702			 * BER_SEL = 0, The monitored BER is the estimated
1703			 * value with a Viterbi decoder error amount at the
1704			 * QPSK demodulator output.
1705			 * monitored BER is expressed as a 24 bit output in total
1706			 */
1707			ber_tim = ber_mon >> 1;
1708			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1709			if (ber_tim == 0)
1710				timer = 16;
1711			if (ber_tim == 1)
1712				timer = 24;
1713
1714			*ber /= 2 ^ timer;
1715			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1716		}
1717	}
1718	return 0;
1719err:
1720	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1721	return -EREMOTEIO;
1722}
1723
1724static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1725{
1726	u8 agcm = 0;
1727	struct mb86a16_state *state = fe->demodulator_priv;
1728
1729	*strength = 0;
1730	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1731		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1732		return -EREMOTEIO;
1733	}
1734
1735	*strength = ((0xff - agcm) * 100) / 256;
1736	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1737	*strength = (0xffff - 0xff) + agcm;
1738
1739	return 0;
1740}
1741
1742struct cnr {
1743	u8 cn_reg;
1744	u8 cn_val;
1745};
1746
1747static const struct cnr cnr_tab[] = {
1748	{  35,  2 },
1749	{  40,  3 },
1750	{  50,  4 },
1751	{  60,  5 },
1752	{  70,  6 },
1753	{  80,  7 },
1754	{  92,  8 },
1755	{ 103,  9 },
1756	{ 115, 10 },
1757	{ 138, 12 },
1758	{ 162, 15 },
1759	{ 180, 18 },
1760	{ 185, 19 },
1761	{ 189, 20 },
1762	{ 195, 22 },
1763	{ 199, 24 },
1764	{ 201, 25 },
1765	{ 202, 26 },
1766	{ 203, 27 },
1767	{ 205, 28 },
1768	{ 208, 30 }
1769};
1770
1771static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1772{
1773	struct mb86a16_state *state = fe->demodulator_priv;
1774	int i = 0;
1775	int low_tide = 2, high_tide = 30, q_level;
1776	u8  cn;
1777
1778	*snr = 0;
1779	if (mb86a16_read(state, 0x26, &cn) != 2) {
1780		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1781		return -EREMOTEIO;
1782	}
1783
1784	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1785		if (cn < cnr_tab[i].cn_reg) {
1786			*snr = cnr_tab[i].cn_val;
1787			break;
1788		}
1789	}
1790	q_level = (*snr * 100) / (high_tide - low_tide);
1791	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1792	*snr = (0xffff - 0xff) + *snr;
1793
1794	return 0;
1795}
1796
1797static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1798{
1799	u8 dist;
1800	struct mb86a16_state *state = fe->demodulator_priv;
1801
1802	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1803		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1804		return -EREMOTEIO;
1805	}
1806	*ucblocks = dist;
1807
1808	return 0;
1809}
1810
1811static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1812{
1813	return DVBFE_ALGO_CUSTOM;
1814}
1815
1816static struct dvb_frontend_ops mb86a16_ops = {
1817	.info = {
1818		.name			= "Fujitsu MB86A16 DVB-S",
1819		.type			= FE_QPSK,
1820		.frequency_min		= 950000,
1821		.frequency_max		= 2150000,
1822		.frequency_stepsize	= 3000,
1823		.frequency_tolerance	= 0,
1824		.symbol_rate_min	= 1000000,
1825		.symbol_rate_max	= 45000000,
1826		.symbol_rate_tolerance	= 500,
1827		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1828					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1829					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1830					  FE_CAN_FEC_AUTO
1831	},
1832	.release			= mb86a16_release,
1833
1834	.get_frontend_algo		= mb86a16_frontend_algo,
1835	.search				= mb86a16_search,
1836	.read_status			= mb86a16_read_status,
1837	.init				= mb86a16_init,
1838	.sleep				= mb86a16_sleep,
1839	.read_status			= mb86a16_read_status,
1840
1841	.read_ber			= mb86a16_read_ber,
1842	.read_signal_strength		= mb86a16_read_signal_strength,
1843	.read_snr			= mb86a16_read_snr,
1844	.read_ucblocks			= mb86a16_read_ucblocks,
1845
1846	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1847	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1848	.set_tone			= mb86a16_set_tone,
1849};
1850
1851struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1852				    struct i2c_adapter *i2c_adap)
1853{
1854	u8 dev_id = 0;
1855	struct mb86a16_state *state = NULL;
1856
1857	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1858	if (state == NULL)
1859		goto error;
1860
1861	state->config = config;
1862	state->i2c_adap = i2c_adap;
1863
1864	mb86a16_read(state, 0x7f, &dev_id);
1865	if (dev_id != 0xfe)
1866		goto error;
1867
1868	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1869	state->frontend.demodulator_priv = state;
1870	state->frontend.ops.set_voltage = state->config->set_voltage;
1871
1872	return &state->frontend;
1873error:
1874	kfree(state);
1875	return NULL;
1876}
1877EXPORT_SYMBOL(mb86a16_attach);
1878MODULE_LICENSE("GPL");
1879MODULE_AUTHOR("Manu Abraham");