/core/src/main/scala/scalaz/Liskov.scala
http://github.com/scalaz/scalaz · Scala · 250 lines · 167 code · 46 blank · 37 comment · 0 complexity · 6b44c0fcbdde212eebd19c911576de6b MD5 · raw file
- package scalaz
- /**
- * Liskov substitutability: A better `<:<`
- *
- * `A <: B` holds whenever `A` could be used in any negative context that expects a `B`.
- * (e.g. if you could pass an `A` into any function that expects a `B`.)
- */
- sealed abstract class Liskov[-A, +B] {
- def apply(a: A): B = Liskov.witness(this)(a)
- def substCo[F[+_]](p: F[A]): F[B]
- def substCt[F[-_]](p: F[B]): F[A]
- final def *[x[+_, +_], C, D](that: Liskov[C, D]): Liskov[A x C, B x D] = Liskov.lift2(this, that)
- final def andThen[C](that: Liskov[B, C]): Liskov[A, C] = Liskov.trans(that, this)
- final def compose[C](that: Liskov[C, A]): Liskov[C, B] = Liskov.trans(this, that)
- final def onF[X](fa: X => A): X => B = Liskov.co2_2[Function1, B, X, A](this)(fa)
- }
- sealed abstract class LiskovInstances {
- import Liskov._
- /** Subtyping forms a category */
- implicit val liskov: Category[<~<] = new Category[<~<] {
- def id[A]: (A <~< A) = refl[A]
- def compose[A, B, C](bc: B <~< C, ab: A <~< B): (A <~< C) = trans(bc, ab)
- }
- }
- object Liskov extends LiskovInstances {
- /** A convenient type alias for Liskov */
- type <~<[-A, +B] = Liskov[A, B]
- /** A flipped alias, for those used to their arrows running left to right */
- type >~>[+B, -A] = Liskov[A, B]
- /** Lift Scala's subtyping relationship */
- implicit def isa[A, B >: A]: A <~< B = new (A <~< B) {
- def substCo[F[+ _]](p: F[A]) = p
- def substCt[F[- _]](p: F[B]) = p
- }
- /** We can witness equality by using it to convert between types */
- implicit def witness[A, B](lt: A <~< B): A => B = {
- type f[-X] = X => B
- lt.substCt[f](identity)
- }
- /** Subtyping is reflexive */
- implicit def refl[A]: (A <~< A) = new (A <~< A) {
- def substCo[F[+ _]](p: F[A]) = p
- def substCt[F[- _]](p: F[A]) = p
- }
- private[scalaz] def fromLeibniz[A, B](ev: A === B): A <~< B =
- new (A <~< B) {
- def substCo[F[+ _]](p: F[A]) = ev.subst(p)
- def substCt[F[- _]](p: F[B]) = ev.flip.subst(p)
- }
- /** Subtyping is transitive */
- def trans[A, B, C](f: B <~< C, g: A <~< B): A <~< C =
- g.substCt[λ[`-α` => α <~< C]](f)
- /** We can lift subtyping into any covariant type constructor */
- def co[T[+_], A, A2](a: A <~< A2): (T[A] <~< T[A2]) =
- a.substCt[λ[`-α` => T[α] <~< T[A2]]](refl)
- def co2[T[+_, _], Z, A, B](a: A <~< Z): T[A, B] <~< T[Z, B] =
- a.substCt[λ[`-α` => T[α, B] <~< T[Z, B]]](refl)
- def co2_2[T[_, +_], Z, A, B](a: B <~< Z): T[A, B] <~< T[A, Z] =
- a.substCt[λ[`-α` => T[A, α] <~< T[A, Z]]](refl)
- def co3[T[+_, _, _], Z, A, B, C](a: A <~< Z): T[A, B, C] <~< T[Z, B, C] =
- a.substCt[λ[`-α` => T[α, B, C] <~< T[Z, B, C]]](refl)
- def co4[T[+_, _, _, _], Z, A, B, C, D](a: A <~< Z): T[A, B, C, D] <~< T[Z, B, C, D] =
- a.substCt[λ[`-α` => T[α, B, C, D] <~< T[Z, B, C, D]]](refl)
- /** lift2(a,b) = co1_2(a) compose co2_2(b) */
- def lift2[T[+_, +_], A, A2, B, B2](
- a: A <~< A2,
- b: B <~< B2
- ): (T[A, B] <~< T[A2, B2]) = {
- type a[-X] = T[X, B2] <~< T[A2, B2]
- type b[-X] = T[A, X] <~< T[A2, B2]
- b.substCt[b](a.substCt[a](refl))
- }
- /** lift3(a,b,c) = co1_3(a) compose co2_3(b) compose co3_3(c) */
- def lift3[T[+_, +_, +_], A, A2, B, B2, C, C2](
- a: A <~< A2,
- b: B <~< B2,
- c: C <~< C2
- ): (T[A, B, C] <~< T[A2, B2, C2]) = {
- type a[-X] = T[X, B2, C2] <~< T[A2, B2, C2]
- type b[-X] = T[A, X, C2] <~< T[A2, B2, C2]
- type c[-X] = T[A, B, X] <~< T[A2, B2, C2]
- c.substCt[c](b.substCt[b](a.substCt[a](refl)))
- }
- /** lift4(a,b,c,d) = co1_3(a) compose co2_3(b) compose co3_3(c) compose co4_4(d) */
- def lift4[T[+_, +_, +_, +_], A, A2, B, B2, C, C2, D, D2](
- a: A <~< A2,
- b: B <~< B2,
- c: C <~< C2,
- d: D <~< D2
- ): (T[A, B, C, D] <~< T[A2, B2, C2, D2]) = {
- type a[-X] = T[X, B2, C2, D2] <~< T[A2, B2, C2, D2]
- type b[-X] = T[A, X, C2, D2] <~< T[A2, B2, C2, D2]
- type c[-X] = T[A, B, X, D2] <~< T[A2, B2, C2, D2]
- type d[-X] = T[A, B, C, X] <~< T[A2, B2, C2, D2]
- d.substCt[d](c.substCt[c](b.substCt[b](a.substCt[a](refl))))
- }
- /** We can lift subtyping into any contravariant type constructor */
- def contra[T[-_], A, A2](a: A <~< A2): (T[A2] <~< T[A]) =
- a.substCt[λ[`-α` => T[A2] <~< T[α]]](refl)
- // binary
- def contra1_2[T[-_, _], Z, A, B](a: A <~< Z): (T[Z, B] <~< T[A, B]) =
- a.substCt[λ[`-α` => T[Z, B] <~< T[α, B]]](refl)
- def contra2_2[T[_, -_], Z, A, B](a: B <~< Z): (T[A, Z] <~< T[A, B]) =
- a.substCt[λ[`-α` => T[A, Z] <~< T[A, α]]](refl)
- // ternary
- def contra1_3[T[-_, _, _], Z, A, B, C](a: A <~< Z): (T[Z, B, C] <~< T[A, B, C]) =
- a.substCt[λ[`-α` => T[Z, B, C] <~< T[α, B, C]]](refl)
- def contra2_3[T[_, -_, _], Z, A, B, C](a: B <~< Z): (T[A, Z, C] <~< T[A, B, C]) =
- a.substCt[λ[`-α` => T[A, Z, C] <~< T[A, α, C]]](refl)
- def contra3_3[T[_, _, -_], Z, A, B, C](a: C <~< Z): (T[A, B, Z] <~< T[A, B, C]) =
- a.substCt[λ[`-α` => T[A, B, Z] <~< T[A, B, α]]](refl)
- def contra1_4[T[-_, _, _, _], Z, A, B, C, D](a: A <~< Z): (T[Z, B, C, D] <~< T[A, B, C, D]) =
- a.substCt[λ[`-α` => T[Z, B, C, D] <~< T[α, B, C, D]]](refl)
- def contra2_4[T[_, -_, _, _], Z, A, B, C, D](a: B <~< Z): (T[A, Z, C, D] <~< T[A, B, C, D]) =
- a.substCt[λ[`-α` => T[A, Z, C, D] <~< T[A, α, C, D]]](refl)
- def contra3_4[T[_, _, -_, _], Z, A, B, C, D](a: C <~< Z): (T[A, B, Z, D] <~< T[A, B, C, D]) =
- a.substCt[λ[`-α` => T[A, B, Z, D] <~< T[A, B, α, D]]](refl)
- def contra4_4[T[_, _, _, -_], Z, A, B, C, D](a: D <~< Z): (T[A, B, C, Z] <~< T[A, B, C, D]) =
- a.substCt[λ[`-α` => T[A, B, C, Z] <~< T[A, B, C, α]]](refl)
- /** Lift subtyping into a unary function-like type
- * {{{
- * liftF1(a,r) = contra1_2(a) compose co2_2(b)
- * }}}
- */
- def liftF1[F[-_, +_], A, A2, R, R2](
- a: A <~< A2,
- r: R <~< R2
- ): (F[A2, R] <~< F[A, R2]) = {
- type a[-X] = F[A2, R2] <~< F[X, R2]
- type r[-X] = F[A2, X] <~< F[A, R2]
- r.substCt[r](a.substCt[a](refl))
- }
- /** Lift subtyping into a binary function-like type
- * {{{
- * liftF2(a,b,r) = contra1_3(a) compose contra2_3(b) compose co3_3(c)
- * }}}
- */
- def liftF2[F[-_, -_, +_], A, A2, B, B2, R, R2](
- a: A <~< A2,
- b: B <~< B2,
- r: R <~< R2
- ): (F[A2, B2, R] <~< F[A, B, R2]) = {
- type a[-X] = F[A2, B2, R2] <~< F[X, B2, R2]
- type b[-X] = F[A2, B2, R2] <~< F[A, X, R2]
- type r[-X] = F[A2, B2, X] <~< F[A, B, R2]
- r.substCt[r](b.substCt[b](a.substCt[a](refl)))
- }
- /** Lift subtyping into a ternary function-like type
- * {{{
- * liftF3(a,b,c,r) = contra1_4(a) compose contra2_4(b) compose contra3_4(c) compose co3_4(d)
- * }}}
- */
- def liftF3[F[-_, -_, -_, +_], A, A2, B, B2, C, C2, R, R2](
- a: A <~< A2,
- b: B <~< B2,
- c: C <~< C2,
- r: R <~< R2
- ): (F[A2, B2, C2, R] <~< F[A, B, C, R2]) = {
- type a[-X] = F[A2, B2, C2, R2] <~< F[X, B2, C2, R2]
- type b[-X] = F[A2, B2, C2, R2] <~< F[A, X, C2, R2]
- type c[-X] = F[A2, B2, C2, R2] <~< F[A, B, X, R2]
- type r[-X] = F[A2, B2, C2, X] <~< F[A, B, C, R2]
- r.substCt[r](c.substCt[c](b.substCt[b](a.substCt[a](refl))))
- }
- /** Lift subtyping into a 4-ary function-like type */
- def liftF4[F[-_, -_, -_, -_, +_], A, A2, B, B2, C, C2, D, D2, R, R2](
- a: A <~< A2,
- b: B <~< B2,
- c: C <~< C2,
- d: D <~< D2,
- r: R <~< R2
- ): (F[A2, B2, C2, D2, R] <~< F[A, B, C, D, R2]) = {
- type a[-X] = F[A2, B2, C2, D2, R2] <~< F[X, B2, C2, D2, R2]
- type b[-X] = F[A2, B2, C2, D2, R2] <~< F[A, X, C2, D2, R2]
- type c[-X] = F[A2, B2, C2, D2, R2] <~< F[A, B, X, D2, R2]
- type d[-X] = F[A2, B2, C2, D2, R2] <~< F[A, B, C, X, R2]
- type r[-X] = F[A2, B2, C2, D2, X] <~< F[A, B, C, D, R2]
- r.substCt[r](d.substCt[d](c.substCt[c](b.substCt[b](a.substCt[a](refl)))))
- }
- /** Unsafely force a claim that A is a subtype of B. */
- def force[A, B]: A <~< B =
- new (A <~< B) {
- def substCo[F[+ _]](p: F[A]) = p.asInstanceOf[F[B]]
- def substCt[F[- _]](p: F[B]) = p.asInstanceOf[F[A]]
- }
- def unco[F[_] : Injective, Z, A](
- a: F[A] <~< F[Z]
- ): (A <~< Z) = force[A, Z]
- def unco2_1[F[+_, _] : Injective2, Z, A, B](
- a: F[A, B] <~< F[Z, B]
- ): (A <~< Z) = force[A, Z]
- def unco2_2[F[_, +_] : Injective2, Z, A, B](
- a: F[A, B] <~< F[A, Z]
- ): (B <~< Z) = force[B, Z]
- def uncontra[F[-_] : Injective, Z, A](
- a: F[A] <~< F[Z]
- ): (Z <~< A) = force[Z, A]
- def uncontra2_1[F[-_, _] : Injective2, Z, A, B](
- a: F[A, B] <~< F[Z, B]
- ): (Z <~< A) = force[Z, A]
- def uncontra2_2[F[_, -_] : Injective2, Z, A, B](
- a: F[A, B] <~< F[A, Z]
- ): (Z <~< B) = force[Z, B]
- }