/core/src/main/scala/scalaz/Foldable.scala
http://github.com/scalaz/scalaz · Scala · 480 lines · 288 code · 79 blank · 113 comment · 49 complexity · 893476049cdf99669b2075473126fefe MD5 · raw file
- package scalaz
- ////
- /**
- * A type parameter implying the ability to extract zero or more
- * values of that type.
- */
- ////
- trait Foldable[F[_]] { self =>
- ////
- /** Map each element of the structure to a [[scalaz.Monoid]], and combine the results. */
- def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B
- /** As `foldMap` but returning `None` if the foldable is empty and `Some` otherwise */
- def foldMap1Opt[A,B](fa: F[A])(f: A => B)(implicit F: Semigroup[B]): Option[B] = {
- import std.option._
- foldMap(fa)(x => some(f(x)))
- }
- /**Right-associative fold of a structure. */
- def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B
- /**The composition of Foldables `F` and `G`, `[x]F[G[x]]`, is a Foldable */
- def compose[G[_]](implicit G0: Foldable[G]): Foldable[λ[α => F[G[α]]]] =
- new CompositionFoldable[F, G] {
- implicit def F = self
- implicit def G = G0
- }
- /** The composition of Foldable `F` and Bifoldable `G`, `[x, y]F[G[x, y]]`, is a Bifoldable */
- def bicompose[G[_, _]: Bifoldable]: Bifoldable[λ[(α, β) => F[G[α, β]]]] =
- new CompositionFoldableBifoldable[F, G] {
- def F = self
- def G = implicitly
- }
- /**The product of Foldables `F` and `G`, `[x](F[x], G[x]])`, is a Foldable */
- def product[G[_]](implicit G0: Foldable[G]): Foldable[λ[α => (F[α], G[α])]] =
- new ProductFoldable[F, G] {
- implicit def F = self
- implicit def G = G0
- }
- /**The product of Foldable `F` and Foldable1 `G`, `[x](F[x], G[x]])`, is a Foldable1 */
- def product0[G[_]](implicit G0: Foldable1[G]): Foldable1[λ[α => (F[α], G[α])]] =
- new ProductFoldable1R[F, G] {
- def F = self
- def G = G0
- }
- /**Left-associative fold of a structure. */
- def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B = {
- import Dual._, Endo._, syntax.std.all._
- Tag.unwrap(foldMap(fa)((a: A) => Dual(Endo.endo(f.flip.curried(a))))(dualMonoid)) apply (z)
- }
- /**Right-associative, monadic fold of a structure. */
- def foldRightM[G[_], A, B](fa: F[A], z: => B)(f: (A, => B) => G[B])(implicit M: Monad[G]): G[B] =
- foldLeft[A, B => G[B]](fa, M.point(_))((b, a) => w => M.bind(f(a, w))(b))(z)
- /**Left-associative, monadic fold of a structure. */
- def foldLeftM[G[_], A, B](fa: F[A], z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B] =
- foldRight[A, B => G[B]](fa, M.point(_))((a, b) => w => M.bind(f(w, a))(b))(z)
- /** Specialization of foldRightM when `B` has a `Monoid`. */
- def foldMapM[G[_], A, B](fa: F[A])(f: A => G[B])(implicit B: Monoid[B], G: Monad[G]): G[B] =
- foldRightM[G, A, B](fa, B.zero)((a, b2) => G.map(f(a))(b1 => B.append(b1, b2)))
- /** Combine the elements of a structure using a monoid. */
- def fold[M: Monoid](t: F[M]): M = foldMap[M, M](t)(x => x)
- /** Like `fold` but returning `None` if the foldable is empty and `Some` otherwise */
- def fold1Opt[A: Semigroup](fa: F[A]): Option[A] = foldMap1Opt(fa)(a => a)
- /** Strict traversal in an applicative functor `M` that ignores the result of `f`. */
- def traverse_[M[_], A, B](fa: F[A])(f: A => M[B])(implicit a: Applicative[M]): M[Unit] =
- foldLeft(fa, a.pure(()))((x, y) => a.ap(f(y))(a.map(x)(_ => _ => ())))
- /** A version of `traverse_` that infers the type constructor `M`. */
- final def traverseU_[A, GB](fa: F[A])(f: A => GB)(implicit G: Unapply[Applicative, GB]): G.M[Unit] =
- traverse_[G.M, A, G.A](fa)(G.leibniz.onF(f))(G.TC)
- /** `traverse_` specialized to `State` **/
- def traverseS_[S, A, B](fa: F[A])(f: A => State[S, B]): State[S, Unit] =
- State{s: S =>
- (foldLeft(fa, s)((s, a) => f(a)(s)._1), ())
- }
- /** Strict sequencing in an applicative functor `M` that ignores the value in `fa`. */
- def sequence_[M[_], A](fa: F[M[A]])(implicit a: Applicative[M]): M[Unit] =
- traverse_(fa)(x => x)
- /** `sequence_` specialized to `State` **/
- def sequenceS_[S, A](fga: F[State[S, A]]): State[S, Unit] =
- traverseS_(fga)(x => x)
- /** `sequence_` for Free. collapses into a single Free **/
- def sequenceF_[M[_], A](ffa: F[Free[M, A]]): Free[M, Unit] =
- foldLeft[Free[M,A],Free[M,Unit]](ffa, Free.pure[M, Unit](()))((c,d) => c.flatMap(_ => d.map(_ => ())))
- /**Curried version of `foldRight` */
- final def foldr[A, B](fa: F[A], z: => B)(f: A => (=> B) => B): B = foldRight(fa, z)((a, b) => f(a)(b))
- def foldMapRight1Opt[A, B](fa: F[A])(z: A => B)(f: (A, => B) => B): Option[B] =
- foldRight(fa, None: Option[B])((a, optB) =>
- optB map (f(a, _)) orElse Some(z(a)))
- def foldRight1Opt[A](fa: F[A])(f: (A, => A) => A): Option[A] =
- foldMapRight1Opt(fa)(identity)(f)
- def foldr1Opt[A](fa: F[A])(f: A => (=> A) => A): Option[A] = foldRight(fa, None: Option[A])((a, optA) => optA map (aa => f(a)(aa)) orElse Some(a))
- /**Curried version of `foldLeft` */
- final def foldl[A, B](fa: F[A], z: B)(f: B => A => B): B = foldLeft(fa, z)((b, a) => f(b)(a))
- def foldMapLeft1Opt[A, B](fa: F[A])(z: A => B)(f: (B, A) => B): Option[B] =
- foldLeft(fa, None: Option[B])((optB, a) =>
- optB map (f(_, a)) orElse Some(z(a)))
- def foldLeft1Opt[A](fa: F[A])(f: (A, A) => A): Option[A] =
- foldMapLeft1Opt(fa)(identity)(f)
- def foldl1Opt[A](fa: F[A])(f: A => A => A): Option[A] = foldLeft(fa, None: Option[A])((optA, a) => optA map (aa => f(aa)(a)) orElse Some(a))
- /**Curried version of `foldRightM` */
- final def foldrM[G[_], A, B](fa: F[A], z: => B)(f: A => ( => B) => G[B])(implicit M: Monad[G]): G[B] =
- foldRightM(fa, z)((a, b) => f(a)(b))
- /**Curried version of `foldLeftM` */
- final def foldlM[G[_], A, B](fa: F[A], z: => B)(f: B => A => G[B])(implicit M: Monad[G]): G[B] =
- foldLeftM(fa, z)((b, a) => f(b)(a))
- /** map elements in a Foldable with a monadic function and return the first element that is mapped successfully */
- final def findMapM[M[_]: Monad, A, B](fa: F[A])(f: A => M[Option[B]]): M[Option[B]] =
- toEphemeralStream(fa) findMapM f
- def findLeft[A](fa: F[A])(f: A => Boolean): Option[A] =
- foldLeft[A, Option[A]](fa, None)((b, a) => b.orElse(if(f(a)) Some(a) else None))
- def findRight[A](fa: F[A])(f: A => Boolean): Option[A] =
- foldRight[A, Option[A]](fa, None)((a, b) => b.orElse(if(f(a)) Some(a) else None))
- /** Alias for `length`. */
- final def count[A](fa: F[A]): Int = length(fa)
- /** Deforested alias for `toStream(fa).size`. */
- def length[A](fa: F[A]): Int = foldLeft(fa, 0)((b, _) => b + 1)
- /**
- * @return the element at index `i` in a `Some`, or `None` if the given index falls outside of the range
- */
- def index[A](fa: F[A], i: Int): Option[A] =
- foldLeft[A, (Int, Option[A])](fa, (0, None)) {
- case ((idx, elem), curr) =>
- (idx + 1, elem orElse { if (idx == i) Some(curr) else None })
- }._2
- /**
- * @return the element at index `i`, or `default` if the given index falls outside of the range
- */
- def indexOr[A](fa: F[A], default: => A, i: Int): A =
- index(fa, i) getOrElse default
- def toList[A](fa: F[A]): List[A] = {
- foldLeft(fa, List.newBuilder[A])(_ += _).result
- }
- def toVector[A](fa: F[A]): Vector[A] = {
- foldLeft(fa, Vector.newBuilder[A])(_ += _).result
- }
- def toSet[A](fa: F[A]): Set[A] = {
- foldLeft(fa, Set.newBuilder[A])(_ += _).result
- }
- def toStream[A](fa: F[A]): Stream[A] = foldRight[A, Stream[A]](fa, Stream.empty)(Stream.cons(_, _))
- def toIList[A](fa: F[A]): IList[A] =
- foldLeft(fa, IList.empty[A])((t, h) => h :: t).reverse
- def toEphemeralStream[A](fa: F[A]): EphemeralStream[A] =
- foldRight(fa, EphemeralStream.emptyEphemeralStream[A])(EphemeralStream.cons(_, _))
- /** Whether all `A`s in `fa` yield true from `p`. */
- def all[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, true)(p(_) && _)
- /** `all` with monadic traversal. */
- def allM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] =
- foldRight(fa, G.point(true))((a, b) => G.bind(p(a))(q => if(q) b else G.point(false)))
- /** Whether any `A`s in `fa` yield true from `p`. */
- def any[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, false)(p(_) || _)
- /** `any` with monadic traversal. */
- def anyM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] =
- foldRight(fa, G.point(false))((a, b) => G.bind(p(a))(q => if(q) G.point(true) else b))
- def filterLength[A](fa: F[A])(f: A => Boolean): Int =
- foldLeft(fa, 0)((b, a) => (if (f(a)) 1 else 0) + b)
- import Ordering.{GT, LT}
- import std.option.{some, none}
- /** The greatest element of `fa`, or None if `fa` is empty. */
- def maximum[A: Order](fa: F[A]): Option[A] =
- foldLeft(fa, none[A]) {
- case (None, y) => some(y)
- case (Some(x), y) => some(if (Order[A].order(x, y) == GT) x else y)
- }
- /** The greatest value of `f(a)` for each element `a` of `fa`, or None if `fa` is empty. */
- def maximumOf[A, B: Order](fa: F[A])(f: A => B): Option[B] =
- foldLeft(fa, none[B]) {
- case (None, a) => some(f(a))
- case (Some(b), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == GT) b else bb)
- }
- /** The element `a` of `fa` which yields the greatest value of `f(a)`, or None if `fa` is empty. */
- def maximumBy[A, B: Order](fa: F[A])(f: A => B): Option[A] =
- foldLeft(fa, none[(A, B)]) {
- case (None, a) => some(a -> f(a))
- case (Some(x @ (a, b)), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == GT) x else aa -> bb)
- } map (_._1)
- /** The smallest element of `fa`, or None if `fa` is empty. */
- def minimum[A: Order](fa: F[A]): Option[A] =
- foldLeft(fa, none[A]) {
- case (None, y) => some(y)
- case (Some(x), y) => some(if (Order[A].order(x, y) == LT) x else y)
- }
- /** The smallest value of `f(a)` for each element `a` of `fa`, or None if `fa` is empty. */
- def minimumOf[A, B: Order](fa: F[A])(f: A => B): Option[B] =
- foldLeft(fa, none[B]) {
- case (None, a) => some(f(a))
- case (Some(b), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == LT) b else bb)
- }
- /** The element `a` of `fa` which yields the smallest value of `f(a)`, or None if `fa` is empty. */
- def minimumBy[A, B: Order](fa: F[A])(f: A => B): Option[A] =
- foldLeft(fa, none[(A, B)]) {
- case (None, a) => some(a -> f(a))
- case (Some(x @ (a, b)), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == LT) x else aa -> bb)
- } map (_._1)
- /** The smallest and largest elements of `fa` or None if `fa` is empty */
- def extrema[A: Order](fa: F[A]): Option[(A, A)] =
- extremaBy(fa)(identity)
- /** The smallest and largest values of `f(a)` for each element `a` of `fa` , or None if `fa` is empty */
- def extremaOf[A, B: Order](fa: F[A])(f: A => B): Option[(B, B)] =
- foldMapLeft1Opt(fa) { a =>
- val b = f(a)
- (b, b)
- } {
- case (x @ (bmin, bmax), a) =>
- val b = f(a)
- if (Order[B].order(b, bmin) == LT) (b, bmax)
- else if (Order[B].order(b, bmax) == GT) (bmin, b)
- else x
- }
- /** The elements (amin, amax) of `fa` which yield the smallest and largest values of `f(a)`, respectively, or None if `fa` is empty */
- def extremaBy[A, B: Order](fa: F[A])(f: A => B): Option[(A, A)] =
- foldMapLeft1Opt(fa) { a =>
- val b = f(a)
- (a, a, b, b)
- } {
- case (x @ ((amin, amax, bmin, bmax)), a) =>
- val b = f(a)
- val greaterThanOrEq = Order[B].greaterThanOrEqual(b, bmax)
- if(Order[B].lessThanOrEqual(b, bmin)) {
- if(greaterThanOrEq) {
- (a, a, b, b)
- } else {
- (a, amax, b, bmax)
- }
- } else {
- if(greaterThanOrEq) {
- (amin, a, bmin, b)
- } else {
- x
- }
- }
- } map {
- case (amin, amax, _, _) => (amin, amax)
- }
- def sumr[A](fa: F[A])(implicit A: Monoid[A]): A =
- foldRight(fa, A.zero)(A.append)
- def sumr1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A] =
- foldRight1Opt(fa)(A.append(_, _))
- def suml[A](fa: F[A])(implicit A: Monoid[A]): A =
- foldLeft(fa, A.zero)(A.append(_, _))
- def suml1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A] =
- foldLeft1Opt(fa)(A.append(_, _))
- /**
- * Map elements to `G[B]` and sum using a polymorphic monoid ([[PlusEmpty]]).
- * Should support early termination, i.e. mapping and summing
- * no more elements than is needed to determine the result.
- */
- def psumMap[A, B, G[_]](fa: F[A])(f: A => G[B])(implicit G: PlusEmpty[G]): G[B] =
- foldMap(fa)(f)(G.monoid)
- /**
- * Sum using a polymorphic monoid ([[PlusEmpty]]).
- * Should support early termination, i.e. summing no more
- * elements than is needed to determine the result.
- */
- def psum[G[_], A](fa: F[G[A]])(implicit G: PlusEmpty[G]): G[A] =
- fold(fa)(G.monoid)
- /** Alias for [[psum]]. `asum` is the name used in Haskell. */
- final def asum[G[_], A](fa: F[G[A]])(implicit G: PlusEmpty[G]): G[A] =
- psum(fa)
- def longDigits[A](fa: F[A])(implicit d: A <:< Digit): Long = foldLeft(fa, 0L)((n, a) => n * 10L + (a: Digit))
- /** Deforested alias for `toStream(fa).isEmpty`. */
- def empty[A](fa: F[A]): Boolean = all(fa)(_ => false)
- /** Whether `a` is an element of `fa`. */
- def element[A: Equal](fa: F[A], a: A): Boolean = any(fa)(Equal[A].equal(a, _))
- /** Insert an `A` between every A, yielding the sum. */
- def intercalate[A](fa: F[A], a: A)(implicit A: Monoid[A]): A =
- (foldRight(fa, none[A]) {(l, oa) =>
- some(A.append(l, oa map (A.append(a, _)) getOrElse A.zero))
- }).getOrElse(A.zero)
- /**
- * Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
- */
- def splitWith[A](fa: F[A])(p: A => Boolean): List[NonEmptyList[A]] =
- foldRight(fa, Maybe.empty[(NonEmptyList[NonEmptyList[A]], Boolean)])((a, b) => {
- val pa = p(a)
- Maybe.just(
- (b match {
- case Maybe.Just((x, q)) => if (pa == q) NonEmptyList.nel(a <:: x.head, x.tail) else NonEmptyList(a) <:: x
- case Maybe.Empty() => NonEmptyList(NonEmptyList(a))
- }, pa))
- }).cata(_._1.list.toList, List.empty)
- /**
- * Splits the elements into groups that produce the same result by a function f.
- */
- def splitBy[A, B: Equal](fa: F[A])(f: A => B): IList[(B, NonEmptyList[A])] =
- foldRight(fa, IList[(B, NonEmptyList[A])]())((a, bas) => {
- val fa = f(a)
- bas match {
- case INil() => IList.single((fa, NonEmptyList.nel(a, IList.empty)))
- case ICons((b, as), tail) => if (Equal[B].equal(fa, b)) ICons((b, a <:: as), tail) else ICons((fa, NonEmptyList.nel(a, IList.empty)), bas)
- }
- })
- /**
- * Splits into groups of elements that are transitively dependant by a relation r.
- */
- def splitByRelation[A](fa: F[A])(r: (A, A) => Boolean): IList[NonEmptyList[A]] =
- foldRight(fa, IList[NonEmptyList[A]]())((a, neas) => {
- neas match {
- case INil() => IList.single(NonEmptyList.nel(a, IList.empty))
- case ICons(nea, tail) => if (r(a, nea.head)) ICons(a <:: nea, tail) else ICons(NonEmptyList.nel(a, IList.empty), neas)
- }
- })
- /**
- * Selects groups of elements that satisfy p and discards others.
- */
- def selectSplit[A](fa: F[A])(p: A => Boolean): List[NonEmptyList[A]] = {
- import scalaz.syntax.foldable._
- def squash(t: (List[NonEmptyList[A]], IList[A])): List[NonEmptyList[A]] = t._2.toNel.toList ::: t._1
- squash(foldRight(fa, (List.empty[NonEmptyList[A]], IList.empty[A]))((a, l) =>
- if (p(a)) (l._1, a :: l._2)
- else (squash(l), IList.empty)
- ))
- }
- /** ``O(n log n)`` complexity */
- def distinct[A](fa: F[A])(implicit A: Order[A]): IList[A] =
- foldLeft(fa, (ISet.empty[A],IList.empty[A])) {
- case ((seen, acc), a) =>
- if (seen.notMember(a))
- (seen.insert(a), a :: acc)
- else (seen, acc)
- }._2.reverse
- /** ``O(n^2^)`` complexity */
- def distinctE[A](fa: F[A])(implicit A: Equal[A]): IList[A] =
- foldLeft(fa, IList.empty[A]) {
- case (seen, a) =>
- if (!IList.instances.element(seen,a))
- a :: seen
- else seen
- }.reverse
- def distinctBy[A, B: Equal](fa: F[A])(f: A => B): IList[A] =
- distinctE(fa)(Equal.equalBy(f))
- def collapse[X[_], A](x: F[A])(implicit A: ApplicativePlus[X]): X[A] =
- foldRight(x, A.empty[A])((a, b) => A.plus(A.point(a), b))
- trait FoldableLaw {
- import std.vector._
- /** Left fold is consistent with foldMap. */
- def leftFMConsistent[A: Equal](fa: F[A]): Boolean =
- Equal[Vector[A]].equal(foldMap(fa)(Vector(_)),
- foldLeft(fa, Vector.empty[A])(_ :+ _))
- /** Right fold is consistent with foldMap. */
- def rightFMConsistent[A: Equal](fa: F[A]): Boolean =
- Equal[Vector[A]].equal(foldMap(fa)(Vector(_)),
- foldRight(fa, Vector.empty[A])(_ +: _))
- }
- def foldableLaw = new FoldableLaw {}
- ////
- val foldableSyntax: scalaz.syntax.FoldableSyntax[F] =
- new scalaz.syntax.FoldableSyntax[F] { def F = Foldable.this }
- }
- object Foldable {
- @inline def apply[F[_]](implicit F: Foldable[F]): Foldable[F] = F
- ////
- def fromIso[F[_], G[_]](D: F ~> G)(implicit E: Foldable[G]): Foldable[F] =
- new IsomorphismFoldable[F, G] {
- override def G: Foldable[G] = E
- override def naturalTrans: F ~> G = D
- }
- /**
- * Template trait to define `Foldable` in terms of `foldMap`.
- *
- * Example:
- * {{{
- * new Foldable[Option] with Foldable.FromFoldMap[Option] {
- * def foldMap[A, B](fa: Option[A])(f: A => B)(implicit F: Monoid[B]) = fa match {
- * case Some(a) => f(a)
- * case None => F.zero
- * }
- * }
- * }}}
- */
- trait FromFoldMap[F[_]] extends Foldable[F] {
- override def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B) =
- foldMap(fa)((a: A) => Endo.endoByName[B](f(a, _))) apply z
- }
- /**
- * Template trait to define `Foldable` in terms of `foldRight`
- *
- * Example:
- * {{{
- * new Foldable[Option] with Foldable.FromFoldr[Option] {
- * def foldRight[A, B](fa: Option[A], z: B)(f: (A, => B) => B) = fa match {
- * case Some(a) => f(a, z)
- * case None => z
- * }
- * }
- * }}}
- */
- trait FromFoldr[F[_]] extends Foldable[F] {
- override def foldMap[A, B](fa: F[A])(f: A => B)(implicit F: Monoid[B]) =
- foldRight[A, B](fa, F.zero)((x, y) => F.append(f(x), y))
- }
- ////
- }
- trait IsomorphismFoldable[F[_], G[_]] extends Foldable[F] {
- implicit def G: Foldable[G]
- ////
- protected[this] def naturalTrans: F ~> G
- override def foldMap[A, B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B =
- G.foldMap(naturalTrans(fa))(f)
- override def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B =
- G.foldLeft(naturalTrans(fa), z)(f)
- override def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B =
- G.foldRight[A, B](naturalTrans(fa), z)(f)
- ////
- }