/src/FreeImage/Source/OpenEXR/Imath/ImathMath.h
https://bitbucket.org/cabalistic/ogredeps/ · C++ Header · 208 lines · 89 code · 22 blank · 97 comment · 1 complexity · 4cefb3318b10acdae9ca963459d36d8e MD5 · raw file
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHMATH_H
- #define INCLUDED_IMATHMATH_H
- //----------------------------------------------------------------------------
- //
- // ImathMath.h
- //
- // This file contains template functions which call the double-
- // precision math functions defined in math.h (sin(), sqrt(),
- // exp() etc.), with specializations that call the faster
- // single-precision versions (sinf(), sqrtf(), expf() etc.)
- // when appropriate.
- //
- // Example:
- //
- // double x = Math<double>::sqrt (3); // calls ::sqrt(double);
- // float y = Math<float>::sqrt (3); // calls ::sqrtf(float);
- //
- // When would I want to use this?
- //
- // You may be writing a template which needs to call some function
- // defined in math.h, for example to extract a square root, but you
- // don't know whether to call the single- or the double-precision
- // version of this function (sqrt() or sqrtf()):
- //
- // template <class T>
- // T
- // glorp (T x)
- // {
- // return sqrt (x + 1); // should call ::sqrtf(float)
- // } // if x is a float, but we
- // // don't know if it is
- //
- // Using the templates in this file, you can make sure that
- // the appropriate version of the math function is called:
- //
- // template <class T>
- // T
- // glorp (T x, T y)
- // {
- // return Math<T>::sqrt (x + 1); // calls ::sqrtf(float) if x
- // } // is a float, ::sqrt(double)
- // // otherwise
- //
- //----------------------------------------------------------------------------
- #include "ImathPlatform.h"
- #include "ImathLimits.h"
- #include <math.h>
- namespace Imath {
- template <class T>
- struct Math
- {
- static T acos (T x) {return ::acos (double(x));}
- static T asin (T x) {return ::asin (double(x));}
- static T atan (T x) {return ::atan (double(x));}
- static T atan2 (T x, T y) {return ::atan2 (double(x), double(y));}
- static T cos (T x) {return ::cos (double(x));}
- static T sin (T x) {return ::sin (double(x));}
- static T tan (T x) {return ::tan (double(x));}
- static T cosh (T x) {return ::cosh (double(x));}
- static T sinh (T x) {return ::sinh (double(x));}
- static T tanh (T x) {return ::tanh (double(x));}
- static T exp (T x) {return ::exp (double(x));}
- static T log (T x) {return ::log (double(x));}
- static T log10 (T x) {return ::log10 (double(x));}
- static T modf (T x, T *iptr)
- {
- double ival;
- T rval( ::modf (double(x),&ival));
- *iptr = ival;
- return rval;
- }
- static T pow (T x, T y) {return ::pow (double(x), double(y));}
- static T sqrt (T x) {return ::sqrt (double(x));}
- static T ceil (T x) {return ::ceil (double(x));}
- static T fabs (T x) {return ::fabs (double(x));}
- static T floor (T x) {return ::floor (double(x));}
- static T fmod (T x, T y) {return ::fmod (double(x), double(y));}
- static T hypot (T x, T y) {return ::hypot (double(x), double(y));}
- };
- template <>
- struct Math<float>
- {
- static float acos (float x) {return ::acosf (x);}
- static float asin (float x) {return ::asinf (x);}
- static float atan (float x) {return ::atanf (x);}
- static float atan2 (float x, float y) {return ::atan2f (x, y);}
- static float cos (float x) {return ::cosf (x);}
- static float sin (float x) {return ::sinf (x);}
- static float tan (float x) {return ::tanf (x);}
- static float cosh (float x) {return ::coshf (x);}
- static float sinh (float x) {return ::sinhf (x);}
- static float tanh (float x) {return ::tanhf (x);}
- static float exp (float x) {return ::expf (x);}
- static float log (float x) {return ::logf (x);}
- static float log10 (float x) {return ::log10f (x);}
- static float modf (float x, float *y) {return ::modff (x, y);}
- static float pow (float x, float y) {return ::powf (x, y);}
- static float sqrt (float x) {return ::sqrtf (x);}
- static float ceil (float x) {return ::ceilf (x);}
- static float fabs (float x) {return ::fabsf (x);}
- static float floor (float x) {return ::floorf (x);}
- static float fmod (float x, float y) {return ::fmodf (x, y);}
- #if !defined(_MSC_VER)
- static float hypot (float x, float y) {return ::hypotf (x, y);}
- #else
- static float hypot (float x, float y) {return ::sqrtf(x*x + y*y);}
- #endif
- };
- //--------------------------------------------------------------------------
- // Don Hatch's version of sin(x)/x, which is accurate for very small x.
- // Returns 1 for x == 0.
- //--------------------------------------------------------------------------
- template <class T>
- inline T
- sinx_over_x (T x)
- {
- if (x * x < limits<T>::epsilon())
- return T (1);
- else
- return Math<T>::sin (x) / x;
- }
- //--------------------------------------------------------------------------
- // Compare two numbers and test if they are "approximately equal":
- //
- // equalWithAbsError (x1, x2, e)
- //
- // Returns true if x1 is the same as x2 with an absolute error of
- // no more than e,
- //
- // abs (x1 - x2) <= e
- //
- // equalWithRelError (x1, x2, e)
- //
- // Returns true if x1 is the same as x2 with an relative error of
- // no more than e,
- //
- // abs (x1 - x2) <= e * x1
- //
- //--------------------------------------------------------------------------
- template <class T>
- inline bool
- equalWithAbsError (T x1, T x2, T e)
- {
- return ((x1 > x2)? x1 - x2: x2 - x1) <= e;
- }
- template <class T>
- inline bool
- equalWithRelError (T x1, T x2, T e)
- {
- return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1);
- }
- } // namespace Imath
- #endif