/src/FreeImage/Source/OpenEXR/Imath/ImathMatrix.h
https://bitbucket.org/cabalistic/ogredeps/ · C++ Header · 3311 lines · 2366 code · 576 blank · 369 comment · 163 complexity · d711a0f2d9ed05f7b166d68607116dcc MD5 · raw file
Large files are truncated click here to view the full file
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHMATRIX_H
- #define INCLUDED_IMATHMATRIX_H
- //----------------------------------------------------------------
- //
- // 2D (3x3) and 3D (4x4) transformation matrix templates.
- //
- //----------------------------------------------------------------
- #include "ImathPlatform.h"
- #include "ImathFun.h"
- #include "ImathExc.h"
- #include "ImathVec.h"
- #include "ImathShear.h"
- #include <string.h>
- #include <iostream>
- #include <iomanip>
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- // suppress exception specification warnings
- #pragma warning(disable:4290)
- #endif
- namespace Imath {
- enum Uninitialized {UNINITIALIZED};
- template <class T> class Matrix33
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x[3][3];
- T * operator [] (int i);
- const T * operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Matrix33 (Uninitialized) {}
- Matrix33 ();
- // 1 0 0
- // 0 1 0
- // 0 0 1
- Matrix33 (T a);
- // a a a
- // a a a
- // a a a
- Matrix33 (const T a[3][3]);
- // a[0][0] a[0][1] a[0][2]
- // a[1][0] a[1][1] a[1][2]
- // a[2][0] a[2][1] a[2][2]
- Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i);
- // a b c
- // d e f
- // g h i
- //--------------------------------
- // Copy constructor and assignment
- //--------------------------------
- Matrix33 (const Matrix33 &v);
- template <class S> explicit Matrix33 (const Matrix33<S> &v);
- const Matrix33 & operator = (const Matrix33 &v);
- const Matrix33 & operator = (T a);
- //----------------------
- // Compatibility with Sb
- //----------------------
-
- T * getValue ();
- const T * getValue () const;
- template <class S>
- void getValue (Matrix33<S> &v) const;
- template <class S>
- Matrix33 & setValue (const Matrix33<S> &v);
- template <class S>
- Matrix33 & setTheMatrix (const Matrix33<S> &v);
- //---------
- // Identity
- //---------
- void makeIdentity();
- //---------
- // Equality
- //---------
- bool operator == (const Matrix33 &v) const;
- bool operator != (const Matrix33 &v) const;
- //-----------------------------------------------------------------------
- // Compare two matrices and test if they are "approximately equal":
- //
- // equalWithAbsError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // an absolute error of no more than e, i.e., for all i, j
- //
- // abs (this[i][j] - m[i][j]) <= e
- //
- // equalWithRelError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // a relative error of no more than e, i.e., for all i, j
- //
- // abs (this[i] - v[i][j]) <= e * abs (this[i][j])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Matrix33<T> &v, T e) const;
- bool equalWithRelError (const Matrix33<T> &v, T e) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Matrix33 & operator += (const Matrix33 &v);
- const Matrix33 & operator += (T a);
- Matrix33 operator + (const Matrix33 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Matrix33 & operator -= (const Matrix33 &v);
- const Matrix33 & operator -= (T a);
- Matrix33 operator - (const Matrix33 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Matrix33 operator - () const;
- const Matrix33 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Matrix33 & operator *= (T a);
- Matrix33 operator * (T a) const;
- //-----------------------------------
- // Matrix-times-matrix multiplication
- //-----------------------------------
- const Matrix33 & operator *= (const Matrix33 &v);
- Matrix33 operator * (const Matrix33 &v) const;
- //-----------------------------------------------------------------
- // Vector-times-matrix multiplication; see also the "operator *"
- // functions defined below.
- //
- // m.multVecMatrix(src,dst) implements a homogeneous transformation
- // by computing Vec3 (src.x, src.y, 1) * m and dividing by the
- // result's third element.
- //
- // m.multDirMatrix(src,dst) multiplies src by the upper left 2x2
- // submatrix, ignoring the rest of matrix m.
- //-----------------------------------------------------------------
- template <class S>
- void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
- template <class S>
- void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Matrix33 & operator /= (T a);
- Matrix33 operator / (T a) const;
- //------------------
- // Transposed matrix
- //------------------
- const Matrix33 & transpose ();
- Matrix33 transposed () const;
- //------------------------------------------------------------
- // Inverse matrix: If singExc is false, inverting a singular
- // matrix produces an identity matrix. If singExc is true,
- // inverting a singular matrix throws a SingMatrixExc.
- //
- // inverse() and invert() invert matrices using determinants;
- // gjInverse() and gjInvert() use the Gauss-Jordan method.
- //
- // inverse() and invert() are significantly faster than
- // gjInverse() and gjInvert(), but the results may be slightly
- // less accurate.
- //
- //------------------------------------------------------------
- const Matrix33 & invert (bool singExc = false)
- throw (Iex::MathExc);
- Matrix33<T> inverse (bool singExc = false) const
- throw (Iex::MathExc);
- const Matrix33 & gjInvert (bool singExc = false)
- throw (Iex::MathExc);
- Matrix33<T> gjInverse (bool singExc = false) const
- throw (Iex::MathExc);
- //-----------------------------------------
- // Set matrix to rotation by r (in radians)
- //-----------------------------------------
- template <class S>
- const Matrix33 & setRotation (S r);
- //-----------------------------
- // Rotate the given matrix by r
- //-----------------------------
- template <class S>
- const Matrix33 & rotate (S r);
- //--------------------------------------------
- // Set matrix to scale by given uniform factor
- //--------------------------------------------
- const Matrix33 & setScale (T s);
- //------------------------------------
- // Set matrix to scale by given vector
- //------------------------------------
- template <class S>
- const Matrix33 & setScale (const Vec2<S> &s);
- //----------------------
- // Scale the matrix by s
- //----------------------
- template <class S>
- const Matrix33 & scale (const Vec2<S> &s);
- //------------------------------------------
- // Set matrix to translation by given vector
- //------------------------------------------
- template <class S>
- const Matrix33 & setTranslation (const Vec2<S> &t);
- //-----------------------------
- // Return translation component
- //-----------------------------
- Vec2<T> translation () const;
- //--------------------------
- // Translate the matrix by t
- //--------------------------
- template <class S>
- const Matrix33 & translate (const Vec2<S> &t);
- //-----------------------------------------------------------
- // Set matrix to shear x for each y coord. by given factor xy
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & setShear (const S &h);
- //-------------------------------------------------------------
- // Set matrix to shear x for each y coord. by given factor h[0]
- // and to shear y for each x coord. by given factor h[1]
- //-------------------------------------------------------------
- template <class S>
- const Matrix33 & setShear (const Vec2<S> &h);
- //-----------------------------------------------------------
- // Shear the matrix in x for each y coord. by given factor xy
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & shear (const S &xy);
- //-----------------------------------------------------------
- // Shear the matrix in x for each y coord. by given factor xy
- // and shear y for each x coord. by given factor yx
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & shear (const Vec2<S> &h);
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- private:
- template <typename R, typename S>
- struct isSameType
- {
- enum {value = 0};
- };
- template <typename R>
- struct isSameType<R, R>
- {
- enum {value = 1};
- };
- };
- template <class T> class Matrix44
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x[4][4];
- T * operator [] (int i);
- const T * operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Matrix44 (Uninitialized) {}
- Matrix44 ();
- // 1 0 0 0
- // 0 1 0 0
- // 0 0 1 0
- // 0 0 0 1
- Matrix44 (T a);
- // a a a a
- // a a a a
- // a a a a
- // a a a a
- Matrix44 (const T a[4][4]) ;
- // a[0][0] a[0][1] a[0][2] a[0][3]
- // a[1][0] a[1][1] a[1][2] a[1][3]
- // a[2][0] a[2][1] a[2][2] a[2][3]
- // a[3][0] a[3][1] a[3][2] a[3][3]
- Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
- T i, T j, T k, T l, T m, T n, T o, T p);
- // a b c d
- // e f g h
- // i j k l
- // m n o p
- Matrix44 (Matrix33<T> r, Vec3<T> t);
- // r r r 0
- // r r r 0
- // r r r 0
- // t t t 1
- //--------------------------------
- // Copy constructor and assignment
- //--------------------------------
- Matrix44 (const Matrix44 &v);
- template <class S> explicit Matrix44 (const Matrix44<S> &v);
- const Matrix44 & operator = (const Matrix44 &v);
- const Matrix44 & operator = (T a);
- //----------------------
- // Compatibility with Sb
- //----------------------
-
- T * getValue ();
- const T * getValue () const;
- template <class S>
- void getValue (Matrix44<S> &v) const;
- template <class S>
- Matrix44 & setValue (const Matrix44<S> &v);
- template <class S>
- Matrix44 & setTheMatrix (const Matrix44<S> &v);
- //---------
- // Identity
- //---------
- void makeIdentity();
- //---------
- // Equality
- //---------
- bool operator == (const Matrix44 &v) const;
- bool operator != (const Matrix44 &v) const;
- //-----------------------------------------------------------------------
- // Compare two matrices and test if they are "approximately equal":
- //
- // equalWithAbsError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // an absolute error of no more than e, i.e., for all i, j
- //
- // abs (this[i][j] - m[i][j]) <= e
- //
- // equalWithRelError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // a relative error of no more than e, i.e., for all i, j
- //
- // abs (this[i] - v[i][j]) <= e * abs (this[i][j])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Matrix44<T> &v, T e) const;
- bool equalWithRelError (const Matrix44<T> &v, T e) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Matrix44 & operator += (const Matrix44 &v);
- const Matrix44 & operator += (T a);
- Matrix44 operator + (const Matrix44 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Matrix44 & operator -= (const Matrix44 &v);
- const Matrix44 & operator -= (T a);
- Matrix44 operator - (const Matrix44 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Matrix44 operator - () const;
- const Matrix44 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Matrix44 & operator *= (T a);
- Matrix44 operator * (T a) const;
- //-----------------------------------
- // Matrix-times-matrix multiplication
- //-----------------------------------
- const Matrix44 & operator *= (const Matrix44 &v);
- Matrix44 operator * (const Matrix44 &v) const;
- static void multiply (const Matrix44 &a, // assumes that
- const Matrix44 &b, // &a != &c and
- Matrix44 &c); // &b != &c.
- //-----------------------------------------------------------------
- // Vector-times-matrix multiplication; see also the "operator *"
- // functions defined below.
- //
- // m.multVecMatrix(src,dst) implements a homogeneous transformation
- // by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by
- // the result's third element.
- //
- // m.multDirMatrix(src,dst) multiplies src by the upper left 3x3
- // submatrix, ignoring the rest of matrix m.
- //-----------------------------------------------------------------
- template <class S>
- void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
- template <class S>
- void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Matrix44 & operator /= (T a);
- Matrix44 operator / (T a) const;
- //------------------
- // Transposed matrix
- //------------------
- const Matrix44 & transpose ();
- Matrix44 transposed () const;
- //------------------------------------------------------------
- // Inverse matrix: If singExc is false, inverting a singular
- // matrix produces an identity matrix. If singExc is true,
- // inverting a singular matrix throws a SingMatrixExc.
- //
- // inverse() and invert() invert matrices using determinants;
- // gjInverse() and gjInvert() use the Gauss-Jordan method.
- //
- // inverse() and invert() are significantly faster than
- // gjInverse() and gjInvert(), but the results may be slightly
- // less accurate.
- //
- //------------------------------------------------------------
- const Matrix44 & invert (bool singExc = false)
- throw (Iex::MathExc);
- Matrix44<T> inverse (bool singExc = false) const
- throw (Iex::MathExc);
- const Matrix44 & gjInvert (bool singExc = false)
- throw (Iex::MathExc);
- Matrix44<T> gjInverse (bool singExc = false) const
- throw (Iex::MathExc);
- //--------------------------------------------------------
- // Set matrix to rotation by XYZ euler angles (in radians)
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & setEulerAngles (const Vec3<S>& r);
- //--------------------------------------------------------
- // Set matrix to rotation around given axis by given angle
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang);
- //-------------------------------------------
- // Rotate the matrix by XYZ euler angles in r
- //-------------------------------------------
- template <class S>
- const Matrix44 & rotate (const Vec3<S> &r);
- //--------------------------------------------
- // Set matrix to scale by given uniform factor
- //--------------------------------------------
- const Matrix44 & setScale (T s);
- //------------------------------------
- // Set matrix to scale by given vector
- //------------------------------------
- template <class S>
- const Matrix44 & setScale (const Vec3<S> &s);
- //----------------------
- // Scale the matrix by s
- //----------------------
- template <class S>
- const Matrix44 & scale (const Vec3<S> &s);
- //------------------------------------------
- // Set matrix to translation by given vector
- //------------------------------------------
- template <class S>
- const Matrix44 & setTranslation (const Vec3<S> &t);
- //-----------------------------
- // Return translation component
- //-----------------------------
- const Vec3<T> translation () const;
- //--------------------------
- // Translate the matrix by t
- //--------------------------
- template <class S>
- const Matrix44 & translate (const Vec3<S> &t);
- //-------------------------------------------------------------
- // Set matrix to shear by given vector h. The resulting matrix
- // will shear x for each y coord. by a factor of h[0] ;
- // will shear x for each z coord. by a factor of h[1] ;
- // will shear y for each z coord. by a factor of h[2] .
- //-------------------------------------------------------------
- template <class S>
- const Matrix44 & setShear (const Vec3<S> &h);
- //------------------------------------------------------------
- // Set matrix to shear by given factors. The resulting matrix
- // will shear x for each y coord. by a factor of h.xy ;
- // will shear x for each z coord. by a factor of h.xz ;
- // will shear y for each z coord. by a factor of h.yz ;
- // will shear y for each x coord. by a factor of h.yx ;
- // will shear z for each x coord. by a factor of h.zx ;
- // will shear z for each y coord. by a factor of h.zy .
- //------------------------------------------------------------
- template <class S>
- const Matrix44 & setShear (const Shear6<S> &h);
- //--------------------------------------------------------
- // Shear the matrix by given vector. The composed matrix
- // will be <shear> * <this>, where the shear matrix ...
- // will shear x for each y coord. by a factor of h[0] ;
- // will shear x for each z coord. by a factor of h[1] ;
- // will shear y for each z coord. by a factor of h[2] .
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & shear (const Vec3<S> &h);
- //------------------------------------------------------------
- // Shear the matrix by the given factors. The composed matrix
- // will be <shear> * <this>, where the shear matrix ...
- // will shear x for each y coord. by a factor of h.xy ;
- // will shear x for each z coord. by a factor of h.xz ;
- // will shear y for each z coord. by a factor of h.yz ;
- // will shear y for each x coord. by a factor of h.yx ;
- // will shear z for each x coord. by a factor of h.zx ;
- // will shear z for each y coord. by a factor of h.zy .
- //------------------------------------------------------------
- template <class S>
- const Matrix44 & shear (const Shear6<S> &h);
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- private:
- template <typename R, typename S>
- struct isSameType
- {
- enum {value = 0};
- };
- template <typename R>
- struct isSameType<R, R>
- {
- enum {value = 1};
- };
- };
- //--------------
- // Stream output
- //--------------
- template <class T>
- std::ostream & operator << (std::ostream & s, const Matrix33<T> &m);
- template <class T>
- std::ostream & operator << (std::ostream & s, const Matrix44<T> &m);
- //---------------------------------------------
- // Vector-times-matrix multiplication operators
- //---------------------------------------------
- template <class S, class T>
- const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m);
- //-------------------------
- // Typedefs for convenience
- //-------------------------
- typedef Matrix33 <float> M33f;
- typedef Matrix33 <double> M33d;
- typedef Matrix44 <float> M44f;
- typedef Matrix44 <double> M44d;
- //---------------------------
- // Implementation of Matrix33
- //---------------------------
- template <class T>
- inline T *
- Matrix33<T>::operator [] (int i)
- {
- return x[i];
- }
- template <class T>
- inline const T *
- Matrix33<T>::operator [] (int i) const
- {
- return x[i];
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 ()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (const T a[3][3])
- {
- memcpy (x, a, sizeof (x));
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i)
- {
- x[0][0] = a;
- x[0][1] = b;
- x[0][2] = c;
- x[1][0] = d;
- x[1][1] = e;
- x[1][2] = f;
- x[2][0] = g;
- x[2][1] = h;
- x[2][2] = i;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (const Matrix33 &v)
- {
- memcpy (x, v.x, sizeof (x));
- }
- template <class T>
- template <class S>
- inline
- Matrix33<T>::Matrix33 (const Matrix33<S> &v)
- {
- x[0][0] = T (v.x[0][0]);
- x[0][1] = T (v.x[0][1]);
- x[0][2] = T (v.x[0][2]);
- x[1][0] = T (v.x[1][0]);
- x[1][1] = T (v.x[1][1]);
- x[1][2] = T (v.x[1][2]);
- x[2][0] = T (v.x[2][0]);
- x[2][1] = T (v.x[2][1]);
- x[2][2] = T (v.x[2][2]);
- }
- template <class T>
- inline const Matrix33<T> &
- Matrix33<T>::operator = (const Matrix33 &v)
- {
- memcpy (x, v.x, sizeof (x));
- return *this;
- }
- template <class T>
- inline const Matrix33<T> &
- Matrix33<T>::operator = (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- return *this;
- }
- template <class T>
- inline T *
- Matrix33<T>::getValue ()
- {
- return (T *) &x[0][0];
- }
- template <class T>
- inline const T *
- Matrix33<T>::getValue () const
- {
- return (const T *) &x[0][0];
- }
- template <class T>
- template <class S>
- inline void
- Matrix33<T>::getValue (Matrix33<S> &v) const
- {
- if (isSameType<S,T>::value)
- {
- memcpy (v.x, x, sizeof (x));
- }
- else
- {
- v.x[0][0] = x[0][0];
- v.x[0][1] = x[0][1];
- v.x[0][2] = x[0][2];
- v.x[1][0] = x[1][0];
- v.x[1][1] = x[1][1];
- v.x[1][2] = x[1][2];
- v.x[2][0] = x[2][0];
- v.x[2][1] = x[2][1];
- v.x[2][2] = x[2][2];
- }
- }
- template <class T>
- template <class S>
- inline Matrix33<T> &
- Matrix33<T>::setValue (const Matrix33<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- }
- return *this;
- }
- template <class T>
- template <class S>
- inline Matrix33<T> &
- Matrix33<T>::setTheMatrix (const Matrix33<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- }
- return *this;
- }
- template <class T>
- inline void
- Matrix33<T>::makeIdentity()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- }
- template <class T>
- bool
- Matrix33<T>::operator == (const Matrix33 &v) const
- {
- return x[0][0] == v.x[0][0] &&
- x[0][1] == v.x[0][1] &&
- x[0][2] == v.x[0][2] &&
- x[1][0] == v.x[1][0] &&
- x[1][1] == v.x[1][1] &&
- x[1][2] == v.x[1][2] &&
- x[2][0] == v.x[2][0] &&
- x[2][1] == v.x[2][1] &&
- x[2][2] == v.x[2][2];
- }
- template <class T>
- bool
- Matrix33<T>::operator != (const Matrix33 &v) const
- {
- return x[0][0] != v.x[0][0] ||
- x[0][1] != v.x[0][1] ||
- x[0][2] != v.x[0][2] ||
- x[1][0] != v.x[1][0] ||
- x[1][1] != v.x[1][1] ||
- x[1][2] != v.x[1][2] ||
- x[2][0] != v.x[2][0] ||
- x[2][1] != v.x[2][1] ||
- x[2][2] != v.x[2][2];
- }
- template <class T>
- bool
- Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- if (!Imath::equalWithAbsError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- if (!Imath::equalWithRelError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator += (const Matrix33<T> &v)
- {
- x[0][0] += v.x[0][0];
- x[0][1] += v.x[0][1];
- x[0][2] += v.x[0][2];
- x[1][0] += v.x[1][0];
- x[1][1] += v.x[1][1];
- x[1][2] += v.x[1][2];
- x[2][0] += v.x[2][0];
- x[2][1] += v.x[2][1];
- x[2][2] += v.x[2][2];
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator += (T a)
- {
- x[0][0] += a;
- x[0][1] += a;
- x[0][2] += a;
- x[1][0] += a;
- x[1][1] += a;
- x[1][2] += a;
- x[2][0] += a;
- x[2][1] += a;
- x[2][2] += a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator + (const Matrix33<T> &v) const
- {
- return Matrix33 (x[0][0] + v.x[0][0],
- x[0][1] + v.x[0][1],
- x[0][2] + v.x[0][2],
- x[1][0] + v.x[1][0],
- x[1][1] + v.x[1][1],
- x[1][2] + v.x[1][2],
- x[2][0] + v.x[2][0],
- x[2][1] + v.x[2][1],
- x[2][2] + v.x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator -= (const Matrix33<T> &v)
- {
- x[0][0] -= v.x[0][0];
- x[0][1] -= v.x[0][1];
- x[0][2] -= v.x[0][2];
- x[1][0] -= v.x[1][0];
- x[1][1] -= v.x[1][1];
- x[1][2] -= v.x[1][2];
- x[2][0] -= v.x[2][0];
- x[2][1] -= v.x[2][1];
- x[2][2] -= v.x[2][2];
-
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator -= (T a)
- {
- x[0][0] -= a;
- x[0][1] -= a;
- x[0][2] -= a;
- x[1][0] -= a;
- x[1][1] -= a;
- x[1][2] -= a;
- x[2][0] -= a;
- x[2][1] -= a;
- x[2][2] -= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator - (const Matrix33<T> &v) const
- {
- return Matrix33 (x[0][0] - v.x[0][0],
- x[0][1] - v.x[0][1],
- x[0][2] - v.x[0][2],
- x[1][0] - v.x[1][0],
- x[1][1] - v.x[1][1],
- x[1][2] - v.x[1][2],
- x[2][0] - v.x[2][0],
- x[2][1] - v.x[2][1],
- x[2][2] - v.x[2][2]);
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator - () const
- {
- return Matrix33 (-x[0][0],
- -x[0][1],
- -x[0][2],
- -x[1][0],
- -x[1][1],
- -x[1][2],
- -x[2][0],
- -x[2][1],
- -x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::negate ()
- {
- x[0][0] = -x[0][0];
- x[0][1] = -x[0][1];
- x[0][2] = -x[0][2];
- x[1][0] = -x[1][0];
- x[1][1] = -x[1][1];
- x[1][2] = -x[1][2];
- x[2][0] = -x[2][0];
- x[2][1] = -x[2][1];
- x[2][2] = -x[2][2];
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator *= (T a)
- {
- x[0][0] *= a;
- x[0][1] *= a;
- x[0][2] *= a;
- x[1][0] *= a;
- x[1][1] *= a;
- x[1][2] *= a;
- x[2][0] *= a;
- x[2][1] *= a;
- x[2][2] *= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator * (T a) const
- {
- return Matrix33 (x[0][0] * a,
- x[0][1] * a,
- x[0][2] * a,
- x[1][0] * a,
- x[1][1] * a,
- x[1][2] * a,
- x[2][0] * a,
- x[2][1] * a,
- x[2][2] * a);
- }
- template <class T>
- inline Matrix33<T>
- operator * (T a, const Matrix33<T> &v)
- {
- return v * a;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator *= (const Matrix33<T> &v)
- {
- Matrix33 tmp (T (0));
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- for (int k = 0; k < 3; k++)
- tmp.x[i][j] += x[i][k] * v.x[k][j];
- *this = tmp;
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator * (const Matrix33<T> &v) const
- {
- Matrix33 tmp (T (0));
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- for (int k = 0; k < 3; k++)
- tmp.x[i][j] += x[i][k] * v.x[k][j];
- return tmp;
- }
- template <class T>
- template <class S>
- void
- Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const
- {
- S a, b, w;
- a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0];
- b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1];
- w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2];
- dst.x = a / w;
- dst.y = b / w;
- }
- template <class T>
- template <class S>
- void
- Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const
- {
- S a, b;
- a = src[0] * x[0][0] + src[1] * x[1][0];
- b = src[0] * x[0][1] + src[1] * x[1][1];
- dst.x = a;
- dst.y = b;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator /= (T a)
- {
- x[0][0] /= a;
- x[0][1] /= a;
- x[0][2] /= a;
- x[1][0] /= a;
- x[1][1] /= a;
- x[1][2] /= a;
- x[2][0] /= a;
- x[2][1] /= a;
- x[2][2] /= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator / (T a) const
- {
- return Matrix33 (x[0][0] / a,
- x[0][1] / a,
- x[0][2] / a,
- x[1][0] / a,
- x[1][1] / a,
- x[1][2] / a,
- x[2][0] / a,
- x[2][1] / a,
- x[2][2] / a);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::transpose ()
- {
- Matrix33 tmp (x[0][0],
- x[1][0],
- x[2][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[0][2],
- x[1][2],
- x[2][2]);
- *this = tmp;
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::transposed () const
- {
- return Matrix33 (x[0][0],
- x[1][0],
- x[2][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[0][2],
- x[1][2],
- x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::gjInvert (bool singExc) throw (Iex::MathExc)
- {
- *this = gjInverse (singExc);
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::gjInverse (bool singExc) const throw (Iex::MathExc)
- {
- int i, j, k;
- Matrix33 s;
- Matrix33 t (*this);
- // Forward elimination
- for (i = 0; i < 2 ; i++)
- {
- int pivot = i;
- T pivotsize = t[i][i];
- if (pivotsize < 0)
- pivotsize = -pivotsize;
- for (j = i + 1; j < 3; j++)
- {
- T tmp = t[j][i];
- if (tmp < 0)
- tmp = -tmp;
- if (tmp > pivotsize)
- {
- pivot = j;
- pivotsize = tmp;
- }
- }
- if (pivotsize == 0)
- {
- if (singExc)
- throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix33();
- }
- if (pivot != i)
- {
- for (j = 0; j < 3; j++)
- {
- T tmp;
- tmp = t[i][j];
- t[i][j] = t[pivot][j];
- t[pivot][j] = tmp;
- tmp = s[i][j];
- s[i][j] = s[pivot][j];
- s[pivot][j] = tmp;
- }
- }
- for (j = i + 1; j < 3; j++)
- {
- T f = t[j][i] / t[i][i];
- for (k = 0; k < 3; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- // Backward substitution
- for (i = 2; i >= 0; --i)
- {
- T f;
- if ((f = t[i][i]) == 0)
- {
- if (singExc)
- throw ::Imath::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix33();
- }
- for (j = 0; j < 3; j++)
- {
- t[i][j] /= f;
- s[i][j] /= f;
- }
- for (j = 0; j < i; j++)
- {
- f = t[j][i];
- for (k = 0; k < 3; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- return s;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::invert (bool singExc) throw (Iex::MathExc)
- {
- *this = inverse (singExc);
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::inverse (bool singExc) const throw (Iex::MathExc)
- {
- if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1)
- {
- Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
- x[2][1] * x[0][2] - x[0][1] * x[2][2],
- x[0][1] * x[1][2] - x[1][1] * x[0][2],
- x[2][0] * x[1][2] - x[1][0] * x[2][2],
- x[0][0] * x[2][2] - x[2][0] * x[0][2],
- x[1][0] * x[0][2] - x[0][0] * x[1][2],
- x[1][0] * x[2][1] - x[2][0] * x[1][1],
- x[2][0] * x[0][1] - x[0][0] * x[2][1],
- x[0][0] * x[1][1] - x[1][0] * x[0][1]);
- T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
- if (Imath::abs (r) >= 1)
- {
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- s[i][j] /= r;
- }
- }
- }
- else
- {
- T mr = Imath::abs (r) / limits<T>::smallest();
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- if (mr > Imath::abs (s[i][j]))
- {
- s[i][j] /= r;
- }
- else
- {
- if (singExc)
- throw SingMatrixExc ("Cannot invert "
- "singular matrix.");
- return Matrix33();
- }
- }
- }
- }
- return s;
- }
- else
- {
- Matrix33 s ( x[1][1],
- -x[0][1],
- 0,
- -x[1][0],
- x[0][0],
- 0,
- 0,
- 0,
- 1);
- T r = x[0][0] * x[1][1] - x[1][0] * x[0][1];
- if (Imath::abs (r) >= 1)
- {
- for (int i = 0; i < 2; ++i)
- {
- for (int j = 0; j < 2; ++j)
- {
- s[i][j] /= r;
- }
- }
- }
- else
- {
- T mr = Imath::abs (r) / limits<T>::smallest();
- for (int i = 0; i < 2; ++i)
- {
- for (int j = 0; j < 2; ++j)
- {
- if (mr > Imath::abs (s[i][j]))
- {
- s[i][j] /= r;
- }
- else
- {
- if (singExc)
- throw SingMatrixExc ("Cannot invert "
- "singular matrix.");
- return Matrix33();
- }
- }
- }
- }
- s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0];
- s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1];
- return s;
- }
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setRotation (S r)
- {
- S cos_r, sin_r;
- cos_r = Math<T>::cos (r);
- sin_r = Math<T>::sin (r);
- x[0][0] = cos_r;
- x[0][1] = sin_r;
- x[0][2] = 0;
- x[1][0] = -sin_r;
- x[1][1] = cos_r;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::rotate (S r)
- {
- *this *= Matrix33<T>().setRotation (r);
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::setScale (T s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s;
- x[1][1] = s;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setScale (const Vec2<S> &s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s[0];
- x[1][1] = s[1];
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::scale (const Vec2<S> &s)
- {
- x[0][0] *= s[0];
- x[0][1] *= s[0];
- x[0][2] *= s[0];
- x[1][0] *= s[1];
- x[1][1] *= s[1];
- x[1][2] *= s[1];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setTranslation (const Vec2<S> &t)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[1][0] = 0;
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = t[0];
- x[2][1] = t[1];
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Matrix33<T>::translation () const
- {
- return Vec2<T> (x[2][0], x[2][1]);
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::translate (const Vec2<S> &t)
- {
- x[2][0] += t[0] * x[0][0] + t[1] * x[1][0];
- x[2][1] += t[0] * x[0][1] + t[1] * x[1][1];
- x[2][2] += t[0] * x[0][2] + t[1] * x[1][2];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setShear (const S &xy)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[1][0] = xy;
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setShear (const Vec2<S> &h)
- {
- x[0][0] = 1;
- x[0][1] = h[1];
- x[0][2] = 0;
- x[1][0] = h[0];
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::shear (const S &xy)
- {
- //
- // In this case, we don't need a temp. copy of the matrix
- // because we never use a value on the RHS after we've
- // changed it on the LHS.
- //
- x[1][0] += xy * x[0][0];
- x[1][1] += xy * x[0][1];
- x[1][2] += xy * x[0][2];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::shear (const Vec2<S> &h)
- {
- Matrix33<T> P (*this);
-
- x[0][0] = P[0][0] + h[1] * P[1][0];
- x[0][1] = P[0][1] + h[1] * P[1][1];
- x[0][2] = P[0][2] + h[1] * P[1][2];
-
- x[1][0] = P[1][0] + h[0] * P[0][0];
- x[1][1] = P[1][1] + h[0] * P[0][1];
- x[1][2] = P[1][2] + h[0] * P[0][2];
- return *this;
- }
- //---------------------------
- // Implementation of Matrix44
- //---------------------------
- template <class T>
- inline T *
- Matrix44<T>::operator [] (int i)
- {
- return x[i];
- }
- template <class T>
- inline const T *
- Matrix44<T>::operator [] (int i) const
- {
- return x[i];
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 ()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- x[3][3] = 1;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[0][3] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[1][3] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- x[2][3] = a;
- x[3][0] = a;
- x[3][1] = a;
- x[3][2] = a;
- x[3][3] = a;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (const T a[4][4])
- {
- memcpy (x, a, sizeof (x));
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
- T i, T j, T k, T l, T m, T n, T o, T p)
- {
- x[0][0] = a;
- x[0][1] = b;
- x[0][2] = c;
- x[0][3] = d;
- x[1][0] = e;
- x[1][1] = f;
- x[1][2] = g;
- x[1][3] = h;
- x[2][0] = i;
- x[2][1] = j;
- x[2][2] = k;
- x[2][3] = l;
- x[3][0] = m;
- x[3][1] = n;
- x[3][2] = o;
- x[3][3] = p;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t)
- {
- x[0][0] = r[0][0];
- x[0][1] = r[0][1];
- x[0][2] = r[0][2];
- x[0][3] = 0;
- x[1][0] = r[1][0];
- x[1][1] = r[1][1];
- x[1][2] = r[1][2];
- x[1][3] = 0;
- x[2][0] = r[2][0];
- x[2][1] = r[2][1];
- x[2][2] = r[2][2];
- x[2][3] = 0;
- x[3][0] = t[0];
- x[3][1] = t[1];
- x[3][2] = t[2];
- x[3][3] = 1;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (const Matrix44 &v)
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- }
- template <class T>
- template <class S>
- inline
- Matrix44<T>::Matrix44 (const Matrix44<S> &v)
- {
- x[0][0] = T (v.x[0][0]);
- x[0][1] = T (v.x[0][1]);
- x[0][2] = T (v.x[0][2]);
- x[0][3] = T (v.x[0][3]);
- x[1][0] = T (v.x[1][0]);
- x[1][1] = T (v.x[1][1]);
- x[1][2] = T (v.x[1][2]);
- x[1][3] = T (v.x[1][3]);
- x[2][0] = T (v.x[2][0]);
- x[2][1] = T (v.x[2][1]);
- x[2][2] = T (v.x[2][2]);
- x[2][3] = T (v.x[2][3]);
- x[3][0] = T (v.x[3][0]);
- x[3][1] = T (v.x[3][1]);
- x[3][2] = T (v.x[3][2]);
- x[3][3] = T (v.x[3][3]);
- }
- template <class T>
- inline const Matrix44<T> &
- Matrix44<T>::operator = (const Matrix44 &v)
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- return *this;
- }
- template <class T>
- inline const Matrix44<T> &
- Matrix44<T>::operator = (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[0][3] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[1][3] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- x[2][3] = a;
- x[3][0] = a;
- x[3][1] = a;
- x[3][2] = a;
- x[3][3] = a;
- return *this;
- }
- template <class T>
- inline T *
- Matrix44<T>::getValue ()
- {
- return (T *) &x[0][0];
- }
- template <class T>
- inline const T *
- Matrix44<T>::getValue () const
- {
- return (const T *) &x[0][0];
- }
- template <class T>
- template <class S>
- inline void
- Matrix44<T>::getValue (Matrix44<S> &v) const
- {
- if (isSameType<S,T>::value)
- {
- memcpy (v.x, x, sizeof (x));
- }
- else
- {
- v.x[0][0] = x[0][0];
- v.x[0][1] = x[0][1];
- v.x[0][2] = x[0][2];
- v.x[0][3] = x[0][3];
- v.x[1][0] = x[1][0];
- v.x[1][1] = x[1][1];
- v.x[1][2] = x[1][2];
- v.x[1][3] = x[1][3];
- v.x[2][0] = x[2][0];
- v.x[2][1] = x[2][1];
- v.x[2][2] = x[2][2];
- v.x[2][3] = x[2][3];
- v.x[3][0] = x[3][0];
- v.x[3][1] = x[3][1];
- v.x[3][2] = x[3][2];
- v.x[3][3] = x[3][3];
- }
- }
- template <class T>
- template <class S>
- inline Matrix44<T> &
- Matrix44<T>::setValue (const Matrix44<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];…