/drivers/target/target_core_device.c

https://bitbucket.org/wisechild/galaxy-nexus · C · 1644 lines · 1267 code · 196 blank · 181 comment · 211 complexity · 7ae5c54d07065c2861ff37725a2bf727 MD5 · raw file

  1. /*******************************************************************************
  2. * Filename: target_core_device.c (based on iscsi_target_device.c)
  3. *
  4. * This file contains the iSCSI Virtual Device and Disk Transport
  5. * agnostic related functions.
  6. *
  7. * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc.
  8. * Copyright (c) 2005-2006 SBE, Inc. All Rights Reserved.
  9. * Copyright (c) 2007-2010 Rising Tide Systems
  10. * Copyright (c) 2008-2010 Linux-iSCSI.org
  11. *
  12. * Nicholas A. Bellinger <nab@kernel.org>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  27. *
  28. ******************************************************************************/
  29. #include <linux/net.h>
  30. #include <linux/string.h>
  31. #include <linux/delay.h>
  32. #include <linux/timer.h>
  33. #include <linux/slab.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/kthread.h>
  36. #include <linux/in.h>
  37. #include <net/sock.h>
  38. #include <net/tcp.h>
  39. #include <scsi/scsi.h>
  40. #include <scsi/scsi_device.h>
  41. #include <target/target_core_base.h>
  42. #include <target/target_core_device.h>
  43. #include <target/target_core_tpg.h>
  44. #include <target/target_core_transport.h>
  45. #include <target/target_core_fabric_ops.h>
  46. #include "target_core_alua.h"
  47. #include "target_core_hba.h"
  48. #include "target_core_pr.h"
  49. #include "target_core_ua.h"
  50. static void se_dev_start(struct se_device *dev);
  51. static void se_dev_stop(struct se_device *dev);
  52. int transport_get_lun_for_cmd(
  53. struct se_cmd *se_cmd,
  54. unsigned char *cdb,
  55. u32 unpacked_lun)
  56. {
  57. struct se_dev_entry *deve;
  58. struct se_lun *se_lun = NULL;
  59. struct se_session *se_sess = SE_SESS(se_cmd);
  60. unsigned long flags;
  61. int read_only = 0;
  62. spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  63. deve = se_cmd->se_deve =
  64. &SE_NODE_ACL(se_sess)->device_list[unpacked_lun];
  65. if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  66. if (se_cmd) {
  67. deve->total_cmds++;
  68. deve->total_bytes += se_cmd->data_length;
  69. if (se_cmd->data_direction == DMA_TO_DEVICE) {
  70. if (deve->lun_flags &
  71. TRANSPORT_LUNFLAGS_READ_ONLY) {
  72. read_only = 1;
  73. goto out;
  74. }
  75. deve->write_bytes += se_cmd->data_length;
  76. } else if (se_cmd->data_direction ==
  77. DMA_FROM_DEVICE) {
  78. deve->read_bytes += se_cmd->data_length;
  79. }
  80. }
  81. deve->deve_cmds++;
  82. se_lun = se_cmd->se_lun = deve->se_lun;
  83. se_cmd->pr_res_key = deve->pr_res_key;
  84. se_cmd->orig_fe_lun = unpacked_lun;
  85. se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
  86. se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
  87. }
  88. out:
  89. spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  90. if (!se_lun) {
  91. if (read_only) {
  92. se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
  93. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  94. printk("TARGET_CORE[%s]: Detected WRITE_PROTECTED LUN"
  95. " Access for 0x%08x\n",
  96. CMD_TFO(se_cmd)->get_fabric_name(),
  97. unpacked_lun);
  98. return -1;
  99. } else {
  100. /*
  101. * Use the se_portal_group->tpg_virt_lun0 to allow for
  102. * REPORT_LUNS, et al to be returned when no active
  103. * MappedLUN=0 exists for this Initiator Port.
  104. */
  105. if (unpacked_lun != 0) {
  106. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  107. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  108. printk("TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
  109. " Access for 0x%08x\n",
  110. CMD_TFO(se_cmd)->get_fabric_name(),
  111. unpacked_lun);
  112. return -1;
  113. }
  114. /*
  115. * Force WRITE PROTECT for virtual LUN 0
  116. */
  117. if ((se_cmd->data_direction != DMA_FROM_DEVICE) &&
  118. (se_cmd->data_direction != DMA_NONE)) {
  119. se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
  120. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  121. return -1;
  122. }
  123. #if 0
  124. printk("TARGET_CORE[%s]: Using virtual LUN0! :-)\n",
  125. CMD_TFO(se_cmd)->get_fabric_name());
  126. #endif
  127. se_lun = se_cmd->se_lun = &se_sess->se_tpg->tpg_virt_lun0;
  128. se_cmd->orig_fe_lun = 0;
  129. se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
  130. se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
  131. }
  132. }
  133. /*
  134. * Determine if the struct se_lun is online.
  135. */
  136. /* #warning FIXME: Check for LUN_RESET + UNIT Attention */
  137. if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
  138. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  139. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  140. return -1;
  141. }
  142. {
  143. struct se_device *dev = se_lun->lun_se_dev;
  144. spin_lock_irq(&dev->stats_lock);
  145. dev->num_cmds++;
  146. if (se_cmd->data_direction == DMA_TO_DEVICE)
  147. dev->write_bytes += se_cmd->data_length;
  148. else if (se_cmd->data_direction == DMA_FROM_DEVICE)
  149. dev->read_bytes += se_cmd->data_length;
  150. spin_unlock_irq(&dev->stats_lock);
  151. }
  152. /*
  153. * Add the iscsi_cmd_t to the struct se_lun's cmd list. This list is used
  154. * for tracking state of struct se_cmds during LUN shutdown events.
  155. */
  156. spin_lock_irqsave(&se_lun->lun_cmd_lock, flags);
  157. list_add_tail(&se_cmd->se_lun_list, &se_lun->lun_cmd_list);
  158. atomic_set(&T_TASK(se_cmd)->transport_lun_active, 1);
  159. #if 0
  160. printk(KERN_INFO "Adding ITT: 0x%08x to LUN LIST[%d]\n",
  161. CMD_TFO(se_cmd)->get_task_tag(se_cmd), se_lun->unpacked_lun);
  162. #endif
  163. spin_unlock_irqrestore(&se_lun->lun_cmd_lock, flags);
  164. return 0;
  165. }
  166. EXPORT_SYMBOL(transport_get_lun_for_cmd);
  167. int transport_get_lun_for_tmr(
  168. struct se_cmd *se_cmd,
  169. u32 unpacked_lun)
  170. {
  171. struct se_device *dev = NULL;
  172. struct se_dev_entry *deve;
  173. struct se_lun *se_lun = NULL;
  174. struct se_session *se_sess = SE_SESS(se_cmd);
  175. struct se_tmr_req *se_tmr = se_cmd->se_tmr_req;
  176. spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  177. deve = se_cmd->se_deve =
  178. &SE_NODE_ACL(se_sess)->device_list[unpacked_lun];
  179. if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  180. se_lun = se_cmd->se_lun = se_tmr->tmr_lun = deve->se_lun;
  181. dev = se_lun->lun_se_dev;
  182. se_cmd->pr_res_key = deve->pr_res_key;
  183. se_cmd->orig_fe_lun = unpacked_lun;
  184. se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
  185. /* se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD; */
  186. }
  187. spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  188. if (!se_lun) {
  189. printk(KERN_INFO "TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
  190. " Access for 0x%08x\n",
  191. CMD_TFO(se_cmd)->get_fabric_name(),
  192. unpacked_lun);
  193. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  194. return -1;
  195. }
  196. /*
  197. * Determine if the struct se_lun is online.
  198. */
  199. /* #warning FIXME: Check for LUN_RESET + UNIT Attention */
  200. if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
  201. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  202. return -1;
  203. }
  204. se_tmr->tmr_dev = dev;
  205. spin_lock(&dev->se_tmr_lock);
  206. list_add_tail(&se_tmr->tmr_list, &dev->dev_tmr_list);
  207. spin_unlock(&dev->se_tmr_lock);
  208. return 0;
  209. }
  210. EXPORT_SYMBOL(transport_get_lun_for_tmr);
  211. /*
  212. * This function is called from core_scsi3_emulate_pro_register_and_move()
  213. * and core_scsi3_decode_spec_i_port(), and will increment &deve->pr_ref_count
  214. * when a matching rtpi is found.
  215. */
  216. struct se_dev_entry *core_get_se_deve_from_rtpi(
  217. struct se_node_acl *nacl,
  218. u16 rtpi)
  219. {
  220. struct se_dev_entry *deve;
  221. struct se_lun *lun;
  222. struct se_port *port;
  223. struct se_portal_group *tpg = nacl->se_tpg;
  224. u32 i;
  225. spin_lock_irq(&nacl->device_list_lock);
  226. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  227. deve = &nacl->device_list[i];
  228. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  229. continue;
  230. lun = deve->se_lun;
  231. if (!(lun)) {
  232. printk(KERN_ERR "%s device entries device pointer is"
  233. " NULL, but Initiator has access.\n",
  234. TPG_TFO(tpg)->get_fabric_name());
  235. continue;
  236. }
  237. port = lun->lun_sep;
  238. if (!(port)) {
  239. printk(KERN_ERR "%s device entries device pointer is"
  240. " NULL, but Initiator has access.\n",
  241. TPG_TFO(tpg)->get_fabric_name());
  242. continue;
  243. }
  244. if (port->sep_rtpi != rtpi)
  245. continue;
  246. atomic_inc(&deve->pr_ref_count);
  247. smp_mb__after_atomic_inc();
  248. spin_unlock_irq(&nacl->device_list_lock);
  249. return deve;
  250. }
  251. spin_unlock_irq(&nacl->device_list_lock);
  252. return NULL;
  253. }
  254. int core_free_device_list_for_node(
  255. struct se_node_acl *nacl,
  256. struct se_portal_group *tpg)
  257. {
  258. struct se_dev_entry *deve;
  259. struct se_lun *lun;
  260. u32 i;
  261. if (!nacl->device_list)
  262. return 0;
  263. spin_lock_irq(&nacl->device_list_lock);
  264. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  265. deve = &nacl->device_list[i];
  266. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  267. continue;
  268. if (!deve->se_lun) {
  269. printk(KERN_ERR "%s device entries device pointer is"
  270. " NULL, but Initiator has access.\n",
  271. TPG_TFO(tpg)->get_fabric_name());
  272. continue;
  273. }
  274. lun = deve->se_lun;
  275. spin_unlock_irq(&nacl->device_list_lock);
  276. core_update_device_list_for_node(lun, NULL, deve->mapped_lun,
  277. TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
  278. spin_lock_irq(&nacl->device_list_lock);
  279. }
  280. spin_unlock_irq(&nacl->device_list_lock);
  281. kfree(nacl->device_list);
  282. nacl->device_list = NULL;
  283. return 0;
  284. }
  285. void core_dec_lacl_count(struct se_node_acl *se_nacl, struct se_cmd *se_cmd)
  286. {
  287. struct se_dev_entry *deve;
  288. spin_lock_irq(&se_nacl->device_list_lock);
  289. deve = &se_nacl->device_list[se_cmd->orig_fe_lun];
  290. deve->deve_cmds--;
  291. spin_unlock_irq(&se_nacl->device_list_lock);
  292. return;
  293. }
  294. void core_update_device_list_access(
  295. u32 mapped_lun,
  296. u32 lun_access,
  297. struct se_node_acl *nacl)
  298. {
  299. struct se_dev_entry *deve;
  300. spin_lock_irq(&nacl->device_list_lock);
  301. deve = &nacl->device_list[mapped_lun];
  302. if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
  303. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
  304. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
  305. } else {
  306. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
  307. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
  308. }
  309. spin_unlock_irq(&nacl->device_list_lock);
  310. return;
  311. }
  312. /* core_update_device_list_for_node():
  313. *
  314. *
  315. */
  316. int core_update_device_list_for_node(
  317. struct se_lun *lun,
  318. struct se_lun_acl *lun_acl,
  319. u32 mapped_lun,
  320. u32 lun_access,
  321. struct se_node_acl *nacl,
  322. struct se_portal_group *tpg,
  323. int enable)
  324. {
  325. struct se_port *port = lun->lun_sep;
  326. struct se_dev_entry *deve = &nacl->device_list[mapped_lun];
  327. int trans = 0;
  328. /*
  329. * If the MappedLUN entry is being disabled, the entry in
  330. * port->sep_alua_list must be removed now before clearing the
  331. * struct se_dev_entry pointers below as logic in
  332. * core_alua_do_transition_tg_pt() depends on these being present.
  333. */
  334. if (!(enable)) {
  335. /*
  336. * deve->se_lun_acl will be NULL for demo-mode created LUNs
  337. * that have not been explicitly concerted to MappedLUNs ->
  338. * struct se_lun_acl, but we remove deve->alua_port_list from
  339. * port->sep_alua_list. This also means that active UAs and
  340. * NodeACL context specific PR metadata for demo-mode
  341. * MappedLUN *deve will be released below..
  342. */
  343. spin_lock_bh(&port->sep_alua_lock);
  344. list_del(&deve->alua_port_list);
  345. spin_unlock_bh(&port->sep_alua_lock);
  346. }
  347. spin_lock_irq(&nacl->device_list_lock);
  348. if (enable) {
  349. /*
  350. * Check if the call is handling demo mode -> explict LUN ACL
  351. * transition. This transition must be for the same struct se_lun
  352. * + mapped_lun that was setup in demo mode..
  353. */
  354. if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  355. if (deve->se_lun_acl != NULL) {
  356. printk(KERN_ERR "struct se_dev_entry->se_lun_acl"
  357. " already set for demo mode -> explict"
  358. " LUN ACL transition\n");
  359. spin_unlock_irq(&nacl->device_list_lock);
  360. return -1;
  361. }
  362. if (deve->se_lun != lun) {
  363. printk(KERN_ERR "struct se_dev_entry->se_lun does"
  364. " match passed struct se_lun for demo mode"
  365. " -> explict LUN ACL transition\n");
  366. spin_unlock_irq(&nacl->device_list_lock);
  367. return -1;
  368. }
  369. deve->se_lun_acl = lun_acl;
  370. trans = 1;
  371. } else {
  372. deve->se_lun = lun;
  373. deve->se_lun_acl = lun_acl;
  374. deve->mapped_lun = mapped_lun;
  375. deve->lun_flags |= TRANSPORT_LUNFLAGS_INITIATOR_ACCESS;
  376. }
  377. if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
  378. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
  379. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
  380. } else {
  381. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
  382. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
  383. }
  384. if (trans) {
  385. spin_unlock_irq(&nacl->device_list_lock);
  386. return 0;
  387. }
  388. deve->creation_time = get_jiffies_64();
  389. deve->attach_count++;
  390. spin_unlock_irq(&nacl->device_list_lock);
  391. spin_lock_bh(&port->sep_alua_lock);
  392. list_add_tail(&deve->alua_port_list, &port->sep_alua_list);
  393. spin_unlock_bh(&port->sep_alua_lock);
  394. return 0;
  395. }
  396. /*
  397. * Wait for any in process SPEC_I_PT=1 or REGISTER_AND_MOVE
  398. * PR operation to complete.
  399. */
  400. spin_unlock_irq(&nacl->device_list_lock);
  401. while (atomic_read(&deve->pr_ref_count) != 0)
  402. cpu_relax();
  403. spin_lock_irq(&nacl->device_list_lock);
  404. /*
  405. * Disable struct se_dev_entry LUN ACL mapping
  406. */
  407. core_scsi3_ua_release_all(deve);
  408. deve->se_lun = NULL;
  409. deve->se_lun_acl = NULL;
  410. deve->lun_flags = 0;
  411. deve->creation_time = 0;
  412. deve->attach_count--;
  413. spin_unlock_irq(&nacl->device_list_lock);
  414. core_scsi3_free_pr_reg_from_nacl(lun->lun_se_dev, nacl);
  415. return 0;
  416. }
  417. /* core_clear_lun_from_tpg():
  418. *
  419. *
  420. */
  421. void core_clear_lun_from_tpg(struct se_lun *lun, struct se_portal_group *tpg)
  422. {
  423. struct se_node_acl *nacl;
  424. struct se_dev_entry *deve;
  425. u32 i;
  426. spin_lock_bh(&tpg->acl_node_lock);
  427. list_for_each_entry(nacl, &tpg->acl_node_list, acl_list) {
  428. spin_unlock_bh(&tpg->acl_node_lock);
  429. spin_lock_irq(&nacl->device_list_lock);
  430. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  431. deve = &nacl->device_list[i];
  432. if (lun != deve->se_lun)
  433. continue;
  434. spin_unlock_irq(&nacl->device_list_lock);
  435. core_update_device_list_for_node(lun, NULL,
  436. deve->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS,
  437. nacl, tpg, 0);
  438. spin_lock_irq(&nacl->device_list_lock);
  439. }
  440. spin_unlock_irq(&nacl->device_list_lock);
  441. spin_lock_bh(&tpg->acl_node_lock);
  442. }
  443. spin_unlock_bh(&tpg->acl_node_lock);
  444. return;
  445. }
  446. static struct se_port *core_alloc_port(struct se_device *dev)
  447. {
  448. struct se_port *port, *port_tmp;
  449. port = kzalloc(sizeof(struct se_port), GFP_KERNEL);
  450. if (!(port)) {
  451. printk(KERN_ERR "Unable to allocate struct se_port\n");
  452. return NULL;
  453. }
  454. INIT_LIST_HEAD(&port->sep_alua_list);
  455. INIT_LIST_HEAD(&port->sep_list);
  456. atomic_set(&port->sep_tg_pt_secondary_offline, 0);
  457. spin_lock_init(&port->sep_alua_lock);
  458. mutex_init(&port->sep_tg_pt_md_mutex);
  459. spin_lock(&dev->se_port_lock);
  460. if (dev->dev_port_count == 0x0000ffff) {
  461. printk(KERN_WARNING "Reached dev->dev_port_count =="
  462. " 0x0000ffff\n");
  463. spin_unlock(&dev->se_port_lock);
  464. return NULL;
  465. }
  466. again:
  467. /*
  468. * Allocate the next RELATIVE TARGET PORT IDENTIFER for this struct se_device
  469. * Here is the table from spc4r17 section 7.7.3.8.
  470. *
  471. * Table 473 -- RELATIVE TARGET PORT IDENTIFIER field
  472. *
  473. * Code Description
  474. * 0h Reserved
  475. * 1h Relative port 1, historically known as port A
  476. * 2h Relative port 2, historically known as port B
  477. * 3h to FFFFh Relative port 3 through 65 535
  478. */
  479. port->sep_rtpi = dev->dev_rpti_counter++;
  480. if (!(port->sep_rtpi))
  481. goto again;
  482. list_for_each_entry(port_tmp, &dev->dev_sep_list, sep_list) {
  483. /*
  484. * Make sure RELATIVE TARGET PORT IDENTIFER is unique
  485. * for 16-bit wrap..
  486. */
  487. if (port->sep_rtpi == port_tmp->sep_rtpi)
  488. goto again;
  489. }
  490. spin_unlock(&dev->se_port_lock);
  491. return port;
  492. }
  493. static void core_export_port(
  494. struct se_device *dev,
  495. struct se_portal_group *tpg,
  496. struct se_port *port,
  497. struct se_lun *lun)
  498. {
  499. struct se_subsystem_dev *su_dev = SU_DEV(dev);
  500. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem = NULL;
  501. spin_lock(&dev->se_port_lock);
  502. spin_lock(&lun->lun_sep_lock);
  503. port->sep_tpg = tpg;
  504. port->sep_lun = lun;
  505. lun->lun_sep = port;
  506. spin_unlock(&lun->lun_sep_lock);
  507. list_add_tail(&port->sep_list, &dev->dev_sep_list);
  508. spin_unlock(&dev->se_port_lock);
  509. if (T10_ALUA(su_dev)->alua_type == SPC3_ALUA_EMULATED) {
  510. tg_pt_gp_mem = core_alua_allocate_tg_pt_gp_mem(port);
  511. if (IS_ERR(tg_pt_gp_mem) || !tg_pt_gp_mem) {
  512. printk(KERN_ERR "Unable to allocate t10_alua_tg_pt"
  513. "_gp_member_t\n");
  514. return;
  515. }
  516. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  517. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  518. T10_ALUA(su_dev)->default_tg_pt_gp);
  519. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  520. printk(KERN_INFO "%s/%s: Adding to default ALUA Target Port"
  521. " Group: alua/default_tg_pt_gp\n",
  522. TRANSPORT(dev)->name, TPG_TFO(tpg)->get_fabric_name());
  523. }
  524. dev->dev_port_count++;
  525. port->sep_index = port->sep_rtpi; /* RELATIVE TARGET PORT IDENTIFER */
  526. }
  527. /*
  528. * Called with struct se_device->se_port_lock spinlock held.
  529. */
  530. static void core_release_port(struct se_device *dev, struct se_port *port)
  531. __releases(&dev->se_port_lock) __acquires(&dev->se_port_lock)
  532. {
  533. /*
  534. * Wait for any port reference for PR ALL_TG_PT=1 operation
  535. * to complete in __core_scsi3_alloc_registration()
  536. */
  537. spin_unlock(&dev->se_port_lock);
  538. if (atomic_read(&port->sep_tg_pt_ref_cnt))
  539. cpu_relax();
  540. spin_lock(&dev->se_port_lock);
  541. core_alua_free_tg_pt_gp_mem(port);
  542. list_del(&port->sep_list);
  543. dev->dev_port_count--;
  544. kfree(port);
  545. return;
  546. }
  547. int core_dev_export(
  548. struct se_device *dev,
  549. struct se_portal_group *tpg,
  550. struct se_lun *lun)
  551. {
  552. struct se_port *port;
  553. port = core_alloc_port(dev);
  554. if (!(port))
  555. return -1;
  556. lun->lun_se_dev = dev;
  557. se_dev_start(dev);
  558. atomic_inc(&dev->dev_export_obj.obj_access_count);
  559. core_export_port(dev, tpg, port, lun);
  560. return 0;
  561. }
  562. void core_dev_unexport(
  563. struct se_device *dev,
  564. struct se_portal_group *tpg,
  565. struct se_lun *lun)
  566. {
  567. struct se_port *port = lun->lun_sep;
  568. spin_lock(&lun->lun_sep_lock);
  569. if (lun->lun_se_dev == NULL) {
  570. spin_unlock(&lun->lun_sep_lock);
  571. return;
  572. }
  573. spin_unlock(&lun->lun_sep_lock);
  574. spin_lock(&dev->se_port_lock);
  575. atomic_dec(&dev->dev_export_obj.obj_access_count);
  576. core_release_port(dev, port);
  577. spin_unlock(&dev->se_port_lock);
  578. se_dev_stop(dev);
  579. lun->lun_se_dev = NULL;
  580. }
  581. int transport_core_report_lun_response(struct se_cmd *se_cmd)
  582. {
  583. struct se_dev_entry *deve;
  584. struct se_lun *se_lun;
  585. struct se_session *se_sess = SE_SESS(se_cmd);
  586. struct se_task *se_task;
  587. unsigned char *buf = (unsigned char *)T_TASK(se_cmd)->t_task_buf;
  588. u32 cdb_offset = 0, lun_count = 0, offset = 8, i;
  589. list_for_each_entry(se_task, &T_TASK(se_cmd)->t_task_list, t_list)
  590. break;
  591. if (!(se_task)) {
  592. printk(KERN_ERR "Unable to locate struct se_task for struct se_cmd\n");
  593. return PYX_TRANSPORT_LU_COMM_FAILURE;
  594. }
  595. /*
  596. * If no struct se_session pointer is present, this struct se_cmd is
  597. * coming via a target_core_mod PASSTHROUGH op, and not through
  598. * a $FABRIC_MOD. In that case, report LUN=0 only.
  599. */
  600. if (!(se_sess)) {
  601. int_to_scsilun(0, (struct scsi_lun *)&buf[offset]);
  602. lun_count = 1;
  603. goto done;
  604. }
  605. spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  606. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  607. deve = &SE_NODE_ACL(se_sess)->device_list[i];
  608. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  609. continue;
  610. se_lun = deve->se_lun;
  611. /*
  612. * We determine the correct LUN LIST LENGTH even once we
  613. * have reached the initial allocation length.
  614. * See SPC2-R20 7.19.
  615. */
  616. lun_count++;
  617. if ((cdb_offset + 8) >= se_cmd->data_length)
  618. continue;
  619. int_to_scsilun(deve->mapped_lun, (struct scsi_lun *)&buf[offset]);
  620. offset += 8;
  621. cdb_offset += 8;
  622. }
  623. spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
  624. /*
  625. * See SPC3 r07, page 159.
  626. */
  627. done:
  628. lun_count *= 8;
  629. buf[0] = ((lun_count >> 24) & 0xff);
  630. buf[1] = ((lun_count >> 16) & 0xff);
  631. buf[2] = ((lun_count >> 8) & 0xff);
  632. buf[3] = (lun_count & 0xff);
  633. return PYX_TRANSPORT_SENT_TO_TRANSPORT;
  634. }
  635. /* se_release_device_for_hba():
  636. *
  637. *
  638. */
  639. void se_release_device_for_hba(struct se_device *dev)
  640. {
  641. struct se_hba *hba = dev->se_hba;
  642. if ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
  643. (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) ||
  644. (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) ||
  645. (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_ACTIVATED) ||
  646. (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_DEACTIVATED))
  647. se_dev_stop(dev);
  648. if (dev->dev_ptr) {
  649. kthread_stop(dev->process_thread);
  650. if (dev->transport->free_device)
  651. dev->transport->free_device(dev->dev_ptr);
  652. }
  653. spin_lock(&hba->device_lock);
  654. list_del(&dev->dev_list);
  655. hba->dev_count--;
  656. spin_unlock(&hba->device_lock);
  657. core_scsi3_free_all_registrations(dev);
  658. se_release_vpd_for_dev(dev);
  659. kfree(dev->dev_status_queue_obj);
  660. kfree(dev->dev_queue_obj);
  661. kfree(dev);
  662. return;
  663. }
  664. void se_release_vpd_for_dev(struct se_device *dev)
  665. {
  666. struct t10_vpd *vpd, *vpd_tmp;
  667. spin_lock(&DEV_T10_WWN(dev)->t10_vpd_lock);
  668. list_for_each_entry_safe(vpd, vpd_tmp,
  669. &DEV_T10_WWN(dev)->t10_vpd_list, vpd_list) {
  670. list_del(&vpd->vpd_list);
  671. kfree(vpd);
  672. }
  673. spin_unlock(&DEV_T10_WWN(dev)->t10_vpd_lock);
  674. return;
  675. }
  676. /* se_free_virtual_device():
  677. *
  678. * Used for IBLOCK, RAMDISK, and FILEIO Transport Drivers.
  679. */
  680. int se_free_virtual_device(struct se_device *dev, struct se_hba *hba)
  681. {
  682. if (!list_empty(&dev->dev_sep_list))
  683. dump_stack();
  684. core_alua_free_lu_gp_mem(dev);
  685. se_release_device_for_hba(dev);
  686. return 0;
  687. }
  688. static void se_dev_start(struct se_device *dev)
  689. {
  690. struct se_hba *hba = dev->se_hba;
  691. spin_lock(&hba->device_lock);
  692. atomic_inc(&dev->dev_obj.obj_access_count);
  693. if (atomic_read(&dev->dev_obj.obj_access_count) == 1) {
  694. if (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) {
  695. dev->dev_status &= ~TRANSPORT_DEVICE_DEACTIVATED;
  696. dev->dev_status |= TRANSPORT_DEVICE_ACTIVATED;
  697. } else if (dev->dev_status &
  698. TRANSPORT_DEVICE_OFFLINE_DEACTIVATED) {
  699. dev->dev_status &=
  700. ~TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
  701. dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
  702. }
  703. }
  704. spin_unlock(&hba->device_lock);
  705. }
  706. static void se_dev_stop(struct se_device *dev)
  707. {
  708. struct se_hba *hba = dev->se_hba;
  709. spin_lock(&hba->device_lock);
  710. atomic_dec(&dev->dev_obj.obj_access_count);
  711. if (atomic_read(&dev->dev_obj.obj_access_count) == 0) {
  712. if (dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) {
  713. dev->dev_status &= ~TRANSPORT_DEVICE_ACTIVATED;
  714. dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
  715. } else if (dev->dev_status &
  716. TRANSPORT_DEVICE_OFFLINE_ACTIVATED) {
  717. dev->dev_status &= ~TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
  718. dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
  719. }
  720. }
  721. spin_unlock(&hba->device_lock);
  722. }
  723. int se_dev_check_online(struct se_device *dev)
  724. {
  725. int ret;
  726. spin_lock_irq(&dev->dev_status_lock);
  727. ret = ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
  728. (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED)) ? 0 : 1;
  729. spin_unlock_irq(&dev->dev_status_lock);
  730. return ret;
  731. }
  732. int se_dev_check_shutdown(struct se_device *dev)
  733. {
  734. int ret;
  735. spin_lock_irq(&dev->dev_status_lock);
  736. ret = (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN);
  737. spin_unlock_irq(&dev->dev_status_lock);
  738. return ret;
  739. }
  740. void se_dev_set_default_attribs(
  741. struct se_device *dev,
  742. struct se_dev_limits *dev_limits)
  743. {
  744. struct queue_limits *limits = &dev_limits->limits;
  745. DEV_ATTRIB(dev)->emulate_dpo = DA_EMULATE_DPO;
  746. DEV_ATTRIB(dev)->emulate_fua_write = DA_EMULATE_FUA_WRITE;
  747. DEV_ATTRIB(dev)->emulate_fua_read = DA_EMULATE_FUA_READ;
  748. DEV_ATTRIB(dev)->emulate_write_cache = DA_EMULATE_WRITE_CACHE;
  749. DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = DA_EMULATE_UA_INTLLCK_CTRL;
  750. DEV_ATTRIB(dev)->emulate_tas = DA_EMULATE_TAS;
  751. DEV_ATTRIB(dev)->emulate_tpu = DA_EMULATE_TPU;
  752. DEV_ATTRIB(dev)->emulate_tpws = DA_EMULATE_TPWS;
  753. DEV_ATTRIB(dev)->emulate_reservations = DA_EMULATE_RESERVATIONS;
  754. DEV_ATTRIB(dev)->emulate_alua = DA_EMULATE_ALUA;
  755. DEV_ATTRIB(dev)->enforce_pr_isids = DA_ENFORCE_PR_ISIDS;
  756. /*
  757. * The TPU=1 and TPWS=1 settings will be set in TCM/IBLOCK
  758. * iblock_create_virtdevice() from struct queue_limits values
  759. * if blk_queue_discard()==1
  760. */
  761. DEV_ATTRIB(dev)->max_unmap_lba_count = DA_MAX_UNMAP_LBA_COUNT;
  762. DEV_ATTRIB(dev)->max_unmap_block_desc_count =
  763. DA_MAX_UNMAP_BLOCK_DESC_COUNT;
  764. DEV_ATTRIB(dev)->unmap_granularity = DA_UNMAP_GRANULARITY_DEFAULT;
  765. DEV_ATTRIB(dev)->unmap_granularity_alignment =
  766. DA_UNMAP_GRANULARITY_ALIGNMENT_DEFAULT;
  767. /*
  768. * block_size is based on subsystem plugin dependent requirements.
  769. */
  770. DEV_ATTRIB(dev)->hw_block_size = limits->logical_block_size;
  771. DEV_ATTRIB(dev)->block_size = limits->logical_block_size;
  772. /*
  773. * max_sectors is based on subsystem plugin dependent requirements.
  774. */
  775. DEV_ATTRIB(dev)->hw_max_sectors = limits->max_hw_sectors;
  776. DEV_ATTRIB(dev)->max_sectors = limits->max_sectors;
  777. /*
  778. * Set optimal_sectors from max_sectors, which can be lowered via
  779. * configfs.
  780. */
  781. DEV_ATTRIB(dev)->optimal_sectors = limits->max_sectors;
  782. /*
  783. * queue_depth is based on subsystem plugin dependent requirements.
  784. */
  785. DEV_ATTRIB(dev)->hw_queue_depth = dev_limits->hw_queue_depth;
  786. DEV_ATTRIB(dev)->queue_depth = dev_limits->queue_depth;
  787. }
  788. int se_dev_set_task_timeout(struct se_device *dev, u32 task_timeout)
  789. {
  790. if (task_timeout > DA_TASK_TIMEOUT_MAX) {
  791. printk(KERN_ERR "dev[%p]: Passed task_timeout: %u larger then"
  792. " DA_TASK_TIMEOUT_MAX\n", dev, task_timeout);
  793. return -1;
  794. } else {
  795. DEV_ATTRIB(dev)->task_timeout = task_timeout;
  796. printk(KERN_INFO "dev[%p]: Set SE Device task_timeout: %u\n",
  797. dev, task_timeout);
  798. }
  799. return 0;
  800. }
  801. int se_dev_set_max_unmap_lba_count(
  802. struct se_device *dev,
  803. u32 max_unmap_lba_count)
  804. {
  805. DEV_ATTRIB(dev)->max_unmap_lba_count = max_unmap_lba_count;
  806. printk(KERN_INFO "dev[%p]: Set max_unmap_lba_count: %u\n",
  807. dev, DEV_ATTRIB(dev)->max_unmap_lba_count);
  808. return 0;
  809. }
  810. int se_dev_set_max_unmap_block_desc_count(
  811. struct se_device *dev,
  812. u32 max_unmap_block_desc_count)
  813. {
  814. DEV_ATTRIB(dev)->max_unmap_block_desc_count = max_unmap_block_desc_count;
  815. printk(KERN_INFO "dev[%p]: Set max_unmap_block_desc_count: %u\n",
  816. dev, DEV_ATTRIB(dev)->max_unmap_block_desc_count);
  817. return 0;
  818. }
  819. int se_dev_set_unmap_granularity(
  820. struct se_device *dev,
  821. u32 unmap_granularity)
  822. {
  823. DEV_ATTRIB(dev)->unmap_granularity = unmap_granularity;
  824. printk(KERN_INFO "dev[%p]: Set unmap_granularity: %u\n",
  825. dev, DEV_ATTRIB(dev)->unmap_granularity);
  826. return 0;
  827. }
  828. int se_dev_set_unmap_granularity_alignment(
  829. struct se_device *dev,
  830. u32 unmap_granularity_alignment)
  831. {
  832. DEV_ATTRIB(dev)->unmap_granularity_alignment = unmap_granularity_alignment;
  833. printk(KERN_INFO "dev[%p]: Set unmap_granularity_alignment: %u\n",
  834. dev, DEV_ATTRIB(dev)->unmap_granularity_alignment);
  835. return 0;
  836. }
  837. int se_dev_set_emulate_dpo(struct se_device *dev, int flag)
  838. {
  839. if ((flag != 0) && (flag != 1)) {
  840. printk(KERN_ERR "Illegal value %d\n", flag);
  841. return -1;
  842. }
  843. if (TRANSPORT(dev)->dpo_emulated == NULL) {
  844. printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated is NULL\n");
  845. return -1;
  846. }
  847. if (TRANSPORT(dev)->dpo_emulated(dev) == 0) {
  848. printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated not supported\n");
  849. return -1;
  850. }
  851. DEV_ATTRIB(dev)->emulate_dpo = flag;
  852. printk(KERN_INFO "dev[%p]: SE Device Page Out (DPO) Emulation"
  853. " bit: %d\n", dev, DEV_ATTRIB(dev)->emulate_dpo);
  854. return 0;
  855. }
  856. int se_dev_set_emulate_fua_write(struct se_device *dev, int flag)
  857. {
  858. if ((flag != 0) && (flag != 1)) {
  859. printk(KERN_ERR "Illegal value %d\n", flag);
  860. return -1;
  861. }
  862. if (TRANSPORT(dev)->fua_write_emulated == NULL) {
  863. printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated is NULL\n");
  864. return -1;
  865. }
  866. if (TRANSPORT(dev)->fua_write_emulated(dev) == 0) {
  867. printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated not supported\n");
  868. return -1;
  869. }
  870. DEV_ATTRIB(dev)->emulate_fua_write = flag;
  871. printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access WRITEs: %d\n",
  872. dev, DEV_ATTRIB(dev)->emulate_fua_write);
  873. return 0;
  874. }
  875. int se_dev_set_emulate_fua_read(struct se_device *dev, int flag)
  876. {
  877. if ((flag != 0) && (flag != 1)) {
  878. printk(KERN_ERR "Illegal value %d\n", flag);
  879. return -1;
  880. }
  881. if (TRANSPORT(dev)->fua_read_emulated == NULL) {
  882. printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated is NULL\n");
  883. return -1;
  884. }
  885. if (TRANSPORT(dev)->fua_read_emulated(dev) == 0) {
  886. printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated not supported\n");
  887. return -1;
  888. }
  889. DEV_ATTRIB(dev)->emulate_fua_read = flag;
  890. printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access READs: %d\n",
  891. dev, DEV_ATTRIB(dev)->emulate_fua_read);
  892. return 0;
  893. }
  894. int se_dev_set_emulate_write_cache(struct se_device *dev, int flag)
  895. {
  896. if ((flag != 0) && (flag != 1)) {
  897. printk(KERN_ERR "Illegal value %d\n", flag);
  898. return -1;
  899. }
  900. if (TRANSPORT(dev)->write_cache_emulated == NULL) {
  901. printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated is NULL\n");
  902. return -1;
  903. }
  904. if (TRANSPORT(dev)->write_cache_emulated(dev) == 0) {
  905. printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated not supported\n");
  906. return -1;
  907. }
  908. DEV_ATTRIB(dev)->emulate_write_cache = flag;
  909. printk(KERN_INFO "dev[%p]: SE Device WRITE_CACHE_EMULATION flag: %d\n",
  910. dev, DEV_ATTRIB(dev)->emulate_write_cache);
  911. return 0;
  912. }
  913. int se_dev_set_emulate_ua_intlck_ctrl(struct se_device *dev, int flag)
  914. {
  915. if ((flag != 0) && (flag != 1) && (flag != 2)) {
  916. printk(KERN_ERR "Illegal value %d\n", flag);
  917. return -1;
  918. }
  919. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  920. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  921. " UA_INTRLCK_CTRL while dev_export_obj: %d count"
  922. " exists\n", dev,
  923. atomic_read(&dev->dev_export_obj.obj_access_count));
  924. return -1;
  925. }
  926. DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = flag;
  927. printk(KERN_INFO "dev[%p]: SE Device UA_INTRLCK_CTRL flag: %d\n",
  928. dev, DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl);
  929. return 0;
  930. }
  931. int se_dev_set_emulate_tas(struct se_device *dev, int flag)
  932. {
  933. if ((flag != 0) && (flag != 1)) {
  934. printk(KERN_ERR "Illegal value %d\n", flag);
  935. return -1;
  936. }
  937. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  938. printk(KERN_ERR "dev[%p]: Unable to change SE Device TAS while"
  939. " dev_export_obj: %d count exists\n", dev,
  940. atomic_read(&dev->dev_export_obj.obj_access_count));
  941. return -1;
  942. }
  943. DEV_ATTRIB(dev)->emulate_tas = flag;
  944. printk(KERN_INFO "dev[%p]: SE Device TASK_ABORTED status bit: %s\n",
  945. dev, (DEV_ATTRIB(dev)->emulate_tas) ? "Enabled" : "Disabled");
  946. return 0;
  947. }
  948. int se_dev_set_emulate_tpu(struct se_device *dev, int flag)
  949. {
  950. if ((flag != 0) && (flag != 1)) {
  951. printk(KERN_ERR "Illegal value %d\n", flag);
  952. return -1;
  953. }
  954. /*
  955. * We expect this value to be non-zero when generic Block Layer
  956. * Discard supported is detected iblock_create_virtdevice().
  957. */
  958. if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) {
  959. printk(KERN_ERR "Generic Block Discard not supported\n");
  960. return -ENOSYS;
  961. }
  962. DEV_ATTRIB(dev)->emulate_tpu = flag;
  963. printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning UNMAP bit: %d\n",
  964. dev, flag);
  965. return 0;
  966. }
  967. int se_dev_set_emulate_tpws(struct se_device *dev, int flag)
  968. {
  969. if ((flag != 0) && (flag != 1)) {
  970. printk(KERN_ERR "Illegal value %d\n", flag);
  971. return -1;
  972. }
  973. /*
  974. * We expect this value to be non-zero when generic Block Layer
  975. * Discard supported is detected iblock_create_virtdevice().
  976. */
  977. if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) {
  978. printk(KERN_ERR "Generic Block Discard not supported\n");
  979. return -ENOSYS;
  980. }
  981. DEV_ATTRIB(dev)->emulate_tpws = flag;
  982. printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning WRITE_SAME: %d\n",
  983. dev, flag);
  984. return 0;
  985. }
  986. int se_dev_set_enforce_pr_isids(struct se_device *dev, int flag)
  987. {
  988. if ((flag != 0) && (flag != 1)) {
  989. printk(KERN_ERR "Illegal value %d\n", flag);
  990. return -1;
  991. }
  992. DEV_ATTRIB(dev)->enforce_pr_isids = flag;
  993. printk(KERN_INFO "dev[%p]: SE Device enforce_pr_isids bit: %s\n", dev,
  994. (DEV_ATTRIB(dev)->enforce_pr_isids) ? "Enabled" : "Disabled");
  995. return 0;
  996. }
  997. /*
  998. * Note, this can only be called on unexported SE Device Object.
  999. */
  1000. int se_dev_set_queue_depth(struct se_device *dev, u32 queue_depth)
  1001. {
  1002. u32 orig_queue_depth = dev->queue_depth;
  1003. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1004. printk(KERN_ERR "dev[%p]: Unable to change SE Device TCQ while"
  1005. " dev_export_obj: %d count exists\n", dev,
  1006. atomic_read(&dev->dev_export_obj.obj_access_count));
  1007. return -1;
  1008. }
  1009. if (!(queue_depth)) {
  1010. printk(KERN_ERR "dev[%p]: Illegal ZERO value for queue"
  1011. "_depth\n", dev);
  1012. return -1;
  1013. }
  1014. if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1015. if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) {
  1016. printk(KERN_ERR "dev[%p]: Passed queue_depth: %u"
  1017. " exceeds TCM/SE_Device TCQ: %u\n",
  1018. dev, queue_depth,
  1019. DEV_ATTRIB(dev)->hw_queue_depth);
  1020. return -1;
  1021. }
  1022. } else {
  1023. if (queue_depth > DEV_ATTRIB(dev)->queue_depth) {
  1024. if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) {
  1025. printk(KERN_ERR "dev[%p]: Passed queue_depth:"
  1026. " %u exceeds TCM/SE_Device MAX"
  1027. " TCQ: %u\n", dev, queue_depth,
  1028. DEV_ATTRIB(dev)->hw_queue_depth);
  1029. return -1;
  1030. }
  1031. }
  1032. }
  1033. DEV_ATTRIB(dev)->queue_depth = dev->queue_depth = queue_depth;
  1034. if (queue_depth > orig_queue_depth)
  1035. atomic_add(queue_depth - orig_queue_depth, &dev->depth_left);
  1036. else if (queue_depth < orig_queue_depth)
  1037. atomic_sub(orig_queue_depth - queue_depth, &dev->depth_left);
  1038. printk(KERN_INFO "dev[%p]: SE Device TCQ Depth changed to: %u\n",
  1039. dev, queue_depth);
  1040. return 0;
  1041. }
  1042. int se_dev_set_max_sectors(struct se_device *dev, u32 max_sectors)
  1043. {
  1044. int force = 0; /* Force setting for VDEVS */
  1045. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1046. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  1047. " max_sectors while dev_export_obj: %d count exists\n",
  1048. dev, atomic_read(&dev->dev_export_obj.obj_access_count));
  1049. return -1;
  1050. }
  1051. if (!(max_sectors)) {
  1052. printk(KERN_ERR "dev[%p]: Illegal ZERO value for"
  1053. " max_sectors\n", dev);
  1054. return -1;
  1055. }
  1056. if (max_sectors < DA_STATUS_MAX_SECTORS_MIN) {
  1057. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u less than"
  1058. " DA_STATUS_MAX_SECTORS_MIN: %u\n", dev, max_sectors,
  1059. DA_STATUS_MAX_SECTORS_MIN);
  1060. return -1;
  1061. }
  1062. if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1063. if (max_sectors > DEV_ATTRIB(dev)->hw_max_sectors) {
  1064. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1065. " greater than TCM/SE_Device max_sectors:"
  1066. " %u\n", dev, max_sectors,
  1067. DEV_ATTRIB(dev)->hw_max_sectors);
  1068. return -1;
  1069. }
  1070. } else {
  1071. if (!(force) && (max_sectors >
  1072. DEV_ATTRIB(dev)->hw_max_sectors)) {
  1073. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1074. " greater than TCM/SE_Device max_sectors"
  1075. ": %u, use force=1 to override.\n", dev,
  1076. max_sectors, DEV_ATTRIB(dev)->hw_max_sectors);
  1077. return -1;
  1078. }
  1079. if (max_sectors > DA_STATUS_MAX_SECTORS_MAX) {
  1080. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1081. " greater than DA_STATUS_MAX_SECTORS_MAX:"
  1082. " %u\n", dev, max_sectors,
  1083. DA_STATUS_MAX_SECTORS_MAX);
  1084. return -1;
  1085. }
  1086. }
  1087. DEV_ATTRIB(dev)->max_sectors = max_sectors;
  1088. printk("dev[%p]: SE Device max_sectors changed to %u\n",
  1089. dev, max_sectors);
  1090. return 0;
  1091. }
  1092. int se_dev_set_optimal_sectors(struct se_device *dev, u32 optimal_sectors)
  1093. {
  1094. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1095. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  1096. " optimal_sectors while dev_export_obj: %d count exists\n",
  1097. dev, atomic_read(&dev->dev_export_obj.obj_access_count));
  1098. return -EINVAL;
  1099. }
  1100. if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1101. printk(KERN_ERR "dev[%p]: Passed optimal_sectors cannot be"
  1102. " changed for TCM/pSCSI\n", dev);
  1103. return -EINVAL;
  1104. }
  1105. if (optimal_sectors > DEV_ATTRIB(dev)->max_sectors) {
  1106. printk(KERN_ERR "dev[%p]: Passed optimal_sectors %u cannot be"
  1107. " greater than max_sectors: %u\n", dev,
  1108. optimal_sectors, DEV_ATTRIB(dev)->max_sectors);
  1109. return -EINVAL;
  1110. }
  1111. DEV_ATTRIB(dev)->optimal_sectors = optimal_sectors;
  1112. printk(KERN_INFO "dev[%p]: SE Device optimal_sectors changed to %u\n",
  1113. dev, optimal_sectors);
  1114. return 0;
  1115. }
  1116. int se_dev_set_block_size(struct se_device *dev, u32 block_size)
  1117. {
  1118. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1119. printk(KERN_ERR "dev[%p]: Unable to change SE Device block_size"
  1120. " while dev_export_obj: %d count exists\n", dev,
  1121. atomic_read(&dev->dev_export_obj.obj_access_count));
  1122. return -1;
  1123. }
  1124. if ((block_size != 512) &&
  1125. (block_size != 1024) &&
  1126. (block_size != 2048) &&
  1127. (block_size != 4096)) {
  1128. printk(KERN_ERR "dev[%p]: Illegal value for block_device: %u"
  1129. " for SE device, must be 512, 1024, 2048 or 4096\n",
  1130. dev, block_size);
  1131. return -1;
  1132. }
  1133. if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1134. printk(KERN_ERR "dev[%p]: Not allowed to change block_size for"
  1135. " Physical Device, use for Linux/SCSI to change"
  1136. " block_size for underlying hardware\n", dev);
  1137. return -1;
  1138. }
  1139. DEV_ATTRIB(dev)->block_size = block_size;
  1140. printk(KERN_INFO "dev[%p]: SE Device block_size changed to %u\n",
  1141. dev, block_size);
  1142. return 0;
  1143. }
  1144. struct se_lun *core_dev_add_lun(
  1145. struct se_portal_group *tpg,
  1146. struct se_hba *hba,
  1147. struct se_device *dev,
  1148. u32 lun)
  1149. {
  1150. struct se_lun *lun_p;
  1151. u32 lun_access = 0;
  1152. if (atomic_read(&dev->dev_access_obj.obj_access_count) != 0) {
  1153. printk(KERN_ERR "Unable to export struct se_device while dev_access_obj: %d\n",
  1154. atomic_read(&dev->dev_access_obj.obj_access_count));
  1155. return NULL;
  1156. }
  1157. lun_p = core_tpg_pre_addlun(tpg, lun);
  1158. if ((IS_ERR(lun_p)) || !(lun_p))
  1159. return NULL;
  1160. if (dev->dev_flags & DF_READ_ONLY)
  1161. lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
  1162. else
  1163. lun_access = TRANSPORT_LUNFLAGS_READ_WRITE;
  1164. if (core_tpg_post_addlun(tpg, lun_p, lun_access, dev) < 0)
  1165. return NULL;
  1166. printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Activated %s Logical Unit from"
  1167. " CORE HBA: %u\n", TPG_TFO(tpg)->get_fabric_name(),
  1168. TPG_TFO(tpg)->tpg_get_tag(tpg), lun_p->unpacked_lun,
  1169. TPG_TFO(tpg)->get_fabric_name(), hba->hba_id);
  1170. /*
  1171. * Update LUN maps for dynamically added initiators when
  1172. * generate_node_acl is enabled.
  1173. */
  1174. if (TPG_TFO(tpg)->tpg_check_demo_mode(tpg)) {
  1175. struct se_node_acl *acl;
  1176. spin_lock_bh(&tpg->acl_node_lock);
  1177. list_for_each_entry(acl, &tpg->acl_node_list, acl_list) {
  1178. if (acl->dynamic_node_acl) {
  1179. spin_unlock_bh(&tpg->acl_node_lock);
  1180. core_tpg_add_node_to_devs(acl, tpg);
  1181. spin_lock_bh(&tpg->acl_node_lock);
  1182. }
  1183. }
  1184. spin_unlock_bh(&tpg->acl_node_lock);
  1185. }
  1186. return lun_p;
  1187. }
  1188. /* core_dev_del_lun():
  1189. *
  1190. *
  1191. */
  1192. int core_dev_del_lun(
  1193. struct se_portal_group *tpg,
  1194. u32 unpacked_lun)
  1195. {
  1196. struct se_lun *lun;
  1197. int ret = 0;
  1198. lun = core_tpg_pre_dellun(tpg, unpacked_lun, &ret);
  1199. if (!(lun))
  1200. return ret;
  1201. core_tpg_post_dellun(tpg, lun);
  1202. printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Deactivated %s Logical Unit from"
  1203. " device object\n", TPG_TFO(tpg)->get_fabric_name(),
  1204. TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun,
  1205. TPG_TFO(tpg)->get_fabric_name());
  1206. return 0;
  1207. }
  1208. struct se_lun *core_get_lun_from_tpg(struct se_portal_group *tpg, u32 unpacked_lun)
  1209. {
  1210. struct se_lun *lun;
  1211. spin_lock(&tpg->tpg_lun_lock);
  1212. if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
  1213. printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS"
  1214. "_PER_TPG-1: %u for Target Portal Group: %hu\n",
  1215. TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
  1216. TRANSPORT_MAX_LUNS_PER_TPG-1,
  1217. TPG_TFO(tpg)->tpg_get_tag(tpg));
  1218. spin_unlock(&tpg->tpg_lun_lock);
  1219. return NULL;
  1220. }
  1221. lun = &tpg->tpg_lun_list[unpacked_lun];
  1222. if (lun->lun_status != TRANSPORT_LUN_STATUS_FREE) {
  1223. printk(KERN_ERR "%s Logical Unit Number: %u is not free on"
  1224. " Target Portal Group: %hu, ignoring request.\n",
  1225. TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
  1226. TPG_TFO(tpg)->tpg_get_tag(tpg));
  1227. spin_unlock(&tpg->tpg_lun_lock);
  1228. return NULL;
  1229. }
  1230. spin_unlock(&tpg->tpg_lun_lock);
  1231. return lun;
  1232. }
  1233. /* core_dev_get_lun():
  1234. *
  1235. *
  1236. */
  1237. static struct se_lun *core_dev_get_lun(struct se_portal_group *tpg, u32 unpacked_lun)
  1238. {
  1239. struct se_lun *lun;
  1240. spin_lock(&tpg->tpg_lun_lock);
  1241. if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
  1242. printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS_PER"
  1243. "_TPG-1: %u for Target Portal Group: %hu\n",
  1244. TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
  1245. TRANSPORT_MAX_LUNS_PER_TPG-1,
  1246. TPG_TFO(tpg)->tpg_get_tag(tpg));
  1247. spin_unlock(&tpg->tpg_lun_lock);
  1248. return NULL;
  1249. }
  1250. lun = &tpg->tpg_lun_list[unpacked_lun];
  1251. if (lun->lun_status != TRANSPORT_LUN_STATUS_ACTIVE) {
  1252. printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
  1253. " Target Portal Group: %hu, ignoring request.\n",
  1254. TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
  1255. TPG_TFO(tpg)->tpg_get_tag(tpg));
  1256. spin_unlock(&tpg->tpg_lun_lock);
  1257. return NULL;
  1258. }
  1259. spin_unlock(&tpg->tpg_lun_lock);
  1260. return lun;
  1261. }
  1262. struct se_lun_acl *core_dev_init_initiator_node_lun_acl(
  1263. struct se_portal_group *tpg,
  1264. u32 mapped_lun,
  1265. char *initiatorname,
  1266. int *ret)
  1267. {
  1268. struct se_lun_acl *lacl;
  1269. struct se_node_acl *nacl;
  1270. if (strlen(initiatorname) >= TRANSPORT_IQN_LEN) {
  1271. printk(KERN_ERR "%s InitiatorName exceeds maximum size.\n",
  1272. TPG_TFO(tpg)->get_fabric_name());
  1273. *ret = -EOVERFLOW;
  1274. return NULL;
  1275. }
  1276. nacl = core_tpg_get_initiator_node_acl(tpg, initiatorname);
  1277. if (!(nacl)) {
  1278. *ret = -EINVAL;
  1279. return NULL;
  1280. }
  1281. lacl = kzalloc(sizeof(struct se_lun_acl), GFP_KERNEL);
  1282. if (!(lacl)) {
  1283. printk(KERN_ERR "Unable to allocate memory for struct se_lun_acl.\n");
  1284. *ret = -ENOMEM;
  1285. return NULL;
  1286. }
  1287. INIT_LIST_HEAD(&lacl->lacl_list);
  1288. lacl->mapped_lun = mapped_lun;
  1289. lacl->se_lun_nacl = nacl;
  1290. snprintf(lacl->initiatorname, TRANSPORT_IQN_LEN, "%s", initiatorname);
  1291. return lacl;
  1292. }
  1293. int core_dev_add_initiator_node_lun_acl(
  1294. struct se_portal_group *tpg,
  1295. struct se_lun_acl *lacl,
  1296. u32 unpacked_lun,
  1297. u32 lun_access)
  1298. {
  1299. struct se_lun *lun;
  1300. struct se_node_acl *nacl;
  1301. lun = core_dev_get_lun(tpg, unpacked_lun);
  1302. if (!(lun)) {
  1303. printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
  1304. " Target Portal Group: %hu, ignoring request.\n",
  1305. TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
  1306. TPG_TFO(tpg)->tpg_get_tag(tpg));
  1307. return -EINVAL;
  1308. }
  1309. nacl = lacl->se_lun_nacl;
  1310. if (!(nacl))
  1311. return -EINVAL;
  1312. if ((lun->lun_access & TRANSPORT_LUNFLAGS_READ_ONLY) &&
  1313. (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE))
  1314. lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
  1315. lacl->se_lun = lun;
  1316. if (core_update_device_list_for_node(lun, lacl, lacl->mapped_lun,
  1317. lun_access, nacl, tpg, 1) < 0)
  1318. return -EINVAL;
  1319. spin_lock(&lun->lun_acl_lock);
  1320. list_add_tail(&lacl->lacl_list, &lun->lun_acl_list);
  1321. atomic_inc(&lun->lun_acl_count);
  1322. smp_mb__after_atomic_inc();
  1323. spin_unlock(&lun->lun_acl_lock);
  1324. printk(KERN_INFO "%s_TPG[%hu]_LUN[%u->%u] - Added %s ACL for "
  1325. " InitiatorNode: %s\n", TPG_TFO(tpg)->get_fabric_name(),
  1326. TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun, lacl->mapped_lun,
  1327. (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) ? "RW" : "RO",
  1328. lacl->initiatorname);
  1329. /*
  1330. * Check to see if there are any existing persistent reservation APTPL
  1331. * pre-registrations that need to be enabled for this LUN ACL..
  1332. */
  1333. core_scsi3_check_aptpl_registration(lun->lun_se_dev, tpg, lun, lacl);
  1334. return 0;
  1335. }
  1336. /* core_dev_del_initiator_node_lun_acl():
  1337. *
  1338. *
  1339. */
  1340. int core_dev_del_initiator_node_lun_acl(
  1341. struct se_portal_group *tpg,
  1342. struct se_lun *lun,
  1343. struct se_lun_acl *lacl)
  1344. {
  1345. struct se_node_acl *nacl;
  1346. nacl = lacl->se_lun_nacl;
  1347. if (!(nacl))
  1348. return -EINVAL;
  1349. spin_lock(&lun->lun_acl_lock);
  1350. list_del(&lacl->lacl_list);
  1351. atomic_dec(&lun->lun_acl_count);
  1352. smp_mb__after_atomic_dec();
  1353. spin_unlock(&lun->lun_acl_lock);
  1354. core_update_device_list_for_node(lun, NULL, lacl->mapped_lun,
  1355. TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
  1356. lacl->se_lun = NULL;
  1357. printk(KERN_INFO "%s_TPG[%hu]_LUN[%u] - Removed ACL for"
  1358. " InitiatorNode: %s Mapped LUN: %u\n",
  1359. TPG_TFO(tpg)->get_fabric_name(),
  1360. TPG_TFO(tpg)->tpg_get_tag(tpg), lun->unpacked_lun,
  1361. lacl->initiatorname, lacl->mapped_lun);
  1362. return 0;
  1363. }
  1364. void core_dev_free_initiator_node_lun_acl(
  1365. struct se_portal_group *tpg,
  1366. struct se_lun_acl *lacl)
  1367. {
  1368. printk("%s_TPG[%hu] - Freeing ACL for %s InitiatorNode: %s"
  1369. " Mapped LUN: %u\n", TPG_TFO(tpg)->get_fabric_name(),
  1370. TPG_TFO(tpg)->tpg_get_tag(tpg),
  1371. TPG_TFO(tpg)->get_fabric_name(),
  1372. lacl->initiatorname, lacl->mapped_lun);
  1373. kfree(lacl);
  1374. }
  1375. int core_dev_setup_virtual_lun0(void)
  1376. {
  1377. struct se_hba *hba;
  1378. struct se_device *dev;
  1379. struct se_subsystem_dev *se_dev = NULL;
  1380. struct se_subsystem_api *t;
  1381. char buf[16];
  1382. int ret;
  1383. hba = core_alloc_hba("rd_dr", 0, HBA_FLAGS_INTERNAL_USE);
  1384. if (IS_ERR(hba))
  1385. return PTR_ERR(hba);
  1386. se_global->g_lun0_hba = hba;
  1387. t = hba->transport;
  1388. se_dev = kzalloc(sizeof(struct se_subsystem_dev), GFP_KERNEL);
  1389. if (!(se_dev)) {
  1390. printk(KERN_ERR "Unable to allocate memory for"
  1391. " struct se_subsystem_dev\n");
  1392. ret = -ENOMEM;
  1393. goto out;
  1394. }
  1395. INIT_LIST_HEAD(&se_dev->g_se_dev_list);
  1396. INIT_LIST_HEAD(&se_dev->t10_wwn.t10_vpd_list);
  1397. spin_lock_init(&se_dev->t10_wwn.t10_vpd_lock);
  1398. INIT_LIST_HEAD(&se_dev->t10_reservation.registration_list);
  1399. INIT_LIST_HEAD(&se_dev->t10_reservation.aptpl_reg_list);
  1400. spin_lock_init(&se_dev->t10_reservation.registration_lock);
  1401. spin_lock_init(&se_dev->t10_reservation.aptpl_reg_lock);
  1402. INIT_LIST_HEAD(&se_dev->t10_alua.tg_pt_gps_list);
  1403. spin_lock_init(&se_dev->t10_alua.tg_pt_gps_lock);
  1404. spin_lock_init(&se_dev->se_dev_lock);
  1405. se_dev->t10_reservation.pr_aptpl_buf_len = PR_APTPL_BUF_LEN;
  1406. se_dev->t10_wwn.t10_sub_dev = se_dev;
  1407. se_dev->t10_alua.t10_sub_dev = se_dev;
  1408. se_dev->se_dev_attrib.da_sub_dev = se_dev;
  1409. se_dev->se_dev_hba = hba;
  1410. se_dev->se_dev_su_ptr = t->allocate_virtdevice(hba, "virt_lun0");
  1411. if (!(se_dev->se_dev_su_ptr)) {
  1412. printk(KERN_ERR "Unable to locate subsystem dependent pointer"
  1413. " from allocate_virtdevice()\n");
  1414. ret = -ENOMEM;
  1415. goto out;
  1416. }
  1417. se_global->g_lun0_su_dev = se_dev;
  1418. memset(buf, 0, 16);
  1419. sprintf(buf, "rd_pages=8");
  1420. t->set_configfs_dev_params(hba, se_dev, buf, sizeof(buf));
  1421. dev = t->create_virtdevice(hba, se_dev, se_dev->se_dev_su_ptr);
  1422. if (!(dev) || IS_ERR(dev)) {
  1423. ret = -ENOMEM;
  1424. goto out;
  1425. }
  1426. se_dev->se_dev_ptr = dev;
  1427. se_global->g_lun0_dev = dev;
  1428. return 0;
  1429. out:
  1430. se_global->g_lun0_su_dev = NULL;
  1431. kfree(se_dev);
  1432. if (se_global->g_lun0_hba) {
  1433. core_delete_hba(se_global->g_lun0_hba);
  1434. se_global->g_lun0_hba = NULL;
  1435. }
  1436. return ret;
  1437. }
  1438. void core_dev_release_virtual_lun0(void)
  1439. {
  1440. struct se_hba *hba = se_global->g_lun0_hba;
  1441. struct se_subsystem_dev *su_dev = se_global->g_lun0_su_dev;
  1442. if (!(hba))
  1443. return;
  1444. if (se_global->g_lun0_dev)
  1445. se_free_virtual_device(se_global->g_lun0_dev, hba);
  1446. kfree(su_dev);
  1447. core_delete_hba(hba);
  1448. }