PageRenderTime 44ms CodeModel.GetById 14ms app.highlight 25ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/staging/comedi/drivers/dmm32at.c

https://bitbucket.org/wisechild/galaxy-nexus
C | 1081 lines | 644 code | 168 blank | 269 comment | 149 complexity | 0b13c4be6207851859d9461c3a825d65 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*
   2    comedi/drivers/dmm32at.c
   3    Diamond Systems mm32at code for a Comedi driver
   4
   5    COMEDI - Linux Control and Measurement Device Interface
   6    Copyright (C) 2000 David A. Schleef <ds@schleef.org>
   7
   8    This program is free software; you can redistribute it and/or modify
   9    it under the terms of the GNU General Public License as published by
  10    the Free Software Foundation; either version 2 of the License, or
  11    (at your option) any later version.
  12
  13    This program is distributed in the hope that it will be useful,
  14    but WITHOUT ANY WARRANTY; without even the implied warranty of
  15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16    GNU General Public License for more details.
  17
  18    You should have received a copy of the GNU General Public License
  19    along with this program; if not, write to the Free Software
  20    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21
  22*/
  23/*
  24Driver: dmm32at
  25Description: Diamond Systems mm32at driver.
  26Devices:
  27Author: Perry J. Piplani <perry.j.piplani@nasa.gov>
  28Updated: Fri Jun  4 09:13:24 CDT 2004
  29Status: experimental
  30
  31This driver is for the Diamond Systems MM-32-AT board
  32http://www.diamondsystems.com/products/diamondmm32at It is being used
  33on serveral projects inside NASA, without problems so far. For analog
  34input commands, TRIG_EXT is not yet supported at all..
  35
  36Configuration Options:
  37  comedi_config /dev/comedi0 dmm32at baseaddr,irq
  38*/
  39
  40#include <linux/interrupt.h>
  41#include "../comedidev.h"
  42#include <linux/ioport.h>
  43
  44/* Board register addresses */
  45
  46#define DMM32AT_MEMSIZE 0x10
  47
  48#define DMM32AT_CONV 0x00
  49#define DMM32AT_AILSB 0x00
  50#define DMM32AT_AUXDOUT 0x01
  51#define DMM32AT_AIMSB 0x01
  52#define DMM32AT_AILOW 0x02
  53#define DMM32AT_AIHIGH 0x03
  54
  55#define DMM32AT_DACLSB 0x04
  56#define DMM32AT_DACSTAT 0x04
  57#define DMM32AT_DACMSB 0x05
  58
  59#define DMM32AT_FIFOCNTRL 0x07
  60#define DMM32AT_FIFOSTAT 0x07
  61
  62#define DMM32AT_CNTRL 0x08
  63#define DMM32AT_AISTAT 0x08
  64
  65#define DMM32AT_INTCLOCK 0x09
  66
  67#define DMM32AT_CNTRDIO 0x0a
  68
  69#define DMM32AT_AICONF 0x0b
  70#define DMM32AT_AIRBACK 0x0b
  71
  72#define DMM32AT_CLK1 0x0d
  73#define DMM32AT_CLK2 0x0e
  74#define DMM32AT_CLKCT 0x0f
  75
  76#define DMM32AT_DIOA 0x0c
  77#define DMM32AT_DIOB 0x0d
  78#define DMM32AT_DIOC 0x0e
  79#define DMM32AT_DIOCONF 0x0f
  80
  81#define dmm_inb(cdev, reg) inb((cdev->iobase)+reg)
  82#define dmm_outb(cdev, reg, valu) outb(valu, (cdev->iobase)+reg)
  83
  84/* Board register values. */
  85
  86/* DMM32AT_DACSTAT 0x04 */
  87#define DMM32AT_DACBUSY 0x80
  88
  89/* DMM32AT_FIFOCNTRL 0x07 */
  90#define DMM32AT_FIFORESET 0x02
  91#define DMM32AT_SCANENABLE 0x04
  92
  93/* DMM32AT_CNTRL 0x08 */
  94#define DMM32AT_RESET 0x20
  95#define DMM32AT_INTRESET 0x08
  96#define DMM32AT_CLKACC 0x00
  97#define DMM32AT_DIOACC 0x01
  98
  99/* DMM32AT_AISTAT 0x08 */
 100#define DMM32AT_STATUS 0x80
 101
 102/* DMM32AT_INTCLOCK 0x09 */
 103#define DMM32AT_ADINT 0x80
 104#define DMM32AT_CLKSEL 0x03
 105
 106/* DMM32AT_CNTRDIO 0x0a */
 107#define DMM32AT_FREQ12 0x80
 108
 109/* DMM32AT_AICONF 0x0b */
 110#define DMM32AT_RANGE_U10 0x0c
 111#define DMM32AT_RANGE_U5 0x0d
 112#define DMM32AT_RANGE_B10 0x08
 113#define DMM32AT_RANGE_B5 0x00
 114#define DMM32AT_SCINT_20 0x00
 115#define DMM32AT_SCINT_15 0x10
 116#define DMM32AT_SCINT_10 0x20
 117#define DMM32AT_SCINT_5 0x30
 118
 119/* DMM32AT_CLKCT 0x0f */
 120#define DMM32AT_CLKCT1 0x56	/* mode3 counter 1 - write low byte only */
 121#define DMM32AT_CLKCT2 0xb6	/*  mode3 counter 2 - write high and low byte */
 122
 123/* DMM32AT_DIOCONF 0x0f */
 124#define DMM32AT_DIENABLE 0x80
 125#define DMM32AT_DIRA 0x10
 126#define DMM32AT_DIRB 0x02
 127#define DMM32AT_DIRCL 0x01
 128#define DMM32AT_DIRCH 0x08
 129
 130/* board AI ranges in comedi structure */
 131static const struct comedi_lrange dmm32at_airanges = {
 132	4,
 133	{
 134	 UNI_RANGE(10),
 135	 UNI_RANGE(5),
 136	 BIP_RANGE(10),
 137	 BIP_RANGE(5),
 138	 }
 139};
 140
 141/* register values for above ranges */
 142static const unsigned char dmm32at_rangebits[] = {
 143	DMM32AT_RANGE_U10,
 144	DMM32AT_RANGE_U5,
 145	DMM32AT_RANGE_B10,
 146	DMM32AT_RANGE_B5,
 147};
 148
 149/* only one of these ranges is valid, as set by a jumper on the
 150 * board. The application should only use the range set by the jumper
 151 */
 152static const struct comedi_lrange dmm32at_aoranges = {
 153	4,
 154	{
 155	 UNI_RANGE(10),
 156	 UNI_RANGE(5),
 157	 BIP_RANGE(10),
 158	 BIP_RANGE(5),
 159	 }
 160};
 161
 162/*
 163 * Board descriptions for two imaginary boards.  Describing the
 164 * boards in this way is optional, and completely driver-dependent.
 165 * Some drivers use arrays such as this, other do not.
 166 */
 167struct dmm32at_board {
 168	const char *name;
 169	int ai_chans;
 170	int ai_bits;
 171	const struct comedi_lrange *ai_ranges;
 172	int ao_chans;
 173	int ao_bits;
 174	const struct comedi_lrange *ao_ranges;
 175	int have_dio;
 176	int dio_chans;
 177};
 178static const struct dmm32at_board dmm32at_boards[] = {
 179	{
 180	 .name = "dmm32at",
 181	 .ai_chans = 32,
 182	 .ai_bits = 16,
 183	 .ai_ranges = &dmm32at_airanges,
 184	 .ao_chans = 4,
 185	 .ao_bits = 12,
 186	 .ao_ranges = &dmm32at_aoranges,
 187	 .have_dio = 1,
 188	 .dio_chans = 24,
 189	 },
 190};
 191
 192/*
 193 * Useful for shorthand access to the particular board structure
 194 */
 195#define thisboard ((const struct dmm32at_board *)dev->board_ptr)
 196
 197/* this structure is for data unique to this hardware driver.  If
 198 * several hardware drivers keep similar information in this structure,
 199 * feel free to suggest moving the variable to the struct comedi_device struct.
 200 */
 201struct dmm32at_private {
 202
 203	int data;
 204	int ai_inuse;
 205	unsigned int ai_scans_left;
 206
 207	/* Used for AO readback */
 208	unsigned int ao_readback[4];
 209	unsigned char dio_config;
 210
 211};
 212
 213/*
 214 * most drivers define the following macro to make it easy to
 215 * access the private structure.
 216 */
 217#define devpriv ((struct dmm32at_private *)dev->private)
 218
 219/*
 220 * The struct comedi_driver structure tells the Comedi core module
 221 * which functions to call to configure/deconfigure (attach/detach)
 222 * the board, and also about the kernel module that contains
 223 * the device code.
 224 */
 225static int dmm32at_attach(struct comedi_device *dev,
 226			  struct comedi_devconfig *it);
 227static int dmm32at_detach(struct comedi_device *dev);
 228static struct comedi_driver driver_dmm32at = {
 229	.driver_name = "dmm32at",
 230	.module = THIS_MODULE,
 231	.attach = dmm32at_attach,
 232	.detach = dmm32at_detach,
 233/* It is not necessary to implement the following members if you are
 234 * writing a driver for a ISA PnP or PCI card */
 235/* Most drivers will support multiple types of boards by
 236 * having an array of board structures.  These were defined
 237 * in dmm32at_boards[] above.  Note that the element 'name'
 238 * was first in the structure -- Comedi uses this fact to
 239 * extract the name of the board without knowing any details
 240 * about the structure except for its length.
 241 * When a device is attached (by comedi_config), the name
 242 * of the device is given to Comedi, and Comedi tries to
 243 * match it by going through the list of board names.  If
 244 * there is a match, the address of the pointer is put
 245 * into dev->board_ptr and driver->attach() is called.
 246 *
 247 * Note that these are not necessary if you can determine
 248 * the type of board in software.  ISA PnP, PCI, and PCMCIA
 249 * devices are such boards.
 250 */
 251	.board_name = &dmm32at_boards[0].name,
 252	.offset = sizeof(struct dmm32at_board),
 253	.num_names = ARRAY_SIZE(dmm32at_boards),
 254};
 255
 256/* prototypes for driver functions below */
 257static int dmm32at_ai_rinsn(struct comedi_device *dev,
 258			    struct comedi_subdevice *s,
 259			    struct comedi_insn *insn, unsigned int *data);
 260static int dmm32at_ao_winsn(struct comedi_device *dev,
 261			    struct comedi_subdevice *s,
 262			    struct comedi_insn *insn, unsigned int *data);
 263static int dmm32at_ao_rinsn(struct comedi_device *dev,
 264			    struct comedi_subdevice *s,
 265			    struct comedi_insn *insn, unsigned int *data);
 266static int dmm32at_dio_insn_bits(struct comedi_device *dev,
 267				 struct comedi_subdevice *s,
 268				 struct comedi_insn *insn, unsigned int *data);
 269static int dmm32at_dio_insn_config(struct comedi_device *dev,
 270				   struct comedi_subdevice *s,
 271				   struct comedi_insn *insn,
 272				   unsigned int *data);
 273static int dmm32at_ai_cmdtest(struct comedi_device *dev,
 274			      struct comedi_subdevice *s,
 275			      struct comedi_cmd *cmd);
 276static int dmm32at_ai_cmd(struct comedi_device *dev,
 277			  struct comedi_subdevice *s);
 278static int dmm32at_ai_cancel(struct comedi_device *dev,
 279			     struct comedi_subdevice *s);
 280static int dmm32at_ns_to_timer(unsigned int *ns, int round);
 281static irqreturn_t dmm32at_isr(int irq, void *d);
 282void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec);
 283
 284/*
 285 * Attach is called by the Comedi core to configure the driver
 286 * for a particular board.  If you specified a board_name array
 287 * in the driver structure, dev->board_ptr contains that
 288 * address.
 289 */
 290static int dmm32at_attach(struct comedi_device *dev,
 291			  struct comedi_devconfig *it)
 292{
 293	int ret;
 294	struct comedi_subdevice *s;
 295	unsigned char aihi, ailo, fifostat, aistat, intstat, airback;
 296	unsigned long iobase;
 297	unsigned int irq;
 298
 299	iobase = it->options[0];
 300	irq = it->options[1];
 301
 302	printk(KERN_INFO "comedi%d: dmm32at: attaching\n", dev->minor);
 303	printk(KERN_DEBUG "dmm32at: probing at address 0x%04lx, irq %u\n",
 304	       iobase, irq);
 305
 306	/* register address space */
 307	if (!request_region(iobase, DMM32AT_MEMSIZE, thisboard->name)) {
 308		printk(KERN_ERR "comedi%d: dmm32at: I/O port conflict\n",
 309		       dev->minor);
 310		return -EIO;
 311	}
 312	dev->iobase = iobase;
 313
 314	/* the following just makes sure the board is there and gets
 315	   it to a known state */
 316
 317	/* reset the board */
 318	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_RESET);
 319
 320	/* allow a millisecond to reset */
 321	udelay(1000);
 322
 323	/* zero scan and fifo control */
 324	dmm_outb(dev, DMM32AT_FIFOCNTRL, 0x0);
 325
 326	/* zero interrupt and clock control */
 327	dmm_outb(dev, DMM32AT_INTCLOCK, 0x0);
 328
 329	/* write a test channel range, the high 3 bits should drop */
 330	dmm_outb(dev, DMM32AT_AILOW, 0x80);
 331	dmm_outb(dev, DMM32AT_AIHIGH, 0xff);
 332
 333	/* set the range at 10v unipolar */
 334	dmm_outb(dev, DMM32AT_AICONF, DMM32AT_RANGE_U10);
 335
 336	/* should take 10 us to settle, here's a hundred */
 337	udelay(100);
 338
 339	/* read back the values */
 340	ailo = dmm_inb(dev, DMM32AT_AILOW);
 341	aihi = dmm_inb(dev, DMM32AT_AIHIGH);
 342	fifostat = dmm_inb(dev, DMM32AT_FIFOSTAT);
 343	aistat = dmm_inb(dev, DMM32AT_AISTAT);
 344	intstat = dmm_inb(dev, DMM32AT_INTCLOCK);
 345	airback = dmm_inb(dev, DMM32AT_AIRBACK);
 346
 347	printk(KERN_DEBUG "dmm32at: lo=0x%02x hi=0x%02x fifostat=0x%02x\n",
 348	       ailo, aihi, fifostat);
 349	printk(KERN_DEBUG
 350	       "dmm32at: aistat=0x%02x intstat=0x%02x airback=0x%02x\n",
 351	       aistat, intstat, airback);
 352
 353	if ((ailo != 0x00) || (aihi != 0x1f) || (fifostat != 0x80) ||
 354	    (aistat != 0x60 || (intstat != 0x00) || airback != 0x0c)) {
 355		printk(KERN_ERR "dmmat32: board detection failed\n");
 356		return -EIO;
 357	}
 358
 359	/* board is there, register interrupt */
 360	if (irq) {
 361		ret = request_irq(irq, dmm32at_isr, 0, thisboard->name, dev);
 362		if (ret < 0) {
 363			printk(KERN_ERR "dmm32at: irq conflict\n");
 364			return ret;
 365		}
 366		dev->irq = irq;
 367	}
 368
 369/*
 370 * If you can probe the device to determine what device in a series
 371 * it is, this is the place to do it.  Otherwise, dev->board_ptr
 372 * should already be initialized.
 373 */
 374	/* dev->board_ptr = dmm32at_probe(dev); */
 375
 376/*
 377 * Initialize dev->board_name.  Note that we can use the "thisboard"
 378 * macro now, since we just initialized it in the last line.
 379 */
 380	dev->board_name = thisboard->name;
 381
 382/*
 383 * Allocate the private structure area.  alloc_private() is a
 384 * convenient macro defined in comedidev.h.
 385 */
 386	if (alloc_private(dev, sizeof(struct dmm32at_private)) < 0)
 387		return -ENOMEM;
 388
 389/*
 390 * Allocate the subdevice structures.  alloc_subdevice() is a
 391 * convenient macro defined in comedidev.h.
 392 */
 393	if (alloc_subdevices(dev, 3) < 0)
 394		return -ENOMEM;
 395
 396	s = dev->subdevices + 0;
 397	dev->read_subdev = s;
 398	/* analog input subdevice */
 399	s->type = COMEDI_SUBD_AI;
 400	/* we support single-ended (ground) and differential */
 401	s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF | SDF_CMD_READ;
 402	s->n_chan = thisboard->ai_chans;
 403	s->maxdata = (1 << thisboard->ai_bits) - 1;
 404	s->range_table = thisboard->ai_ranges;
 405	s->len_chanlist = 32;	/* This is the maximum chanlist length that
 406				   the board can handle */
 407	s->insn_read = dmm32at_ai_rinsn;
 408	s->do_cmd = dmm32at_ai_cmd;
 409	s->do_cmdtest = dmm32at_ai_cmdtest;
 410	s->cancel = dmm32at_ai_cancel;
 411
 412	s = dev->subdevices + 1;
 413	/* analog output subdevice */
 414	s->type = COMEDI_SUBD_AO;
 415	s->subdev_flags = SDF_WRITABLE;
 416	s->n_chan = thisboard->ao_chans;
 417	s->maxdata = (1 << thisboard->ao_bits) - 1;
 418	s->range_table = thisboard->ao_ranges;
 419	s->insn_write = dmm32at_ao_winsn;
 420	s->insn_read = dmm32at_ao_rinsn;
 421
 422	s = dev->subdevices + 2;
 423	/* digital i/o subdevice */
 424	if (thisboard->have_dio) {
 425
 426		/* get access to the DIO regs */
 427		dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
 428		/* set the DIO's to the defualt input setting */
 429		devpriv->dio_config = DMM32AT_DIRA | DMM32AT_DIRB |
 430		    DMM32AT_DIRCL | DMM32AT_DIRCH | DMM32AT_DIENABLE;
 431		dmm_outb(dev, DMM32AT_DIOCONF, devpriv->dio_config);
 432
 433		/* set up the subdevice */
 434		s->type = COMEDI_SUBD_DIO;
 435		s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
 436		s->n_chan = thisboard->dio_chans;
 437		s->maxdata = 1;
 438		s->state = 0;
 439		s->range_table = &range_digital;
 440		s->insn_bits = dmm32at_dio_insn_bits;
 441		s->insn_config = dmm32at_dio_insn_config;
 442	} else {
 443		s->type = COMEDI_SUBD_UNUSED;
 444	}
 445
 446	/* success */
 447	printk(KERN_INFO "comedi%d: dmm32at: attached\n", dev->minor);
 448
 449	return 1;
 450
 451}
 452
 453/*
 454 * _detach is called to deconfigure a device.  It should deallocate
 455 * resources.
 456 * This function is also called when _attach() fails, so it should be
 457 * careful not to release resources that were not necessarily
 458 * allocated by _attach().  dev->private and dev->subdevices are
 459 * deallocated automatically by the core.
 460 */
 461static int dmm32at_detach(struct comedi_device *dev)
 462{
 463	printk(KERN_INFO "comedi%d: dmm32at: remove\n", dev->minor);
 464	if (dev->irq)
 465		free_irq(dev->irq, dev);
 466	if (dev->iobase)
 467		release_region(dev->iobase, DMM32AT_MEMSIZE);
 468
 469	return 0;
 470}
 471
 472/*
 473 * "instructions" read/write data in "one-shot" or "software-triggered"
 474 * mode.
 475 */
 476
 477static int dmm32at_ai_rinsn(struct comedi_device *dev,
 478			    struct comedi_subdevice *s,
 479			    struct comedi_insn *insn, unsigned int *data)
 480{
 481	int n, i;
 482	unsigned int d;
 483	unsigned char status;
 484	unsigned short msb, lsb;
 485	unsigned char chan;
 486	int range;
 487
 488	/* get the channel and range number */
 489
 490	chan = CR_CHAN(insn->chanspec) & (s->n_chan - 1);
 491	range = CR_RANGE(insn->chanspec);
 492
 493	/* printk("channel=0x%02x, range=%d\n",chan,range); */
 494
 495	/* zero scan and fifo control and reset fifo */
 496	dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_FIFORESET);
 497
 498	/* write the ai channel range regs */
 499	dmm_outb(dev, DMM32AT_AILOW, chan);
 500	dmm_outb(dev, DMM32AT_AIHIGH, chan);
 501	/* set the range bits */
 502	dmm_outb(dev, DMM32AT_AICONF, dmm32at_rangebits[range]);
 503
 504	/* wait for circuit to settle */
 505	for (i = 0; i < 40000; i++) {
 506		status = dmm_inb(dev, DMM32AT_AIRBACK);
 507		if ((status & DMM32AT_STATUS) == 0)
 508			break;
 509	}
 510	if (i == 40000) {
 511		printk(KERN_WARNING "dmm32at: timeout\n");
 512		return -ETIMEDOUT;
 513	}
 514
 515	/* convert n samples */
 516	for (n = 0; n < insn->n; n++) {
 517		/* trigger conversion */
 518		dmm_outb(dev, DMM32AT_CONV, 0xff);
 519		/* wait for conversion to end */
 520		for (i = 0; i < 40000; i++) {
 521			status = dmm_inb(dev, DMM32AT_AISTAT);
 522			if ((status & DMM32AT_STATUS) == 0)
 523				break;
 524		}
 525		if (i == 40000) {
 526			printk(KERN_WARNING "dmm32at: timeout\n");
 527			return -ETIMEDOUT;
 528		}
 529
 530		/* read data */
 531		lsb = dmm_inb(dev, DMM32AT_AILSB);
 532		msb = dmm_inb(dev, DMM32AT_AIMSB);
 533
 534		/* invert sign bit to make range unsigned, this is an
 535		   idiosyncrasy of the diamond board, it return
 536		   conversions as a signed value, i.e. -32768 to
 537		   32767, flipping the bit and interpreting it as
 538		   signed gives you a range of 0 to 65535 which is
 539		   used by comedi */
 540		d = ((msb ^ 0x0080) << 8) + lsb;
 541
 542		data[n] = d;
 543	}
 544
 545	/* return the number of samples read/written */
 546	return n;
 547}
 548
 549static int dmm32at_ai_cmdtest(struct comedi_device *dev,
 550			      struct comedi_subdevice *s,
 551			      struct comedi_cmd *cmd)
 552{
 553	int err = 0;
 554	int tmp;
 555	int start_chan, gain, i;
 556
 557	/* printk("dmmat32 in command test\n"); */
 558
 559	/* cmdtest tests a particular command to see if it is valid.
 560	 * Using the cmdtest ioctl, a user can create a valid cmd
 561	 * and then have it executes by the cmd ioctl.
 562	 *
 563	 * cmdtest returns 1,2,3,4 or 0, depending on which tests
 564	 * the command passes. */
 565
 566	/* step 1: make sure trigger sources are trivially valid */
 567
 568	tmp = cmd->start_src;
 569	cmd->start_src &= TRIG_NOW;
 570	if (!cmd->start_src || tmp != cmd->start_src)
 571		err++;
 572
 573	tmp = cmd->scan_begin_src;
 574	cmd->scan_begin_src &= TRIG_TIMER /*| TRIG_EXT */ ;
 575	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
 576		err++;
 577
 578	tmp = cmd->convert_src;
 579	cmd->convert_src &= TRIG_TIMER /*| TRIG_EXT */ ;
 580	if (!cmd->convert_src || tmp != cmd->convert_src)
 581		err++;
 582
 583	tmp = cmd->scan_end_src;
 584	cmd->scan_end_src &= TRIG_COUNT;
 585	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
 586		err++;
 587
 588	tmp = cmd->stop_src;
 589	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
 590	if (!cmd->stop_src || tmp != cmd->stop_src)
 591		err++;
 592
 593	if (err)
 594		return 1;
 595
 596	/* step 2: make sure trigger sources are unique and mutually
 597	 * compatible */
 598
 599	/* note that mutual compatibility is not an issue here */
 600	if (cmd->scan_begin_src != TRIG_TIMER &&
 601	    cmd->scan_begin_src != TRIG_EXT)
 602		err++;
 603	if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
 604		err++;
 605	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
 606		err++;
 607
 608	if (err)
 609		return 2;
 610
 611	/* step 3: make sure arguments are trivially compatible */
 612
 613	if (cmd->start_arg != 0) {
 614		cmd->start_arg = 0;
 615		err++;
 616	}
 617#define MAX_SCAN_SPEED	1000000	/* in nanoseconds */
 618#define MIN_SCAN_SPEED	1000000000	/* in nanoseconds */
 619
 620	if (cmd->scan_begin_src == TRIG_TIMER) {
 621		if (cmd->scan_begin_arg < MAX_SCAN_SPEED) {
 622			cmd->scan_begin_arg = MAX_SCAN_SPEED;
 623			err++;
 624		}
 625		if (cmd->scan_begin_arg > MIN_SCAN_SPEED) {
 626			cmd->scan_begin_arg = MIN_SCAN_SPEED;
 627			err++;
 628		}
 629	} else {
 630		/* external trigger */
 631		/* should be level/edge, hi/lo specification here */
 632		/* should specify multiple external triggers */
 633		if (cmd->scan_begin_arg > 9) {
 634			cmd->scan_begin_arg = 9;
 635			err++;
 636		}
 637	}
 638	if (cmd->convert_src == TRIG_TIMER) {
 639		if (cmd->convert_arg >= 17500)
 640			cmd->convert_arg = 20000;
 641		else if (cmd->convert_arg >= 12500)
 642			cmd->convert_arg = 15000;
 643		else if (cmd->convert_arg >= 7500)
 644			cmd->convert_arg = 10000;
 645		else
 646			cmd->convert_arg = 5000;
 647
 648	} else {
 649		/* external trigger */
 650		/* see above */
 651		if (cmd->convert_arg > 9) {
 652			cmd->convert_arg = 9;
 653			err++;
 654		}
 655	}
 656
 657	if (cmd->scan_end_arg != cmd->chanlist_len) {
 658		cmd->scan_end_arg = cmd->chanlist_len;
 659		err++;
 660	}
 661	if (cmd->stop_src == TRIG_COUNT) {
 662		if (cmd->stop_arg > 0xfffffff0) {
 663			cmd->stop_arg = 0xfffffff0;
 664			err++;
 665		}
 666		if (cmd->stop_arg == 0) {
 667			cmd->stop_arg = 1;
 668			err++;
 669		}
 670	} else {
 671		/* TRIG_NONE */
 672		if (cmd->stop_arg != 0) {
 673			cmd->stop_arg = 0;
 674			err++;
 675		}
 676	}
 677
 678	if (err)
 679		return 3;
 680
 681	/* step 4: fix up any arguments */
 682
 683	if (cmd->scan_begin_src == TRIG_TIMER) {
 684		tmp = cmd->scan_begin_arg;
 685		dmm32at_ns_to_timer(&cmd->scan_begin_arg,
 686				    cmd->flags & TRIG_ROUND_MASK);
 687		if (tmp != cmd->scan_begin_arg)
 688			err++;
 689	}
 690	if (cmd->convert_src == TRIG_TIMER) {
 691		tmp = cmd->convert_arg;
 692		dmm32at_ns_to_timer(&cmd->convert_arg,
 693				    cmd->flags & TRIG_ROUND_MASK);
 694		if (tmp != cmd->convert_arg)
 695			err++;
 696		if (cmd->scan_begin_src == TRIG_TIMER &&
 697		    cmd->scan_begin_arg <
 698		    cmd->convert_arg * cmd->scan_end_arg) {
 699			cmd->scan_begin_arg =
 700			    cmd->convert_arg * cmd->scan_end_arg;
 701			err++;
 702		}
 703	}
 704
 705	if (err)
 706		return 4;
 707
 708	/* step 5 check the channel list, the channel list for this
 709	   board must be consecutive and gains must be the same */
 710
 711	if (cmd->chanlist) {
 712		gain = CR_RANGE(cmd->chanlist[0]);
 713		start_chan = CR_CHAN(cmd->chanlist[0]);
 714		for (i = 1; i < cmd->chanlist_len; i++) {
 715			if (CR_CHAN(cmd->chanlist[i]) !=
 716			    (start_chan + i) % s->n_chan) {
 717				comedi_error(dev,
 718					     "entries in chanlist must be consecutive channels, counting upwards\n");
 719				err++;
 720			}
 721			if (CR_RANGE(cmd->chanlist[i]) != gain) {
 722				comedi_error(dev,
 723					     "entries in chanlist must all have the same gain\n");
 724				err++;
 725			}
 726		}
 727	}
 728
 729	if (err)
 730		return 5;
 731
 732	return 0;
 733}
 734
 735static int dmm32at_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
 736{
 737	struct comedi_cmd *cmd = &s->async->cmd;
 738	int i, range;
 739	unsigned char chanlo, chanhi, status;
 740
 741	if (!cmd->chanlist)
 742		return -EINVAL;
 743
 744	/* get the channel list and range */
 745	chanlo = CR_CHAN(cmd->chanlist[0]) & (s->n_chan - 1);
 746	chanhi = chanlo + cmd->chanlist_len - 1;
 747	if (chanhi >= s->n_chan)
 748		return -EINVAL;
 749	range = CR_RANGE(cmd->chanlist[0]);
 750
 751	/* reset fifo */
 752	dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_FIFORESET);
 753
 754	/* set scan enable */
 755	dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_SCANENABLE);
 756
 757	/* write the ai channel range regs */
 758	dmm_outb(dev, DMM32AT_AILOW, chanlo);
 759	dmm_outb(dev, DMM32AT_AIHIGH, chanhi);
 760
 761	/* set the range bits */
 762	dmm_outb(dev, DMM32AT_AICONF, dmm32at_rangebits[range]);
 763
 764	/* reset the interrupt just in case */
 765	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_INTRESET);
 766
 767	if (cmd->stop_src == TRIG_COUNT)
 768		devpriv->ai_scans_left = cmd->stop_arg;
 769	else {			/* TRIG_NONE */
 770		devpriv->ai_scans_left = 0xffffffff; /* indicates TRIG_NONE to
 771						      * isr */
 772	}
 773
 774	/* wait for circuit to settle */
 775	for (i = 0; i < 40000; i++) {
 776		status = dmm_inb(dev, DMM32AT_AIRBACK);
 777		if ((status & DMM32AT_STATUS) == 0)
 778			break;
 779	}
 780	if (i == 40000) {
 781		printk(KERN_WARNING "dmm32at: timeout\n");
 782		return -ETIMEDOUT;
 783	}
 784
 785	if (devpriv->ai_scans_left > 1) {
 786		/* start the clock and enable the interrupts */
 787		dmm32at_setaitimer(dev, cmd->scan_begin_arg);
 788	} else {
 789		/* start the interrups and initiate a single scan */
 790		dmm_outb(dev, DMM32AT_INTCLOCK, DMM32AT_ADINT);
 791		dmm_outb(dev, DMM32AT_CONV, 0xff);
 792	}
 793
 794/*	printk("dmmat32 in command\n"); */
 795
 796/*	for(i=0;i<cmd->chanlist_len;i++) */
 797/*		comedi_buf_put(s->async,i*100); */
 798
 799/*	s->async->events |= COMEDI_CB_EOA; */
 800/*	comedi_event(dev, s); */
 801
 802	return 0;
 803
 804}
 805
 806static int dmm32at_ai_cancel(struct comedi_device *dev,
 807			     struct comedi_subdevice *s)
 808{
 809	devpriv->ai_scans_left = 1;
 810	return 0;
 811}
 812
 813static irqreturn_t dmm32at_isr(int irq, void *d)
 814{
 815	unsigned char intstat;
 816	unsigned int samp;
 817	unsigned short msb, lsb;
 818	int i;
 819	struct comedi_device *dev = d;
 820
 821	if (!dev->attached) {
 822		comedi_error(dev, "spurious interrupt");
 823		return IRQ_HANDLED;
 824	}
 825
 826	intstat = dmm_inb(dev, DMM32AT_INTCLOCK);
 827
 828	if (intstat & DMM32AT_ADINT) {
 829		struct comedi_subdevice *s = dev->read_subdev;
 830		struct comedi_cmd *cmd = &s->async->cmd;
 831
 832		for (i = 0; i < cmd->chanlist_len; i++) {
 833			/* read data */
 834			lsb = dmm_inb(dev, DMM32AT_AILSB);
 835			msb = dmm_inb(dev, DMM32AT_AIMSB);
 836
 837			/* invert sign bit to make range unsigned */
 838			samp = ((msb ^ 0x0080) << 8) + lsb;
 839			comedi_buf_put(s->async, samp);
 840		}
 841
 842		if (devpriv->ai_scans_left != 0xffffffff) {	/* TRIG_COUNT */
 843			devpriv->ai_scans_left--;
 844			if (devpriv->ai_scans_left == 0) {
 845				/* disable further interrupts and clocks */
 846				dmm_outb(dev, DMM32AT_INTCLOCK, 0x0);
 847				/* set the buffer to be flushed with an EOF */
 848				s->async->events |= COMEDI_CB_EOA;
 849			}
 850
 851		}
 852		/* flush the buffer */
 853		comedi_event(dev, s);
 854	}
 855
 856	/* reset the interrupt */
 857	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_INTRESET);
 858	return IRQ_HANDLED;
 859}
 860
 861/* This function doesn't require a particular form, this is just
 862 * what happens to be used in some of the drivers.  It should
 863 * convert ns nanoseconds to a counter value suitable for programming
 864 * the device.  Also, it should adjust ns so that it cooresponds to
 865 * the actual time that the device will use. */
 866static int dmm32at_ns_to_timer(unsigned int *ns, int round)
 867{
 868	/* trivial timer */
 869	/* if your timing is done through two cascaded timers, the
 870	 * i8253_cascade_ns_to_timer() function in 8253.h can be
 871	 * very helpful.  There are also i8254_load() and i8254_mm_load()
 872	 * which can be used to load values into the ubiquitous 8254 counters
 873	 */
 874
 875	return *ns;
 876}
 877
 878static int dmm32at_ao_winsn(struct comedi_device *dev,
 879			    struct comedi_subdevice *s,
 880			    struct comedi_insn *insn, unsigned int *data)
 881{
 882	int i;
 883	int chan = CR_CHAN(insn->chanspec);
 884	unsigned char hi, lo, status;
 885
 886	/* Writing a list of values to an AO channel is probably not
 887	 * very useful, but that's how the interface is defined. */
 888	for (i = 0; i < insn->n; i++) {
 889
 890		devpriv->ao_readback[chan] = data[i];
 891
 892		/* get the low byte */
 893		lo = data[i] & 0x00ff;
 894		/* high byte also contains channel number */
 895		hi = (data[i] >> 8) + chan * (1 << 6);
 896		/* printk("writing 0x%02x  0x%02x\n",hi,lo); */
 897		/* write the low and high values to the board */
 898		dmm_outb(dev, DMM32AT_DACLSB, lo);
 899		dmm_outb(dev, DMM32AT_DACMSB, hi);
 900
 901		/* wait for circuit to settle */
 902		for (i = 0; i < 40000; i++) {
 903			status = dmm_inb(dev, DMM32AT_DACSTAT);
 904			if ((status & DMM32AT_DACBUSY) == 0)
 905				break;
 906		}
 907		if (i == 40000) {
 908			printk(KERN_WARNING "dmm32at: timeout\n");
 909			return -ETIMEDOUT;
 910		}
 911		/* dummy read to update trigger the output */
 912		status = dmm_inb(dev, DMM32AT_DACMSB);
 913
 914	}
 915
 916	/* return the number of samples read/written */
 917	return i;
 918}
 919
 920/* AO subdevices should have a read insn as well as a write insn.
 921 * Usually this means copying a value stored in devpriv. */
 922static int dmm32at_ao_rinsn(struct comedi_device *dev,
 923			    struct comedi_subdevice *s,
 924			    struct comedi_insn *insn, unsigned int *data)
 925{
 926	int i;
 927	int chan = CR_CHAN(insn->chanspec);
 928
 929	for (i = 0; i < insn->n; i++)
 930		data[i] = devpriv->ao_readback[chan];
 931
 932	return i;
 933}
 934
 935/* DIO devices are slightly special.  Although it is possible to
 936 * implement the insn_read/insn_write interface, it is much more
 937 * useful to applications if you implement the insn_bits interface.
 938 * This allows packed reading/writing of the DIO channels.  The
 939 * comedi core can convert between insn_bits and insn_read/write */
 940static int dmm32at_dio_insn_bits(struct comedi_device *dev,
 941				 struct comedi_subdevice *s,
 942				 struct comedi_insn *insn, unsigned int *data)
 943{
 944	unsigned char diobits;
 945
 946	if (insn->n != 2)
 947		return -EINVAL;
 948
 949	/* The insn data is a mask in data[0] and the new data
 950	 * in data[1], each channel cooresponding to a bit. */
 951	if (data[0]) {
 952		s->state &= ~data[0];
 953		s->state |= data[0] & data[1];
 954		/* Write out the new digital output lines */
 955		/* outw(s->state,dev->iobase + DMM32AT_DIO); */
 956	}
 957
 958	/* get access to the DIO regs */
 959	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
 960
 961	/* if either part of dio is set for output */
 962	if (((devpriv->dio_config & DMM32AT_DIRCL) == 0) ||
 963	    ((devpriv->dio_config & DMM32AT_DIRCH) == 0)) {
 964		diobits = (s->state & 0x00ff0000) >> 16;
 965		dmm_outb(dev, DMM32AT_DIOC, diobits);
 966	}
 967	if ((devpriv->dio_config & DMM32AT_DIRB) == 0) {
 968		diobits = (s->state & 0x0000ff00) >> 8;
 969		dmm_outb(dev, DMM32AT_DIOB, diobits);
 970	}
 971	if ((devpriv->dio_config & DMM32AT_DIRA) == 0) {
 972		diobits = (s->state & 0x000000ff);
 973		dmm_outb(dev, DMM32AT_DIOA, diobits);
 974	}
 975
 976	/* now read the state back in */
 977	s->state = dmm_inb(dev, DMM32AT_DIOC);
 978	s->state <<= 8;
 979	s->state |= dmm_inb(dev, DMM32AT_DIOB);
 980	s->state <<= 8;
 981	s->state |= dmm_inb(dev, DMM32AT_DIOA);
 982	data[1] = s->state;
 983
 984	/* on return, data[1] contains the value of the digital
 985	 * input and output lines. */
 986	/* data[1]=inw(dev->iobase + DMM32AT_DIO); */
 987	/* or we could just return the software copy of the output values if
 988	 * it was a purely digital output subdevice */
 989	/* data[1]=s->state; */
 990
 991	return 2;
 992}
 993
 994static int dmm32at_dio_insn_config(struct comedi_device *dev,
 995				   struct comedi_subdevice *s,
 996				   struct comedi_insn *insn, unsigned int *data)
 997{
 998	unsigned char chanbit;
 999	int chan = CR_CHAN(insn->chanspec);
1000
1001	if (insn->n != 1)
1002		return -EINVAL;
1003
1004	if (chan < 8)
1005		chanbit = DMM32AT_DIRA;
1006	else if (chan < 16)
1007		chanbit = DMM32AT_DIRB;
1008	else if (chan < 20)
1009		chanbit = DMM32AT_DIRCL;
1010	else
1011		chanbit = DMM32AT_DIRCH;
1012
1013	/* The input or output configuration of each digital line is
1014	 * configured by a special insn_config instruction.  chanspec
1015	 * contains the channel to be changed, and data[0] contains the
1016	 * value COMEDI_INPUT or COMEDI_OUTPUT. */
1017
1018	/* if output clear the bit, otherwise set it */
1019	if (data[0] == COMEDI_OUTPUT)
1020		devpriv->dio_config &= ~chanbit;
1021	else
1022		devpriv->dio_config |= chanbit;
1023	/* get access to the DIO regs */
1024	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
1025	/* set the DIO's to the new configuration setting */
1026	dmm_outb(dev, DMM32AT_DIOCONF, devpriv->dio_config);
1027
1028	return 1;
1029}
1030
1031void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec)
1032{
1033	unsigned char lo1, lo2, hi2;
1034	unsigned short both2;
1035
1036	/* based on 10mhz clock */
1037	lo1 = 200;
1038	both2 = nansec / 20000;
1039	hi2 = (both2 & 0xff00) >> 8;
1040	lo2 = both2 & 0x00ff;
1041
1042	/* set the counter frequency to 10mhz */
1043	dmm_outb(dev, DMM32AT_CNTRDIO, 0);
1044
1045	/* get access to the clock regs */
1046	dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_CLKACC);
1047
1048	/* write the counter 1 control word and low byte to counter */
1049	dmm_outb(dev, DMM32AT_CLKCT, DMM32AT_CLKCT1);
1050	dmm_outb(dev, DMM32AT_CLK1, lo1);
1051
1052	/* write the counter 2 control word and low byte then to counter */
1053	dmm_outb(dev, DMM32AT_CLKCT, DMM32AT_CLKCT2);
1054	dmm_outb(dev, DMM32AT_CLK2, lo2);
1055	dmm_outb(dev, DMM32AT_CLK2, hi2);
1056
1057	/* enable the ai conversion interrupt and the clock to start scans */
1058	dmm_outb(dev, DMM32AT_INTCLOCK, DMM32AT_ADINT | DMM32AT_CLKSEL);
1059
1060}
1061
1062/*
1063 * A convenient macro that defines init_module() and cleanup_module(),
1064 * as necessary.
1065 */
1066static int __init driver_dmm32at_init_module(void)
1067{
1068	return comedi_driver_register(&driver_dmm32at);
1069}
1070
1071static void __exit driver_dmm32at_cleanup_module(void)
1072{
1073	comedi_driver_unregister(&driver_dmm32at);
1074}
1075
1076module_init(driver_dmm32at_init_module);
1077module_exit(driver_dmm32at_cleanup_module);
1078
1079MODULE_AUTHOR("Comedi http://www.comedi.org");
1080MODULE_DESCRIPTION("Comedi low-level driver");
1081MODULE_LICENSE("GPL");