PageRenderTime 58ms CodeModel.GetById 24ms app.highlight 25ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/staging/tty/ip2/i2ellis.c

https://bitbucket.org/wisechild/galaxy-nexus
C | 1403 lines | 560 code | 162 blank | 681 comment | 93 complexity | af058df7e6f6fe1dca28122e35e56f9f MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*******************************************************************************
   2*
   3*   (c) 1998 by Computone Corporation
   4*
   5********************************************************************************
   6*
   7*
   8*   PACKAGE:     Linux tty Device Driver for IntelliPort family of multiport
   9*                serial I/O controllers.
  10*
  11*   DESCRIPTION: Low-level interface code for the device driver
  12*                (This is included source code, not a separate compilation
  13*                module.)
  14*
  15*******************************************************************************/
  16//---------------------------------------------
  17// Function declarations private to this module
  18//---------------------------------------------
  19// Functions called only indirectly through i2eBordStr entries.
  20
  21static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
  22static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
  23static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
  24static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
  25
  26static unsigned short iiReadWord16(i2eBordStrPtr);
  27static unsigned short iiReadWord8(i2eBordStrPtr);
  28static void iiWriteWord16(i2eBordStrPtr, unsigned short);
  29static void iiWriteWord8(i2eBordStrPtr, unsigned short);
  30
  31static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
  32static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
  33static int iiTxMailEmptyII(i2eBordStrPtr);
  34static int iiTxMailEmptyIIEX(i2eBordStrPtr);
  35static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
  36static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
  37
  38static unsigned short iiGetMailII(i2eBordStrPtr);
  39static unsigned short iiGetMailIIEX(i2eBordStrPtr);
  40
  41static void iiEnableMailIrqII(i2eBordStrPtr);
  42static void iiEnableMailIrqIIEX(i2eBordStrPtr);
  43static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
  44static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
  45
  46static void ii2Nop(void);
  47
  48//***************
  49//* Static Data *
  50//***************
  51
  52static int ii2Safe;         // Safe I/O address for delay routine
  53
  54static int iiDelayed;	// Set when the iiResetDelay function is
  55							// called. Cleared when ANY board is reset.
  56static DEFINE_RWLOCK(Dl_spinlock);
  57
  58//********
  59//* Code *
  60//********
  61
  62//=======================================================
  63// Initialization Routines
  64//
  65// iiSetAddress
  66// iiReset
  67// iiResetDelay
  68// iiInitialize
  69//=======================================================
  70
  71//******************************************************************************
  72// Function:   iiSetAddress(pB, address, delay)
  73// Parameters: pB      - pointer to the board structure
  74//             address - the purported I/O address of the board
  75//             delay   - pointer to the 1-ms delay function to use
  76//                       in this and any future operations to this board
  77//
  78// Returns:    True if everything appears copacetic.
  79//             False if there is any error: the pB->i2eError field has the error
  80//
  81// Description:
  82//
  83// This routine (roughly) checks for address validity, sets the i2eValid OK and
  84// sets the state to II_STATE_COLD which means that we haven't even sent a reset
  85// yet.
  86//
  87//******************************************************************************
  88static int
  89iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
  90{
  91	// Should any failure occur before init is finished...
  92	pB->i2eValid = I2E_INCOMPLETE;
  93
  94	// Cannot check upper limit except extremely: Might be microchannel
  95	// Address must be on an 8-byte boundary
  96
  97	if ((unsigned int)address <= 0x100
  98		|| (unsigned int)address >= 0xfff8
  99		|| (address & 0x7)
 100		)
 101	{
 102		I2_COMPLETE(pB, I2EE_BADADDR);
 103	}
 104
 105	// Initialize accelerators
 106	pB->i2eBase    = address;
 107	pB->i2eData    = address + FIFO_DATA;
 108	pB->i2eStatus  = address + FIFO_STATUS;
 109	pB->i2ePointer = address + FIFO_PTR;
 110	pB->i2eXMail   = address + FIFO_MAIL;
 111	pB->i2eXMask   = address + FIFO_MASK;
 112
 113	// Initialize i/o address for ii2DelayIO
 114	ii2Safe = address + FIFO_NOP;
 115
 116	// Initialize the delay routine
 117	pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
 118
 119	pB->i2eValid = I2E_MAGIC;
 120	pB->i2eState = II_STATE_COLD;
 121
 122	I2_COMPLETE(pB, I2EE_GOOD);
 123}
 124
 125//******************************************************************************
 126// Function:   iiReset(pB)
 127// Parameters: pB - pointer to the board structure
 128//
 129// Returns:    True if everything appears copacetic.
 130//             False if there is any error: the pB->i2eError field has the error
 131//
 132// Description:
 133//
 134// Attempts to reset the board (see also i2hw.h). Normally, we would use this to
 135// reset a board immediately after iiSetAddress(), but it is valid to reset a
 136// board from any state, say, in order to change or re-load loadware. (Under
 137// such circumstances, no reason to re-run iiSetAddress(), which is why it is a
 138// separate routine and not included in this routine.
 139//
 140//******************************************************************************
 141static int
 142iiReset(i2eBordStrPtr pB)
 143{
 144	// Magic number should be set, else even the address is suspect
 145	if (pB->i2eValid != I2E_MAGIC)
 146	{
 147		I2_COMPLETE(pB, I2EE_BADMAGIC);
 148	}
 149
 150	outb(0, pB->i2eBase + FIFO_RESET);  /* Any data will do */
 151	iiDelay(pB, 50);                    // Pause between resets
 152	outb(0, pB->i2eBase + FIFO_RESET);  /* Second reset */
 153
 154	// We must wait before even attempting to read anything from the FIFO: the
 155	// board's P.O.S.T may actually attempt to read and write its end of the
 156	// FIFO in order to check flags, loop back (where supported), etc. On
 157	// completion of this testing it would reset the FIFO, and on completion
 158	// of all // P.O.S.T., write the message. We must not mistake data which
 159	// might have been sent for testing as part of the reset message. To
 160	// better utilize time, say, when resetting several boards, we allow the
 161	// delay to be performed externally; in this way the caller can reset 
 162	// several boards, delay a single time, then call the initialization
 163	// routine for all.
 164
 165	pB->i2eState = II_STATE_RESET;
 166
 167	iiDelayed = 0;	// i.e., the delay routine hasn't been called since the most
 168					// recent reset.
 169
 170	// Ensure anything which would have been of use to standard loadware is
 171	// blanked out, since board has now forgotten everything!.
 172
 173	pB->i2eUsingIrq = I2_IRQ_UNDEFINED; /* to not use an interrupt so far */
 174	pB->i2eWaitingForEmptyFifo = 0;
 175	pB->i2eOutMailWaiting = 0;
 176	pB->i2eChannelPtr = NULL;
 177	pB->i2eChannelCnt = 0;
 178
 179	pB->i2eLeadoffWord[0] = 0;
 180	pB->i2eFifoInInts = 0;
 181	pB->i2eFifoOutInts = 0;
 182	pB->i2eFatalTrap = NULL;
 183	pB->i2eFatal = 0;
 184
 185	I2_COMPLETE(pB, I2EE_GOOD);
 186}
 187
 188//******************************************************************************
 189// Function:   iiResetDelay(pB)
 190// Parameters: pB - pointer to the board structure
 191//
 192// Returns:    True if everything appears copacetic.
 193//             False if there is any error: the pB->i2eError field has the error
 194//
 195// Description:
 196//
 197// Using the delay defined in board structure, waits two seconds (for board to
 198// reset).
 199//
 200//******************************************************************************
 201static int
 202iiResetDelay(i2eBordStrPtr pB)
 203{
 204	if (pB->i2eValid != I2E_MAGIC) {
 205		I2_COMPLETE(pB, I2EE_BADMAGIC);
 206	}
 207	if (pB->i2eState != II_STATE_RESET) {
 208		I2_COMPLETE(pB, I2EE_BADSTATE);
 209	}
 210	iiDelay(pB,2000);       /* Now we wait for two seconds. */
 211	iiDelayed = 1;          /* Delay has been called: ok to initialize */
 212	I2_COMPLETE(pB, I2EE_GOOD);
 213}
 214
 215//******************************************************************************
 216// Function:   iiInitialize(pB)
 217// Parameters: pB - pointer to the board structure
 218//
 219// Returns:    True if everything appears copacetic.
 220//             False if there is any error: the pB->i2eError field has the error
 221//
 222// Description:
 223//
 224// Attempts to read the Power-on reset message. Initializes any remaining fields
 225// in the pB structure.
 226//
 227// This should be called as the third step of a process beginning with
 228// iiReset(), then iiResetDelay(). This routine checks to see that the structure
 229// is "valid" and in the reset state, also confirms that the delay routine has
 230// been called since the latest reset (to any board! overly strong!).
 231//
 232//******************************************************************************
 233static int
 234iiInitialize(i2eBordStrPtr pB)
 235{
 236	int itemp;
 237	unsigned char c;
 238	unsigned short utemp;
 239	unsigned int ilimit;
 240
 241	if (pB->i2eValid != I2E_MAGIC)
 242	{
 243		I2_COMPLETE(pB, I2EE_BADMAGIC);
 244	}
 245
 246	if (pB->i2eState != II_STATE_RESET || !iiDelayed)
 247	{
 248		I2_COMPLETE(pB, I2EE_BADSTATE);
 249	}
 250
 251	// In case there is a failure short of our completely reading the power-up
 252	// message.
 253	pB->i2eValid = I2E_INCOMPLETE;
 254
 255
 256	// Now attempt to read the message.
 257
 258	for (itemp = 0; itemp < sizeof(porStr); itemp++)
 259	{
 260		// We expect the entire message is ready.
 261		if (!I2_HAS_INPUT(pB)) {
 262			pB->i2ePomSize = itemp;
 263			I2_COMPLETE(pB, I2EE_PORM_SHORT);
 264		}
 265
 266		pB->i2ePom.c[itemp] = c = inb(pB->i2eData);
 267
 268		// We check the magic numbers as soon as they are supposed to be read
 269		// (rather than after) to minimize effect of reading something we
 270		// already suspect can't be "us".
 271		if (  (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
 272				(itemp == POR_2_INDEX && c != POR_MAGIC_2))
 273		{
 274			pB->i2ePomSize = itemp+1;
 275			I2_COMPLETE(pB, I2EE_BADMAGIC);
 276		}
 277	}
 278
 279	pB->i2ePomSize = itemp;
 280
 281	// Ensure that this was all the data...
 282	if (I2_HAS_INPUT(pB))
 283		I2_COMPLETE(pB, I2EE_PORM_LONG);
 284
 285	// For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
 286	// Implying we will not be able to download any code either:  That's ok: the
 287	// condition is pretty explicit.
 288	if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
 289	{
 290		I2_COMPLETE(pB, I2EE_POSTERR);
 291	}
 292
 293	// Determine anything which must be done differently depending on the family
 294	// of boards!
 295	switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
 296	{
 297	case POR_ID_FII:  // IntelliPort-II
 298
 299		pB->i2eFifoStyle   = FIFO_II;
 300		pB->i2eFifoSize    = 512;     // 512 bytes, always
 301		pB->i2eDataWidth16 = false;
 302
 303		pB->i2eMaxIrq = 15;	// Because board cannot tell us it is in an 8-bit
 304							// slot, we do allow it to be done (documentation!)
 305
 306		pB->i2eGoodMap[1] =
 307		pB->i2eGoodMap[2] =
 308		pB->i2eGoodMap[3] =
 309		pB->i2eChannelMap[1] =
 310		pB->i2eChannelMap[2] =
 311		pB->i2eChannelMap[3] = 0;
 312
 313		switch (pB->i2ePom.e.porID & POR_ID_SIZE)
 314		{
 315		case POR_ID_II_4:
 316			pB->i2eGoodMap[0] =
 317			pB->i2eChannelMap[0] = 0x0f;  // four-port
 318
 319			// Since porPorts1 is based on the Hardware ID register, the numbers
 320			// should always be consistent for IntelliPort-II.  Ditto below...
 321			if (pB->i2ePom.e.porPorts1 != 4)
 322			{
 323				I2_COMPLETE(pB, I2EE_INCONSIST);
 324			}
 325			break;
 326
 327		case POR_ID_II_8:
 328		case POR_ID_II_8R:
 329			pB->i2eGoodMap[0] =
 330			pB->i2eChannelMap[0] = 0xff;  // Eight port
 331			if (pB->i2ePom.e.porPorts1 != 8)
 332			{
 333				I2_COMPLETE(pB, I2EE_INCONSIST);
 334			}
 335			break;
 336
 337		case POR_ID_II_6:
 338			pB->i2eGoodMap[0] =
 339			pB->i2eChannelMap[0] = 0x3f;  // Six Port
 340			if (pB->i2ePom.e.porPorts1 != 6)
 341			{
 342				I2_COMPLETE(pB, I2EE_INCONSIST);
 343			}
 344			break;
 345		}
 346
 347		// Fix up the "good channel list based on any errors reported.
 348		if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
 349		{
 350			pB->i2eGoodMap[0] &= ~0x0f;
 351		}
 352
 353		if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
 354		{
 355			pB->i2eGoodMap[0] &= ~0xf0;
 356		}
 357
 358		break;   // POR_ID_FII case
 359
 360	case POR_ID_FIIEX:   // IntelliPort-IIEX
 361
 362		pB->i2eFifoStyle = FIFO_IIEX;
 363
 364		itemp = pB->i2ePom.e.porFifoSize;
 365
 366		// Implicit assumption that fifo would not grow beyond 32k, 
 367		// nor would ever be less than 256.
 368
 369		if (itemp < 8 || itemp > 15)
 370		{
 371			I2_COMPLETE(pB, I2EE_INCONSIST);
 372		}
 373		pB->i2eFifoSize = (1 << itemp);
 374
 375		// These are based on what P.O.S.T thinks should be there, based on
 376		// box ID registers
 377		ilimit = pB->i2ePom.e.porNumBoxes;
 378		if (ilimit > ABS_MAX_BOXES)
 379		{
 380			ilimit = ABS_MAX_BOXES;
 381		}
 382
 383		// For as many boxes as EXIST, gives the type of box.
 384		// Added 8/6/93: check for the ISA-4 (asic) which looks like an
 385		// expandable but for whom "8 or 16?" is not the right question.
 386
 387		utemp = pB->i2ePom.e.porFlags;
 388		if (utemp & POR_CEX4)
 389		{
 390			pB->i2eChannelMap[0] = 0x000f;
 391		} else {
 392			utemp &= POR_BOXES;
 393			for (itemp = 0; itemp < ilimit; itemp++)
 394			{
 395				pB->i2eChannelMap[itemp] = 
 396					((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
 397				utemp >>= 1;
 398			}
 399		}
 400
 401		// These are based on what P.O.S.T actually found.
 402
 403		utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
 404
 405		for (itemp = 0; itemp < ilimit; itemp++)
 406		{
 407			pB->i2eGoodMap[itemp] = 0;
 408			if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
 409			if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
 410			if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
 411			if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
 412			utemp >>= 4;
 413		}
 414
 415		// Now determine whether we should transfer in 8 or 16-bit mode.
 416		switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
 417		{
 418		case POR_BUS_SLOT16 | POR_BUS_DIP16:
 419			pB->i2eDataWidth16 = true;
 420			pB->i2eMaxIrq = 15;
 421			break;
 422
 423		case POR_BUS_SLOT16:
 424			pB->i2eDataWidth16 = false;
 425			pB->i2eMaxIrq = 15;
 426			break;
 427
 428		case 0:
 429		case POR_BUS_DIP16:     // In an 8-bit slot, DIP switch don't care.
 430		default:
 431			pB->i2eDataWidth16 = false;
 432			pB->i2eMaxIrq = 7;
 433			break;
 434		}
 435		break;   // POR_ID_FIIEX case
 436
 437	default:    // Unknown type of board
 438		I2_COMPLETE(pB, I2EE_BAD_FAMILY);
 439		break;
 440	}  // End the switch based on family
 441
 442	// Temporarily, claim there is no room in the outbound fifo. 
 443	// We will maintain this whenever we check for an empty outbound FIFO.
 444	pB->i2eFifoRemains = 0;
 445
 446	// Now, based on the bus type, should we expect to be able to re-configure
 447	// interrupts (say, for testing purposes).
 448	switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
 449	{
 450	case POR_BUS_T_ISA:
 451	case POR_BUS_T_UNK:  // If the type of bus is undeclared, assume ok.
 452	case POR_BUS_T_MCA:
 453	case POR_BUS_T_EISA:
 454		break;
 455	default:
 456		I2_COMPLETE(pB, I2EE_BADBUS);
 457	}
 458
 459	if (pB->i2eDataWidth16)
 460	{
 461		pB->i2eWriteBuf  = iiWriteBuf16;
 462		pB->i2eReadBuf   = iiReadBuf16;
 463		pB->i2eWriteWord = iiWriteWord16;
 464		pB->i2eReadWord  = iiReadWord16;
 465	} else {
 466		pB->i2eWriteBuf  = iiWriteBuf8;
 467		pB->i2eReadBuf   = iiReadBuf8;
 468		pB->i2eWriteWord = iiWriteWord8;
 469		pB->i2eReadWord  = iiReadWord8;
 470	}
 471
 472	switch(pB->i2eFifoStyle)
 473	{
 474	case FIFO_II:
 475		pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
 476		pB->i2eTxMailEmpty    = iiTxMailEmptyII;
 477		pB->i2eTrySendMail    = iiTrySendMailII;
 478		pB->i2eGetMail        = iiGetMailII;
 479		pB->i2eEnableMailIrq  = iiEnableMailIrqII;
 480		pB->i2eWriteMask      = iiWriteMaskII;
 481
 482		break;
 483
 484	case FIFO_IIEX:
 485		pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
 486		pB->i2eTxMailEmpty    = iiTxMailEmptyIIEX;
 487		pB->i2eTrySendMail    = iiTrySendMailIIEX;
 488		pB->i2eGetMail        = iiGetMailIIEX;
 489		pB->i2eEnableMailIrq  = iiEnableMailIrqIIEX;
 490		pB->i2eWriteMask      = iiWriteMaskIIEX;
 491
 492		break;
 493
 494	default:
 495		I2_COMPLETE(pB, I2EE_INCONSIST);
 496	}
 497
 498	// Initialize state information.
 499	pB->i2eState = II_STATE_READY;   // Ready to load loadware.
 500
 501	// Some Final cleanup:
 502	// For some boards, the bootstrap firmware may perform some sort of test
 503	// resulting in a stray character pending in the incoming mailbox. If one is
 504	// there, it should be read and discarded, especially since for the standard
 505	// firmware, it's the mailbox that interrupts the host.
 506
 507	pB->i2eStartMail = iiGetMail(pB);
 508
 509	// Throw it away and clear the mailbox structure element
 510	pB->i2eStartMail = NO_MAIL_HERE;
 511
 512	// Everything is ok now, return with good status/
 513
 514	pB->i2eValid = I2E_MAGIC;
 515	I2_COMPLETE(pB, I2EE_GOOD);
 516}
 517
 518//******************************************************************************
 519// Function:   ii2DelayTimer(mseconds)
 520// Parameters: mseconds - number of milliseconds to delay
 521//
 522// Returns:    Nothing
 523//
 524// Description:
 525//
 526// This routine delays for approximately mseconds milliseconds and is intended
 527// to be called indirectly through i2Delay field in i2eBordStr. It uses the
 528// Linux timer_list mechanism.
 529//
 530// The Linux timers use a unit called "jiffies" which are 10mS in the Intel
 531// architecture. This function rounds the delay period up to the next "jiffy".
 532// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
 533// for Alpha platforms at this time.
 534//
 535//******************************************************************************
 536static void
 537ii2DelayTimer(unsigned int mseconds)
 538{
 539	msleep_interruptible(mseconds);
 540}
 541
 542#if 0
 543//static void ii2DelayIO(unsigned int);
 544//******************************************************************************
 545// !!! Not Used, this is DOS crap, some of you young folks may be interested in
 546//     in how things were done in the stone age of caculating machines       !!!
 547// Function:   ii2DelayIO(mseconds)
 548// Parameters: mseconds - number of milliseconds to delay
 549//
 550// Returns:    Nothing
 551//
 552// Description:
 553//
 554// This routine delays for approximately mseconds milliseconds and is intended
 555// to be called indirectly through i2Delay field in i2eBordStr. It is intended
 556// for use where a clock-based function is impossible: for example, DOS drivers.
 557//
 558// This function uses the IN instruction to place bounds on the timing and
 559// assumes that ii2Safe has been set. This is because I/O instructions are not
 560// subject to caching and will therefore take a certain minimum time. To ensure
 561// the delay is at least long enough on fast machines, it is based on some
 562// fastest-case calculations.  On slower machines this may cause VERY long
 563// delays. (3 x fastest case). In the fastest case, everything is cached except
 564// the I/O instruction itself.
 565//
 566// Timing calculations:
 567// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
 568// operation in question is a byte operation to an odd address. For 8-bit
 569// operations, the architecture generally enforces two wait states. At 10 MHz, a
 570// single cycle time is 100nS. A read operation at two wait states takes 6
 571// cycles for a total time of 600nS. Therefore approximately 1666 iterations
 572// would be required to generate a single millisecond delay. The worst
 573// (reasonable) case would be an 8MHz system with no cacheing. In this case, the
 574// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
 575// fetch of other instructions in the loop would take time (zero wait states,
 576// however) and would be hard to estimate. This is minimized by using in-line
 577// assembler for the in inner loop of IN instructions. This consists of just a
 578// few bytes. So we'll guess about four code fetches per loop. Each code fetch
 579// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
 580// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
 581//
 582// So much for theoretical timings: results using 1666 value on some actual
 583// machines:
 584// IBM      286      6MHz     3.15 mS
 585// Zenith   386      33MHz    2.45 mS
 586// (brandX) 386      33MHz    1.90 mS  (has cache)
 587// (brandY) 486      33MHz    2.35 mS
 588// NCR      486      ??       1.65 mS (microchannel)
 589//
 590// For most machines, it is probably safe to scale this number back (remember,
 591// for robust operation use an actual timed delay if possible), so we are using
 592// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
 593// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
 594//
 595// 1/29/93:
 596// The above timings are too slow. Actual cycle times might be faster. ISA cycle
 597// times could approach 500 nS, and ...
 598// The IBM model 77 being microchannel has no wait states for 8-bit reads and
 599// seems to be accessing the I/O at 440 nS per access (from start of one to
 600// start of next). This would imply we need 1000/.440 = 2272 iterations to
 601// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
 602// fact enough. For diagnostics, we keep the level at 1190, but developers note
 603// this needs tuning.
 604//
 605// Safe assumption:  2270 i/o reads = 1 millisecond
 606//
 607//******************************************************************************
 608
 609
 610static int ii2DelValue = 1190;  // See timing calculations below
 611						// 1666 for fastest theoretical machine
 612						// 1190 safe for most fast 386 machines
 613						// 1000 for fastest machine tested here
 614						//  540 (sic) for AT286/6Mhz
 615static void
 616ii2DelayIO(unsigned int mseconds)
 617{
 618	if (!ii2Safe) 
 619		return;   /* Do nothing if this variable uninitialized */
 620
 621	while(mseconds--) {
 622		int i = ii2DelValue;
 623		while ( i-- ) {
 624			inb(ii2Safe);
 625		}
 626	}
 627}
 628#endif 
 629
 630//******************************************************************************
 631// Function:   ii2Nop()
 632// Parameters: None
 633//
 634// Returns:    Nothing
 635//
 636// Description:
 637//
 638// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
 639// saves checking for a NULL pointer at every call.
 640//******************************************************************************
 641static void
 642ii2Nop(void)
 643{
 644	return;	// no mystery here
 645}
 646
 647//=======================================================
 648// Routines which are available in 8/16-bit versions, or
 649// in different fifo styles. These are ALL called
 650// indirectly through the board structure.
 651//=======================================================
 652
 653//******************************************************************************
 654// Function:   iiWriteBuf16(pB, address, count)
 655// Parameters: pB      - pointer to board structure
 656//             address - address of data to write
 657//             count   - number of data bytes to write
 658//
 659// Returns:    True if everything appears copacetic.
 660//             False if there is any error: the pB->i2eError field has the error
 661//
 662// Description:
 663//
 664// Writes 'count' bytes from 'address' to the data fifo specified by the board
 665// structure pointer pB. Should count happen to be odd, an extra pad byte is
 666// sent (identity unknown...). Uses 16-bit (word) operations. Is called
 667// indirectly through pB->i2eWriteBuf.
 668//
 669//******************************************************************************
 670static int
 671iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
 672{
 673	// Rudimentary sanity checking here.
 674	if (pB->i2eValid != I2E_MAGIC)
 675		I2_COMPLETE(pB, I2EE_INVALID);
 676
 677	I2_OUTSW(pB->i2eData, address, count);
 678
 679	I2_COMPLETE(pB, I2EE_GOOD);
 680}
 681
 682//******************************************************************************
 683// Function:   iiWriteBuf8(pB, address, count)
 684// Parameters: pB      - pointer to board structure
 685//             address - address of data to write
 686//             count   - number of data bytes to write
 687//
 688// Returns:    True if everything appears copacetic.
 689//             False if there is any error: the pB->i2eError field has the error
 690//
 691// Description:
 692//
 693// Writes 'count' bytes from 'address' to the data fifo specified by the board
 694// structure pointer pB. Should count happen to be odd, an extra pad byte is
 695// sent (identity unknown...). This is to be consistent with the 16-bit version.
 696// Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
 697//
 698//******************************************************************************
 699static int
 700iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
 701{
 702	/* Rudimentary sanity checking here */
 703	if (pB->i2eValid != I2E_MAGIC)
 704		I2_COMPLETE(pB, I2EE_INVALID);
 705
 706	I2_OUTSB(pB->i2eData, address, count);
 707
 708	I2_COMPLETE(pB, I2EE_GOOD);
 709}
 710
 711//******************************************************************************
 712// Function:   iiReadBuf16(pB, address, count)
 713// Parameters: pB      - pointer to board structure
 714//             address - address to put data read
 715//             count   - number of data bytes to read
 716//
 717// Returns:    True if everything appears copacetic.
 718//             False if there is any error: the pB->i2eError field has the error
 719//
 720// Description:
 721//
 722// Reads 'count' bytes into 'address' from the data fifo specified by the board
 723// structure pointer pB. Should count happen to be odd, an extra pad byte is
 724// received (identity unknown...). Uses 16-bit (word) operations. Is called
 725// indirectly through pB->i2eReadBuf.
 726//
 727//******************************************************************************
 728static int
 729iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
 730{
 731	// Rudimentary sanity checking here.
 732	if (pB->i2eValid != I2E_MAGIC)
 733		I2_COMPLETE(pB, I2EE_INVALID);
 734
 735	I2_INSW(pB->i2eData, address, count);
 736
 737	I2_COMPLETE(pB, I2EE_GOOD);
 738}
 739
 740//******************************************************************************
 741// Function:   iiReadBuf8(pB, address, count)
 742// Parameters: pB      - pointer to board structure
 743//             address - address to put data read
 744//             count   - number of data bytes to read
 745//
 746// Returns:    True if everything appears copacetic.
 747//             False if there is any error: the pB->i2eError field has the error
 748//
 749// Description:
 750//
 751// Reads 'count' bytes into 'address' from the data fifo specified by the board
 752// structure pointer pB. Should count happen to be odd, an extra pad byte is
 753// received (identity unknown...). This to match the 16-bit behaviour. Uses
 754// 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
 755//
 756//******************************************************************************
 757static int
 758iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
 759{
 760	// Rudimentary sanity checking here.
 761	if (pB->i2eValid != I2E_MAGIC)
 762		I2_COMPLETE(pB, I2EE_INVALID);
 763
 764	I2_INSB(pB->i2eData, address, count);
 765
 766	I2_COMPLETE(pB, I2EE_GOOD);
 767}
 768
 769//******************************************************************************
 770// Function:   iiReadWord16(pB)
 771// Parameters: pB      - pointer to board structure
 772//
 773// Returns:    True if everything appears copacetic.
 774//             False if there is any error: the pB->i2eError field has the error
 775//
 776// Description:
 777//
 778// Returns the word read from the data fifo specified by the board-structure
 779// pointer pB. Uses a 16-bit operation. Is called indirectly through
 780// pB->i2eReadWord.
 781//
 782//******************************************************************************
 783static unsigned short
 784iiReadWord16(i2eBordStrPtr pB)
 785{
 786	return inw(pB->i2eData);
 787}
 788
 789//******************************************************************************
 790// Function:   iiReadWord8(pB)
 791// Parameters: pB      - pointer to board structure
 792//
 793// Returns:    True if everything appears copacetic.
 794//             False if there is any error: the pB->i2eError field has the error
 795//
 796// Description:
 797//
 798// Returns the word read from the data fifo specified by the board-structure
 799// pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
 800// called indirectly through pB->i2eReadWord.
 801//
 802//******************************************************************************
 803static unsigned short
 804iiReadWord8(i2eBordStrPtr pB)
 805{
 806	unsigned short urs;
 807
 808	urs = inb(pB->i2eData);
 809
 810	return (inb(pB->i2eData) << 8) | urs;
 811}
 812
 813//******************************************************************************
 814// Function:   iiWriteWord16(pB, value)
 815// Parameters: pB    - pointer to board structure
 816//             value - data to write
 817//
 818// Returns:    True if everything appears copacetic.
 819//             False if there is any error: the pB->i2eError field has the error
 820//
 821// Description:
 822//
 823// Writes the word 'value' to the data fifo specified by the board-structure
 824// pointer pB. Uses 16-bit operation. Is called indirectly through
 825// pB->i2eWriteWord.
 826//
 827//******************************************************************************
 828static void
 829iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
 830{
 831	outw((int)value, pB->i2eData);
 832}
 833
 834//******************************************************************************
 835// Function:   iiWriteWord8(pB, value)
 836// Parameters: pB    - pointer to board structure
 837//             value - data to write
 838//
 839// Returns:    True if everything appears copacetic.
 840//             False if there is any error: the pB->i2eError field has the error
 841//
 842// Description:
 843//
 844// Writes the word 'value' to the data fifo specified by the board-structure
 845// pointer pB. Uses two 8-bit operations (writes LSB first). Is called
 846// indirectly through pB->i2eWriteWord.
 847//
 848//******************************************************************************
 849static void
 850iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
 851{
 852	outb((char)value, pB->i2eData);
 853	outb((char)(value >> 8), pB->i2eData);
 854}
 855
 856//******************************************************************************
 857// Function:   iiWaitForTxEmptyII(pB, mSdelay)
 858// Parameters: pB      - pointer to board structure
 859//             mSdelay - period to wait before returning
 860//
 861// Returns:    True if the FIFO is empty.
 862//             False if it not empty in the required time: the pB->i2eError
 863//             field has the error.
 864//
 865// Description:
 866//
 867// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
 868// not empty by the required time, returns false and error in pB->i2eError,
 869// otherwise returns true.
 870//
 871// mSdelay == 0 is taken to mean must be empty on the first test.
 872//
 873// This version operates on IntelliPort-II - style FIFO's
 874//
 875// Note this routine is organized so that if status is ok there is no delay at
 876// all called either before or after the test.  Is called indirectly through
 877// pB->i2eWaitForTxEmpty.
 878//
 879//******************************************************************************
 880static int
 881iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
 882{
 883	unsigned long	flags;
 884	int itemp;
 885
 886	for (;;)
 887	{
 888		// This routine hinges on being able to see the "other" status register
 889		// (as seen by the local processor).  His incoming fifo is our outgoing
 890		// FIFO.
 891		//
 892		// By the nature of this routine, you would be using this as part of a
 893		// larger atomic context: i.e., you would use this routine to ensure the
 894		// fifo empty, then act on this information. Between these two halves, 
 895		// you will generally not want to service interrupts or in any way 
 896		// disrupt the assumptions implicit in the larger context.
 897		//
 898		// Even worse, however, this routine "shifts" the status register to 
 899		// point to the local status register which is not the usual situation.
 900		// Therefore for extra safety, we force the critical section to be
 901		// completely atomic, and pick up after ourselves before allowing any
 902		// interrupts of any kind.
 903
 904
 905		write_lock_irqsave(&Dl_spinlock, flags);
 906		outb(SEL_COMMAND, pB->i2ePointer);
 907		outb(SEL_CMD_SH, pB->i2ePointer);
 908
 909		itemp = inb(pB->i2eStatus);
 910
 911		outb(SEL_COMMAND, pB->i2ePointer);
 912		outb(SEL_CMD_UNSH, pB->i2ePointer);
 913
 914		if (itemp & ST_IN_EMPTY)
 915		{
 916			I2_UPDATE_FIFO_ROOM(pB);
 917			write_unlock_irqrestore(&Dl_spinlock, flags);
 918			I2_COMPLETE(pB, I2EE_GOOD);
 919		}
 920
 921		write_unlock_irqrestore(&Dl_spinlock, flags);
 922
 923		if (mSdelay-- == 0)
 924			break;
 925
 926		iiDelay(pB, 1);      /* 1 mS granularity on checking condition */
 927	}
 928	I2_COMPLETE(pB, I2EE_TXE_TIME);
 929}
 930
 931//******************************************************************************
 932// Function:   iiWaitForTxEmptyIIEX(pB, mSdelay)
 933// Parameters: pB      - pointer to board structure
 934//             mSdelay - period to wait before returning
 935//
 936// Returns:    True if the FIFO is empty.
 937//             False if it not empty in the required time: the pB->i2eError
 938//             field has the error.
 939//
 940// Description:
 941//
 942// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
 943// not empty by the required time, returns false and error in pB->i2eError,
 944// otherwise returns true.
 945//
 946// mSdelay == 0 is taken to mean must be empty on the first test.
 947//
 948// This version operates on IntelliPort-IIEX - style FIFO's
 949//
 950// Note this routine is organized so that if status is ok there is no delay at
 951// all called either before or after the test.  Is called indirectly through
 952// pB->i2eWaitForTxEmpty.
 953//
 954//******************************************************************************
 955static int
 956iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
 957{
 958	unsigned long	flags;
 959
 960	for (;;)
 961	{
 962		// By the nature of this routine, you would be using this as part of a
 963		// larger atomic context: i.e., you would use this routine to ensure the
 964		// fifo empty, then act on this information. Between these two halves,
 965		// you will generally not want to service interrupts or in any way
 966		// disrupt the assumptions implicit in the larger context.
 967
 968		write_lock_irqsave(&Dl_spinlock, flags);
 969
 970		if (inb(pB->i2eStatus) & STE_OUT_MT) {
 971			I2_UPDATE_FIFO_ROOM(pB);
 972			write_unlock_irqrestore(&Dl_spinlock, flags);
 973			I2_COMPLETE(pB, I2EE_GOOD);
 974		}
 975		write_unlock_irqrestore(&Dl_spinlock, flags);
 976
 977		if (mSdelay-- == 0)
 978			break;
 979
 980		iiDelay(pB, 1);      // 1 mS granularity on checking condition
 981	}
 982	I2_COMPLETE(pB, I2EE_TXE_TIME);
 983}
 984
 985//******************************************************************************
 986// Function:   iiTxMailEmptyII(pB)
 987// Parameters: pB      - pointer to board structure
 988//
 989// Returns:    True if the transmit mailbox is empty.
 990//             False if it not empty.
 991//
 992// Description:
 993//
 994// Returns true or false according to whether the transmit mailbox is empty (and
 995// therefore able to accept more mail)
 996//
 997// This version operates on IntelliPort-II - style FIFO's
 998//
 999//******************************************************************************
1000static int
1001iiTxMailEmptyII(i2eBordStrPtr pB)
1002{
1003	int port = pB->i2ePointer;
1004	outb(SEL_OUTMAIL, port);
1005	return inb(port) == 0;
1006}
1007
1008//******************************************************************************
1009// Function:   iiTxMailEmptyIIEX(pB)
1010// Parameters: pB      - pointer to board structure
1011//
1012// Returns:    True if the transmit mailbox is empty.
1013//             False if it not empty.
1014//
1015// Description:
1016//
1017// Returns true or false according to whether the transmit mailbox is empty (and
1018// therefore able to accept more mail)
1019//
1020// This version operates on IntelliPort-IIEX - style FIFO's
1021//
1022//******************************************************************************
1023static int
1024iiTxMailEmptyIIEX(i2eBordStrPtr pB)
1025{
1026	return !(inb(pB->i2eStatus) & STE_OUT_MAIL);
1027}
1028
1029//******************************************************************************
1030// Function:   iiTrySendMailII(pB,mail)
1031// Parameters: pB   - pointer to board structure
1032//             mail - value to write to mailbox
1033//
1034// Returns:    True if the transmit mailbox is empty, and mail is sent.
1035//             False if it not empty.
1036//
1037// Description:
1038//
1039// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1040// mailbox is not empty, returns false.
1041//
1042// This version operates on IntelliPort-II - style FIFO's
1043//
1044//******************************************************************************
1045static int
1046iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
1047{
1048	int port = pB->i2ePointer;
1049
1050	outb(SEL_OUTMAIL, port);
1051	if (inb(port) == 0) {
1052		outb(SEL_OUTMAIL, port);
1053		outb(mail, port);
1054		return 1;
1055	}
1056	return 0;
1057}
1058
1059//******************************************************************************
1060// Function:   iiTrySendMailIIEX(pB,mail)
1061// Parameters: pB   - pointer to board structure
1062//             mail - value to write to mailbox
1063//
1064// Returns:    True if the transmit mailbox is empty, and mail is sent.
1065//             False if it not empty.
1066//
1067// Description:
1068//
1069// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1070// mailbox is not empty, returns false.
1071//
1072// This version operates on IntelliPort-IIEX - style FIFO's
1073//
1074//******************************************************************************
1075static int
1076iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
1077{
1078	if (inb(pB->i2eStatus) & STE_OUT_MAIL)
1079		return 0;
1080	outb(mail, pB->i2eXMail);
1081	return 1;
1082}
1083
1084//******************************************************************************
1085// Function:   iiGetMailII(pB,mail)
1086// Parameters: pB   - pointer to board structure
1087//
1088// Returns:    Mailbox data or NO_MAIL_HERE.
1089//
1090// Description:
1091//
1092// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1093// the mailbox, which is guaranteed != NO_MAIL_HERE.
1094//
1095// This version operates on IntelliPort-II - style FIFO's
1096//
1097//******************************************************************************
1098static unsigned short
1099iiGetMailII(i2eBordStrPtr pB)
1100{
1101	if (I2_HAS_MAIL(pB)) {
1102		outb(SEL_INMAIL, pB->i2ePointer);
1103		return inb(pB->i2ePointer);
1104	} else {
1105		return NO_MAIL_HERE;
1106	}
1107}
1108
1109//******************************************************************************
1110// Function:   iiGetMailIIEX(pB,mail)
1111// Parameters: pB   - pointer to board structure
1112//
1113// Returns:    Mailbox data or NO_MAIL_HERE.
1114//
1115// Description:
1116//
1117// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1118// the mailbox, which is guaranteed != NO_MAIL_HERE.
1119//
1120// This version operates on IntelliPort-IIEX - style FIFO's
1121//
1122//******************************************************************************
1123static unsigned short
1124iiGetMailIIEX(i2eBordStrPtr pB)
1125{
1126	if (I2_HAS_MAIL(pB))
1127		return inb(pB->i2eXMail);
1128	else
1129		return NO_MAIL_HERE;
1130}
1131
1132//******************************************************************************
1133// Function:   iiEnableMailIrqII(pB)
1134// Parameters: pB - pointer to board structure
1135//
1136// Returns:    Nothing
1137//
1138// Description:
1139//
1140// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1141//
1142// This version operates on IntelliPort-II - style FIFO's
1143//
1144//******************************************************************************
1145static void
1146iiEnableMailIrqII(i2eBordStrPtr pB)
1147{
1148	outb(SEL_MASK, pB->i2ePointer);
1149	outb(ST_IN_MAIL, pB->i2ePointer);
1150}
1151
1152//******************************************************************************
1153// Function:   iiEnableMailIrqIIEX(pB)
1154// Parameters: pB - pointer to board structure
1155//
1156// Returns:    Nothing
1157//
1158// Description:
1159//
1160// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1161//
1162// This version operates on IntelliPort-IIEX - style FIFO's
1163//
1164//******************************************************************************
1165static void
1166iiEnableMailIrqIIEX(i2eBordStrPtr pB)
1167{
1168	outb(MX_IN_MAIL, pB->i2eXMask);
1169}
1170
1171//******************************************************************************
1172// Function:   iiWriteMaskII(pB)
1173// Parameters: pB - pointer to board structure
1174//
1175// Returns:    Nothing
1176//
1177// Description:
1178//
1179// Writes arbitrary value to the mask register.
1180//
1181// This version operates on IntelliPort-II - style FIFO's
1182//
1183//******************************************************************************
1184static void
1185iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
1186{
1187	outb(SEL_MASK, pB->i2ePointer);
1188	outb(value, pB->i2ePointer);
1189}
1190
1191//******************************************************************************
1192// Function:   iiWriteMaskIIEX(pB)
1193// Parameters: pB - pointer to board structure
1194//
1195// Returns:    Nothing
1196//
1197// Description:
1198//
1199// Writes arbitrary value to the mask register.
1200//
1201// This version operates on IntelliPort-IIEX - style FIFO's
1202//
1203//******************************************************************************
1204static void
1205iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
1206{
1207	outb(value, pB->i2eXMask);
1208}
1209
1210//******************************************************************************
1211// Function:   iiDownloadBlock(pB, pSource, isStandard)
1212// Parameters: pB         - pointer to board structure
1213//             pSource    - loadware block to download
1214//             isStandard - True if "standard" loadware, else false.
1215//
1216// Returns:    Success or Failure
1217//
1218// Description:
1219//
1220// Downloads a single block (at pSource)to the board referenced by pB. Caller
1221// sets isStandard to true/false according to whether the "standard" loadware is
1222// what's being loaded. The normal process, then, is to perform an iiInitialize
1223// to the board, then perform some number of iiDownloadBlocks using the returned
1224// state to determine when download is complete.
1225//
1226// Possible return values: (see I2ELLIS.H)
1227// II_DOWN_BADVALID
1228// II_DOWN_BADFILE
1229// II_DOWN_CONTINUING
1230// II_DOWN_GOOD
1231// II_DOWN_BAD
1232// II_DOWN_BADSTATE
1233// II_DOWN_TIMEOUT
1234//
1235// Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
1236// determine whether this is the first block, whether to check for magic
1237// numbers, how many blocks there are to go...
1238//
1239//******************************************************************************
1240static int
1241iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
1242{
1243	int itemp;
1244	int loadedFirst;
1245
1246	if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
1247
1248	switch(pB->i2eState)
1249	{
1250	case II_STATE_READY:
1251
1252		// Loading the first block after reset. Must check the magic number of the
1253		// loadfile, store the number of blocks we expect to load.
1254		if (pSource->e.loadMagic != MAGIC_LOADFILE)
1255		{
1256			return II_DOWN_BADFILE;
1257		}
1258
1259		// Next we store the total number of blocks to load, including this one.
1260		pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
1261
1262		// Set the state, store the version numbers. ('Cause this may have come
1263		// from a file - we might want to report these versions and revisions in
1264		// case of an error!
1265		pB->i2eState = II_STATE_LOADING;
1266		pB->i2eLVersion = pSource->e.loadVersion;
1267		pB->i2eLRevision = pSource->e.loadRevision;
1268		pB->i2eLSub = pSource->e.loadSubRevision;
1269
1270		// The time and date of compilation is also available but don't bother
1271		// storing it for normal purposes.
1272		loadedFirst = 1;
1273		break;
1274
1275	case II_STATE_LOADING:
1276		loadedFirst = 0;
1277		break;
1278
1279	default:
1280		return II_DOWN_BADSTATE;
1281	}
1282
1283	// Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
1284	// must be positive still, because otherwise we would have cleaned up last
1285	// time and set the state to II_STATE_LOADED.
1286	if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1287		return II_DOWN_TIMEOUT;
1288	}
1289
1290	if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
1291		return II_DOWN_BADVALID;
1292	}
1293
1294	// If we just loaded the first block, wait for the fifo to empty an extra
1295	// long time to allow for any special startup code in the firmware, like
1296	// sending status messages to the LCD's.
1297
1298	if (loadedFirst) {
1299		if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
1300			return II_DOWN_TIMEOUT;
1301		}
1302	}
1303
1304	// Determine whether this was our last block!
1305	if (--(pB->i2eToLoad)) {
1306		return II_DOWN_CONTINUING;    // more to come...
1307	}
1308
1309	// It WAS our last block: Clean up operations...
1310	// ...Wait for last buffer to drain from the board...
1311	if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1312		return II_DOWN_TIMEOUT;
1313	}
1314	// If there were only a single block written, this would come back
1315	// immediately and be harmless, though not strictly necessary.
1316	itemp = MAX_DLOAD_ACK_TIME/10;
1317	while (--itemp) {
1318		if (I2_HAS_INPUT(pB)) {
1319			switch (inb(pB->i2eData)) {
1320			case LOADWARE_OK:
1321				pB->i2eState =
1322					isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
1323
1324				// Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
1325				// will, // if there is a debug port attached, require some
1326				// time to send information to the debug port now. It will do
1327				// this before // executing any of the code we just downloaded.
1328				// It may take up to 700 milliseconds.
1329				if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
1330					iiDelay(pB, 700);
1331				}
1332
1333				return II_DOWN_GOOD;
1334
1335			case LOADWARE_BAD:
1336			default:
1337				return II_DOWN_BAD;
1338			}
1339		}
1340
1341		iiDelay(pB, 10);      // 10 mS granularity on checking condition
1342	}
1343
1344	// Drop-through --> timed out waiting for firmware confirmation
1345
1346	pB->i2eState = II_STATE_BADLOAD;
1347	return II_DOWN_TIMEOUT;
1348}
1349
1350//******************************************************************************
1351// Function:   iiDownloadAll(pB, pSource, isStandard, size)
1352// Parameters: pB         - pointer to board structure
1353//             pSource    - loadware block to download
1354//             isStandard - True if "standard" loadware, else false.
1355//             size       - size of data to download (in bytes)
1356//
1357// Returns:    Success or Failure
1358//
1359// Description:
1360//
1361// Given a pointer to a board structure, a pointer to the beginning of some
1362// loadware, whether it is considered the "standard loadware", and the size of
1363// the array in bytes loads the entire array to the board as loadware.
1364//
1365// Assumes the board has been freshly reset and the power-up reset message read.
1366// (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
1367// too much or too little data to load, or if iiDownloadBlock complains.
1368//******************************************************************************
1369static int
1370iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
1371{
1372	int status;
1373
1374	// We know (from context) board should be ready for the first block of
1375	// download.  Complain if not.
1376	if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
1377
1378	while (size > 0) {
1379		size -= LOADWARE_BLOCK_SIZE;	// How much data should there be left to
1380										// load after the following operation ?
1381
1382		// Note we just bump pSource by "one", because its size is actually that
1383		// of an entire block, same as LOADWARE_BLOCK_SIZE.
1384		status = iiDownloadBlock(pB, pSource++, isStandard);
1385
1386		switch(status)
1387		{
1388		case II_DOWN_GOOD:
1389			return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
1390
1391		case II_DOWN_CONTINUING:
1392			break;
1393
1394		default:
1395			return status;
1396		}
1397	}
1398
1399	// We shouldn't drop out: it means "while" caught us with nothing left to
1400	// download, yet the previous DownloadBlock did not return complete. Ergo,
1401	// not enough data to match the size byte in the header.
1402	return II_DOWN_UNDER;
1403}