PageRenderTime 152ms CodeModel.GetById 16ms app.highlight 121ms RepoModel.GetById 2ms app.codeStats 0ms

/drivers/lguest/page_tables.c

https://bitbucket.org/wisechild/galaxy-nexus
C | 1262 lines | 590 code | 127 blank | 545 comment | 95 complexity | dfe11034224ad426e63e739dc9c73b09 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*P:700
   2 * The pagetable code, on the other hand, still shows the scars of
   3 * previous encounters.  It's functional, and as neat as it can be in the
   4 * circumstances, but be wary, for these things are subtle and break easily.
   5 * The Guest provides a virtual to physical mapping, but we can neither trust
   6 * it nor use it: we verify and convert it here then point the CPU to the
   7 * converted Guest pages when running the Guest.
   8:*/
   9
  10/* Copyright (C) Rusty Russell IBM Corporation 2006.
  11 * GPL v2 and any later version */
  12#include <linux/mm.h>
  13#include <linux/gfp.h>
  14#include <linux/types.h>
  15#include <linux/spinlock.h>
  16#include <linux/random.h>
  17#include <linux/percpu.h>
  18#include <asm/tlbflush.h>
  19#include <asm/uaccess.h>
  20#include <asm/bootparam.h>
  21#include "lg.h"
  22
  23/*M:008
  24 * We hold reference to pages, which prevents them from being swapped.
  25 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  26 * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
  27 * could probably consider launching Guests as non-root.
  28:*/
  29
  30/*H:300
  31 * The Page Table Code
  32 *
  33 * We use two-level page tables for the Guest, or three-level with PAE.  If
  34 * you're not entirely comfortable with virtual addresses, physical addresses
  35 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
  36 * Table Handling" (with diagrams!).
  37 *
  38 * The Guest keeps page tables, but we maintain the actual ones here: these are
  39 * called "shadow" page tables.  Which is a very Guest-centric name: these are
  40 * the real page tables the CPU uses, although we keep them up to date to
  41 * reflect the Guest's.  (See what I mean about weird naming?  Since when do
  42 * shadows reflect anything?)
  43 *
  44 * Anyway, this is the most complicated part of the Host code.  There are seven
  45 * parts to this:
  46 *  (i) Looking up a page table entry when the Guest faults,
  47 *  (ii) Making sure the Guest stack is mapped,
  48 *  (iii) Setting up a page table entry when the Guest tells us one has changed,
  49 *  (iv) Switching page tables,
  50 *  (v) Flushing (throwing away) page tables,
  51 *  (vi) Mapping the Switcher when the Guest is about to run,
  52 *  (vii) Setting up the page tables initially.
  53:*/
  54
  55/*
  56 * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
  57 * or 512 PTE entries with PAE (2MB).
  58 */
  59#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  60
  61/*
  62 * For PAE we need the PMD index as well. We use the last 2MB, so we
  63 * will need the last pmd entry of the last pmd page.
  64 */
  65#ifdef CONFIG_X86_PAE
  66#define SWITCHER_PMD_INDEX 	(PTRS_PER_PMD - 1)
  67#define RESERVE_MEM 		2U
  68#define CHECK_GPGD_MASK		_PAGE_PRESENT
  69#else
  70#define RESERVE_MEM 		4U
  71#define CHECK_GPGD_MASK		_PAGE_TABLE
  72#endif
  73
  74/*
  75 * We actually need a separate PTE page for each CPU.  Remember that after the
  76 * Switcher code itself comes two pages for each CPU, and we don't want this
  77 * CPU's guest to see the pages of any other CPU.
  78 */
  79static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  80#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  81
  82/*H:320
  83 * The page table code is curly enough to need helper functions to keep it
  84 * clear and clean.  The kernel itself provides many of them; one advantage
  85 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
  86 *
  87 * There are two functions which return pointers to the shadow (aka "real")
  88 * page tables.
  89 *
  90 * spgd_addr() takes the virtual address and returns a pointer to the top-level
  91 * page directory entry (PGD) for that address.  Since we keep track of several
  92 * page tables, the "i" argument tells us which one we're interested in (it's
  93 * usually the current one).
  94 */
  95static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
  96{
  97	unsigned int index = pgd_index(vaddr);
  98
  99#ifndef CONFIG_X86_PAE
 100	/* We kill any Guest trying to touch the Switcher addresses. */
 101	if (index >= SWITCHER_PGD_INDEX) {
 102		kill_guest(cpu, "attempt to access switcher pages");
 103		index = 0;
 104	}
 105#endif
 106	/* Return a pointer index'th pgd entry for the i'th page table. */
 107	return &cpu->lg->pgdirs[i].pgdir[index];
 108}
 109
 110#ifdef CONFIG_X86_PAE
 111/*
 112 * This routine then takes the PGD entry given above, which contains the
 113 * address of the PMD page.  It then returns a pointer to the PMD entry for the
 114 * given address.
 115 */
 116static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
 117{
 118	unsigned int index = pmd_index(vaddr);
 119	pmd_t *page;
 120
 121	/* We kill any Guest trying to touch the Switcher addresses. */
 122	if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
 123					index >= SWITCHER_PMD_INDEX) {
 124		kill_guest(cpu, "attempt to access switcher pages");
 125		index = 0;
 126	}
 127
 128	/* You should never call this if the PGD entry wasn't valid */
 129	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 130	page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 131
 132	return &page[index];
 133}
 134#endif
 135
 136/*
 137 * This routine then takes the page directory entry returned above, which
 138 * contains the address of the page table entry (PTE) page.  It then returns a
 139 * pointer to the PTE entry for the given address.
 140 */
 141static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
 142{
 143#ifdef CONFIG_X86_PAE
 144	pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
 145	pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
 146
 147	/* You should never call this if the PMD entry wasn't valid */
 148	BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
 149#else
 150	pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 151	/* You should never call this if the PGD entry wasn't valid */
 152	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 153#endif
 154
 155	return &page[pte_index(vaddr)];
 156}
 157
 158/*
 159 * These functions are just like the above two, except they access the Guest
 160 * page tables.  Hence they return a Guest address.
 161 */
 162static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
 163{
 164	unsigned int index = vaddr >> (PGDIR_SHIFT);
 165	return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
 166}
 167
 168#ifdef CONFIG_X86_PAE
 169/* Follow the PGD to the PMD. */
 170static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
 171{
 172	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 173	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 174	return gpage + pmd_index(vaddr) * sizeof(pmd_t);
 175}
 176
 177/* Follow the PMD to the PTE. */
 178static unsigned long gpte_addr(struct lg_cpu *cpu,
 179			       pmd_t gpmd, unsigned long vaddr)
 180{
 181	unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
 182
 183	BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
 184	return gpage + pte_index(vaddr) * sizeof(pte_t);
 185}
 186#else
 187/* Follow the PGD to the PTE (no mid-level for !PAE). */
 188static unsigned long gpte_addr(struct lg_cpu *cpu,
 189				pgd_t gpgd, unsigned long vaddr)
 190{
 191	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 192
 193	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 194	return gpage + pte_index(vaddr) * sizeof(pte_t);
 195}
 196#endif
 197/*:*/
 198
 199/*M:014
 200 * get_pfn is slow: we could probably try to grab batches of pages here as
 201 * an optimization (ie. pre-faulting).
 202:*/
 203
 204/*H:350
 205 * This routine takes a page number given by the Guest and converts it to
 206 * an actual, physical page number.  It can fail for several reasons: the
 207 * virtual address might not be mapped by the Launcher, the write flag is set
 208 * and the page is read-only, or the write flag was set and the page was
 209 * shared so had to be copied, but we ran out of memory.
 210 *
 211 * This holds a reference to the page, so release_pte() is careful to put that
 212 * back.
 213 */
 214static unsigned long get_pfn(unsigned long virtpfn, int write)
 215{
 216	struct page *page;
 217
 218	/* gup me one page at this address please! */
 219	if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
 220		return page_to_pfn(page);
 221
 222	/* This value indicates failure. */
 223	return -1UL;
 224}
 225
 226/*H:340
 227 * Converting a Guest page table entry to a shadow (ie. real) page table
 228 * entry can be a little tricky.  The flags are (almost) the same, but the
 229 * Guest PTE contains a virtual page number: the CPU needs the real page
 230 * number.
 231 */
 232static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
 233{
 234	unsigned long pfn, base, flags;
 235
 236	/*
 237	 * The Guest sets the global flag, because it thinks that it is using
 238	 * PGE.  We only told it to use PGE so it would tell us whether it was
 239	 * flushing a kernel mapping or a userspace mapping.  We don't actually
 240	 * use the global bit, so throw it away.
 241	 */
 242	flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
 243
 244	/* The Guest's pages are offset inside the Launcher. */
 245	base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
 246
 247	/*
 248	 * We need a temporary "unsigned long" variable to hold the answer from
 249	 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
 250	 * fit in spte.pfn.  get_pfn() finds the real physical number of the
 251	 * page, given the virtual number.
 252	 */
 253	pfn = get_pfn(base + pte_pfn(gpte), write);
 254	if (pfn == -1UL) {
 255		kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
 256		/*
 257		 * When we destroy the Guest, we'll go through the shadow page
 258		 * tables and release_pte() them.  Make sure we don't think
 259		 * this one is valid!
 260		 */
 261		flags = 0;
 262	}
 263	/* Now we assemble our shadow PTE from the page number and flags. */
 264	return pfn_pte(pfn, __pgprot(flags));
 265}
 266
 267/*H:460 And to complete the chain, release_pte() looks like this: */
 268static void release_pte(pte_t pte)
 269{
 270	/*
 271	 * Remember that get_user_pages_fast() took a reference to the page, in
 272	 * get_pfn()?  We have to put it back now.
 273	 */
 274	if (pte_flags(pte) & _PAGE_PRESENT)
 275		put_page(pte_page(pte));
 276}
 277/*:*/
 278
 279static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
 280{
 281	if ((pte_flags(gpte) & _PAGE_PSE) ||
 282	    pte_pfn(gpte) >= cpu->lg->pfn_limit)
 283		kill_guest(cpu, "bad page table entry");
 284}
 285
 286static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
 287{
 288	if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
 289	   (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
 290		kill_guest(cpu, "bad page directory entry");
 291}
 292
 293#ifdef CONFIG_X86_PAE
 294static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
 295{
 296	if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
 297	   (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
 298		kill_guest(cpu, "bad page middle directory entry");
 299}
 300#endif
 301
 302/*H:330
 303 * (i) Looking up a page table entry when the Guest faults.
 304 *
 305 * We saw this call in run_guest(): when we see a page fault in the Guest, we
 306 * come here.  That's because we only set up the shadow page tables lazily as
 307 * they're needed, so we get page faults all the time and quietly fix them up
 308 * and return to the Guest without it knowing.
 309 *
 310 * If we fixed up the fault (ie. we mapped the address), this routine returns
 311 * true.  Otherwise, it was a real fault and we need to tell the Guest.
 312 */
 313bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
 314{
 315	pgd_t gpgd;
 316	pgd_t *spgd;
 317	unsigned long gpte_ptr;
 318	pte_t gpte;
 319	pte_t *spte;
 320
 321	/* Mid level for PAE. */
 322#ifdef CONFIG_X86_PAE
 323	pmd_t *spmd;
 324	pmd_t gpmd;
 325#endif
 326
 327	/* First step: get the top-level Guest page table entry. */
 328	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 329	/* Toplevel not present?  We can't map it in. */
 330	if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
 331		return false;
 332
 333	/* Now look at the matching shadow entry. */
 334	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
 335	if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
 336		/* No shadow entry: allocate a new shadow PTE page. */
 337		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
 338		/*
 339		 * This is not really the Guest's fault, but killing it is
 340		 * simple for this corner case.
 341		 */
 342		if (!ptepage) {
 343			kill_guest(cpu, "out of memory allocating pte page");
 344			return false;
 345		}
 346		/* We check that the Guest pgd is OK. */
 347		check_gpgd(cpu, gpgd);
 348		/*
 349		 * And we copy the flags to the shadow PGD entry.  The page
 350		 * number in the shadow PGD is the page we just allocated.
 351		 */
 352		set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
 353	}
 354
 355#ifdef CONFIG_X86_PAE
 356	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 357	/* Middle level not present?  We can't map it in. */
 358	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 359		return false;
 360
 361	/* Now look at the matching shadow entry. */
 362	spmd = spmd_addr(cpu, *spgd, vaddr);
 363
 364	if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
 365		/* No shadow entry: allocate a new shadow PTE page. */
 366		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
 367
 368		/*
 369		 * This is not really the Guest's fault, but killing it is
 370		 * simple for this corner case.
 371		 */
 372		if (!ptepage) {
 373			kill_guest(cpu, "out of memory allocating pte page");
 374			return false;
 375		}
 376
 377		/* We check that the Guest pmd is OK. */
 378		check_gpmd(cpu, gpmd);
 379
 380		/*
 381		 * And we copy the flags to the shadow PMD entry.  The page
 382		 * number in the shadow PMD is the page we just allocated.
 383		 */
 384		set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
 385	}
 386
 387	/*
 388	 * OK, now we look at the lower level in the Guest page table: keep its
 389	 * address, because we might update it later.
 390	 */
 391	gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
 392#else
 393	/*
 394	 * OK, now we look at the lower level in the Guest page table: keep its
 395	 * address, because we might update it later.
 396	 */
 397	gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
 398#endif
 399
 400	/* Read the actual PTE value. */
 401	gpte = lgread(cpu, gpte_ptr, pte_t);
 402
 403	/* If this page isn't in the Guest page tables, we can't page it in. */
 404	if (!(pte_flags(gpte) & _PAGE_PRESENT))
 405		return false;
 406
 407	/*
 408	 * Check they're not trying to write to a page the Guest wants
 409	 * read-only (bit 2 of errcode == write).
 410	 */
 411	if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
 412		return false;
 413
 414	/* User access to a kernel-only page? (bit 3 == user access) */
 415	if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
 416		return false;
 417
 418	/*
 419	 * Check that the Guest PTE flags are OK, and the page number is below
 420	 * the pfn_limit (ie. not mapping the Launcher binary).
 421	 */
 422	check_gpte(cpu, gpte);
 423
 424	/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
 425	gpte = pte_mkyoung(gpte);
 426	if (errcode & 2)
 427		gpte = pte_mkdirty(gpte);
 428
 429	/* Get the pointer to the shadow PTE entry we're going to set. */
 430	spte = spte_addr(cpu, *spgd, vaddr);
 431
 432	/*
 433	 * If there was a valid shadow PTE entry here before, we release it.
 434	 * This can happen with a write to a previously read-only entry.
 435	 */
 436	release_pte(*spte);
 437
 438	/*
 439	 * If this is a write, we insist that the Guest page is writable (the
 440	 * final arg to gpte_to_spte()).
 441	 */
 442	if (pte_dirty(gpte))
 443		*spte = gpte_to_spte(cpu, gpte, 1);
 444	else
 445		/*
 446		 * If this is a read, don't set the "writable" bit in the page
 447		 * table entry, even if the Guest says it's writable.  That way
 448		 * we will come back here when a write does actually occur, so
 449		 * we can update the Guest's _PAGE_DIRTY flag.
 450		 */
 451		set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
 452
 453	/*
 454	 * Finally, we write the Guest PTE entry back: we've set the
 455	 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
 456	 */
 457	lgwrite(cpu, gpte_ptr, pte_t, gpte);
 458
 459	/*
 460	 * The fault is fixed, the page table is populated, the mapping
 461	 * manipulated, the result returned and the code complete.  A small
 462	 * delay and a trace of alliteration are the only indications the Guest
 463	 * has that a page fault occurred at all.
 464	 */
 465	return true;
 466}
 467
 468/*H:360
 469 * (ii) Making sure the Guest stack is mapped.
 470 *
 471 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
 472 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
 473 * we've seen that logic is quite long, and usually the stack pages are already
 474 * mapped, so it's overkill.
 475 *
 476 * This is a quick version which answers the question: is this virtual address
 477 * mapped by the shadow page tables, and is it writable?
 478 */
 479static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
 480{
 481	pgd_t *spgd;
 482	unsigned long flags;
 483
 484#ifdef CONFIG_X86_PAE
 485	pmd_t *spmd;
 486#endif
 487	/* Look at the current top level entry: is it present? */
 488	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
 489	if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
 490		return false;
 491
 492#ifdef CONFIG_X86_PAE
 493	spmd = spmd_addr(cpu, *spgd, vaddr);
 494	if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
 495		return false;
 496#endif
 497
 498	/*
 499	 * Check the flags on the pte entry itself: it must be present and
 500	 * writable.
 501	 */
 502	flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
 503
 504	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
 505}
 506
 507/*
 508 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
 509 * in the page tables, and if not, we call demand_page() with error code 2
 510 * (meaning "write").
 511 */
 512void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
 513{
 514	if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
 515		kill_guest(cpu, "bad stack page %#lx", vaddr);
 516}
 517/*:*/
 518
 519#ifdef CONFIG_X86_PAE
 520static void release_pmd(pmd_t *spmd)
 521{
 522	/* If the entry's not present, there's nothing to release. */
 523	if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 524		unsigned int i;
 525		pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
 526		/* For each entry in the page, we might need to release it. */
 527		for (i = 0; i < PTRS_PER_PTE; i++)
 528			release_pte(ptepage[i]);
 529		/* Now we can free the page of PTEs */
 530		free_page((long)ptepage);
 531		/* And zero out the PMD entry so we never release it twice. */
 532		set_pmd(spmd, __pmd(0));
 533	}
 534}
 535
 536static void release_pgd(pgd_t *spgd)
 537{
 538	/* If the entry's not present, there's nothing to release. */
 539	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 540		unsigned int i;
 541		pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 542
 543		for (i = 0; i < PTRS_PER_PMD; i++)
 544			release_pmd(&pmdpage[i]);
 545
 546		/* Now we can free the page of PMDs */
 547		free_page((long)pmdpage);
 548		/* And zero out the PGD entry so we never release it twice. */
 549		set_pgd(spgd, __pgd(0));
 550	}
 551}
 552
 553#else /* !CONFIG_X86_PAE */
 554/*H:450
 555 * If we chase down the release_pgd() code, the non-PAE version looks like
 556 * this.  The PAE version is almost identical, but instead of calling
 557 * release_pte it calls release_pmd(), which looks much like this.
 558 */
 559static void release_pgd(pgd_t *spgd)
 560{
 561	/* If the entry's not present, there's nothing to release. */
 562	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 563		unsigned int i;
 564		/*
 565		 * Converting the pfn to find the actual PTE page is easy: turn
 566		 * the page number into a physical address, then convert to a
 567		 * virtual address (easy for kernel pages like this one).
 568		 */
 569		pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 570		/* For each entry in the page, we might need to release it. */
 571		for (i = 0; i < PTRS_PER_PTE; i++)
 572			release_pte(ptepage[i]);
 573		/* Now we can free the page of PTEs */
 574		free_page((long)ptepage);
 575		/* And zero out the PGD entry so we never release it twice. */
 576		*spgd = __pgd(0);
 577	}
 578}
 579#endif
 580
 581/*H:445
 582 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
 583 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
 584 * It simply releases every PTE page from 0 up to the Guest's kernel address.
 585 */
 586static void flush_user_mappings(struct lguest *lg, int idx)
 587{
 588	unsigned int i;
 589	/* Release every pgd entry up to the kernel's address. */
 590	for (i = 0; i < pgd_index(lg->kernel_address); i++)
 591		release_pgd(lg->pgdirs[idx].pgdir + i);
 592}
 593
 594/*H:440
 595 * (v) Flushing (throwing away) page tables,
 596 *
 597 * The Guest has a hypercall to throw away the page tables: it's used when a
 598 * large number of mappings have been changed.
 599 */
 600void guest_pagetable_flush_user(struct lg_cpu *cpu)
 601{
 602	/* Drop the userspace part of the current page table. */
 603	flush_user_mappings(cpu->lg, cpu->cpu_pgd);
 604}
 605/*:*/
 606
 607/* We walk down the guest page tables to get a guest-physical address */
 608unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
 609{
 610	pgd_t gpgd;
 611	pte_t gpte;
 612#ifdef CONFIG_X86_PAE
 613	pmd_t gpmd;
 614#endif
 615	/* First step: get the top-level Guest page table entry. */
 616	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 617	/* Toplevel not present?  We can't map it in. */
 618	if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
 619		kill_guest(cpu, "Bad address %#lx", vaddr);
 620		return -1UL;
 621	}
 622
 623#ifdef CONFIG_X86_PAE
 624	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 625	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 626		kill_guest(cpu, "Bad address %#lx", vaddr);
 627	gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
 628#else
 629	gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
 630#endif
 631	if (!(pte_flags(gpte) & _PAGE_PRESENT))
 632		kill_guest(cpu, "Bad address %#lx", vaddr);
 633
 634	return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
 635}
 636
 637/*
 638 * We keep several page tables.  This is a simple routine to find the page
 639 * table (if any) corresponding to this top-level address the Guest has given
 640 * us.
 641 */
 642static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
 643{
 644	unsigned int i;
 645	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
 646		if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
 647			break;
 648	return i;
 649}
 650
 651/*H:435
 652 * And this is us, creating the new page directory.  If we really do
 653 * allocate a new one (and so the kernel parts are not there), we set
 654 * blank_pgdir.
 655 */
 656static unsigned int new_pgdir(struct lg_cpu *cpu,
 657			      unsigned long gpgdir,
 658			      int *blank_pgdir)
 659{
 660	unsigned int next;
 661#ifdef CONFIG_X86_PAE
 662	pmd_t *pmd_table;
 663#endif
 664
 665	/*
 666	 * We pick one entry at random to throw out.  Choosing the Least
 667	 * Recently Used might be better, but this is easy.
 668	 */
 669	next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
 670	/* If it's never been allocated at all before, try now. */
 671	if (!cpu->lg->pgdirs[next].pgdir) {
 672		cpu->lg->pgdirs[next].pgdir =
 673					(pgd_t *)get_zeroed_page(GFP_KERNEL);
 674		/* If the allocation fails, just keep using the one we have */
 675		if (!cpu->lg->pgdirs[next].pgdir)
 676			next = cpu->cpu_pgd;
 677		else {
 678#ifdef CONFIG_X86_PAE
 679			/*
 680			 * In PAE mode, allocate a pmd page and populate the
 681			 * last pgd entry.
 682			 */
 683			pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 684			if (!pmd_table) {
 685				free_page((long)cpu->lg->pgdirs[next].pgdir);
 686				set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
 687				next = cpu->cpu_pgd;
 688			} else {
 689				set_pgd(cpu->lg->pgdirs[next].pgdir +
 690					SWITCHER_PGD_INDEX,
 691					__pgd(__pa(pmd_table) | _PAGE_PRESENT));
 692				/*
 693				 * This is a blank page, so there are no kernel
 694				 * mappings: caller must map the stack!
 695				 */
 696				*blank_pgdir = 1;
 697			}
 698#else
 699			*blank_pgdir = 1;
 700#endif
 701		}
 702	}
 703	/* Record which Guest toplevel this shadows. */
 704	cpu->lg->pgdirs[next].gpgdir = gpgdir;
 705	/* Release all the non-kernel mappings. */
 706	flush_user_mappings(cpu->lg, next);
 707
 708	return next;
 709}
 710
 711/*H:430
 712 * (iv) Switching page tables
 713 *
 714 * Now we've seen all the page table setting and manipulation, let's see
 715 * what happens when the Guest changes page tables (ie. changes the top-level
 716 * pgdir).  This occurs on almost every context switch.
 717 */
 718void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
 719{
 720	int newpgdir, repin = 0;
 721
 722	/* Look to see if we have this one already. */
 723	newpgdir = find_pgdir(cpu->lg, pgtable);
 724	/*
 725	 * If not, we allocate or mug an existing one: if it's a fresh one,
 726	 * repin gets set to 1.
 727	 */
 728	if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
 729		newpgdir = new_pgdir(cpu, pgtable, &repin);
 730	/* Change the current pgd index to the new one. */
 731	cpu->cpu_pgd = newpgdir;
 732	/* If it was completely blank, we map in the Guest kernel stack */
 733	if (repin)
 734		pin_stack_pages(cpu);
 735}
 736
 737/*H:470
 738 * Finally, a routine which throws away everything: all PGD entries in all
 739 * the shadow page tables, including the Guest's kernel mappings.  This is used
 740 * when we destroy the Guest.
 741 */
 742static void release_all_pagetables(struct lguest *lg)
 743{
 744	unsigned int i, j;
 745
 746	/* Every shadow pagetable this Guest has */
 747	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
 748		if (lg->pgdirs[i].pgdir) {
 749#ifdef CONFIG_X86_PAE
 750			pgd_t *spgd;
 751			pmd_t *pmdpage;
 752			unsigned int k;
 753
 754			/* Get the last pmd page. */
 755			spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
 756			pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 757
 758			/*
 759			 * And release the pmd entries of that pmd page,
 760			 * except for the switcher pmd.
 761			 */
 762			for (k = 0; k < SWITCHER_PMD_INDEX; k++)
 763				release_pmd(&pmdpage[k]);
 764#endif
 765			/* Every PGD entry except the Switcher at the top */
 766			for (j = 0; j < SWITCHER_PGD_INDEX; j++)
 767				release_pgd(lg->pgdirs[i].pgdir + j);
 768		}
 769}
 770
 771/*
 772 * We also throw away everything when a Guest tells us it's changed a kernel
 773 * mapping.  Since kernel mappings are in every page table, it's easiest to
 774 * throw them all away.  This traps the Guest in amber for a while as
 775 * everything faults back in, but it's rare.
 776 */
 777void guest_pagetable_clear_all(struct lg_cpu *cpu)
 778{
 779	release_all_pagetables(cpu->lg);
 780	/* We need the Guest kernel stack mapped again. */
 781	pin_stack_pages(cpu);
 782}
 783/*:*/
 784
 785/*M:009
 786 * Since we throw away all mappings when a kernel mapping changes, our
 787 * performance sucks for guests using highmem.  In fact, a guest with
 788 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
 789 * usually slower than a Guest with less memory.
 790 *
 791 * This, of course, cannot be fixed.  It would take some kind of... well, I
 792 * don't know, but the term "puissant code-fu" comes to mind.
 793:*/
 794
 795/*H:420
 796 * This is the routine which actually sets the page table entry for then
 797 * "idx"'th shadow page table.
 798 *
 799 * Normally, we can just throw out the old entry and replace it with 0: if they
 800 * use it demand_page() will put the new entry in.  We need to do this anyway:
 801 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
 802 * is read from, and _PAGE_DIRTY when it's written to.
 803 *
 804 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
 805 * these bits on PTEs immediately anyway.  This is done to save the CPU from
 806 * having to update them, but it helps us the same way: if they set
 807 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
 808 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
 809 */
 810static void do_set_pte(struct lg_cpu *cpu, int idx,
 811		       unsigned long vaddr, pte_t gpte)
 812{
 813	/* Look up the matching shadow page directory entry. */
 814	pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
 815#ifdef CONFIG_X86_PAE
 816	pmd_t *spmd;
 817#endif
 818
 819	/* If the top level isn't present, there's no entry to update. */
 820	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 821#ifdef CONFIG_X86_PAE
 822		spmd = spmd_addr(cpu, *spgd, vaddr);
 823		if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 824#endif
 825			/* Otherwise, start by releasing the existing entry. */
 826			pte_t *spte = spte_addr(cpu, *spgd, vaddr);
 827			release_pte(*spte);
 828
 829			/*
 830			 * If they're setting this entry as dirty or accessed,
 831			 * we might as well put that entry they've given us in
 832			 * now.  This shaves 10% off a copy-on-write
 833			 * micro-benchmark.
 834			 */
 835			if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
 836				check_gpte(cpu, gpte);
 837				set_pte(spte,
 838					gpte_to_spte(cpu, gpte,
 839						pte_flags(gpte) & _PAGE_DIRTY));
 840			} else {
 841				/*
 842				 * Otherwise kill it and we can demand_page()
 843				 * it in later.
 844				 */
 845				set_pte(spte, __pte(0));
 846			}
 847#ifdef CONFIG_X86_PAE
 848		}
 849#endif
 850	}
 851}
 852
 853/*H:410
 854 * Updating a PTE entry is a little trickier.
 855 *
 856 * We keep track of several different page tables (the Guest uses one for each
 857 * process, so it makes sense to cache at least a few).  Each of these have
 858 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
 859 * all processes.  So when the page table above that address changes, we update
 860 * all the page tables, not just the current one.  This is rare.
 861 *
 862 * The benefit is that when we have to track a new page table, we can keep all
 863 * the kernel mappings.  This speeds up context switch immensely.
 864 */
 865void guest_set_pte(struct lg_cpu *cpu,
 866		   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
 867{
 868	/*
 869	 * Kernel mappings must be changed on all top levels.  Slow, but doesn't
 870	 * happen often.
 871	 */
 872	if (vaddr >= cpu->lg->kernel_address) {
 873		unsigned int i;
 874		for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
 875			if (cpu->lg->pgdirs[i].pgdir)
 876				do_set_pte(cpu, i, vaddr, gpte);
 877	} else {
 878		/* Is this page table one we have a shadow for? */
 879		int pgdir = find_pgdir(cpu->lg, gpgdir);
 880		if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
 881			/* If so, do the update. */
 882			do_set_pte(cpu, pgdir, vaddr, gpte);
 883	}
 884}
 885
 886/*H:400
 887 * (iii) Setting up a page table entry when the Guest tells us one has changed.
 888 *
 889 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
 890 * with the other side of page tables while we're here: what happens when the
 891 * Guest asks for a page table to be updated?
 892 *
 893 * We already saw that demand_page() will fill in the shadow page tables when
 894 * needed, so we can simply remove shadow page table entries whenever the Guest
 895 * tells us they've changed.  When the Guest tries to use the new entry it will
 896 * fault and demand_page() will fix it up.
 897 *
 898 * So with that in mind here's our code to update a (top-level) PGD entry:
 899 */
 900void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
 901{
 902	int pgdir;
 903
 904	if (idx >= SWITCHER_PGD_INDEX)
 905		return;
 906
 907	/* If they're talking about a page table we have a shadow for... */
 908	pgdir = find_pgdir(lg, gpgdir);
 909	if (pgdir < ARRAY_SIZE(lg->pgdirs))
 910		/* ... throw it away. */
 911		release_pgd(lg->pgdirs[pgdir].pgdir + idx);
 912}
 913
 914#ifdef CONFIG_X86_PAE
 915/* For setting a mid-level, we just throw everything away.  It's easy. */
 916void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
 917{
 918	guest_pagetable_clear_all(&lg->cpus[0]);
 919}
 920#endif
 921
 922/*H:505
 923 * To get through boot, we construct simple identity page mappings (which
 924 * set virtual == physical) and linear mappings which will get the Guest far
 925 * enough into the boot to create its own.  The linear mapping means we
 926 * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
 927 * as you'll see.
 928 *
 929 * We lay them out of the way, just below the initrd (which is why we need to
 930 * know its size here).
 931 */
 932static unsigned long setup_pagetables(struct lguest *lg,
 933				      unsigned long mem,
 934				      unsigned long initrd_size)
 935{
 936	pgd_t __user *pgdir;
 937	pte_t __user *linear;
 938	unsigned long mem_base = (unsigned long)lg->mem_base;
 939	unsigned int mapped_pages, i, linear_pages;
 940#ifdef CONFIG_X86_PAE
 941	pmd_t __user *pmds;
 942	unsigned int j;
 943	pgd_t pgd;
 944	pmd_t pmd;
 945#else
 946	unsigned int phys_linear;
 947#endif
 948
 949	/*
 950	 * We have mapped_pages frames to map, so we need linear_pages page
 951	 * tables to map them.
 952	 */
 953	mapped_pages = mem / PAGE_SIZE;
 954	linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
 955
 956	/* We put the toplevel page directory page at the top of memory. */
 957	pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
 958
 959	/* Now we use the next linear_pages pages as pte pages */
 960	linear = (void *)pgdir - linear_pages * PAGE_SIZE;
 961
 962#ifdef CONFIG_X86_PAE
 963	/*
 964	 * And the single mid page goes below that.  We only use one, but
 965	 * that's enough to map 1G, which definitely gets us through boot.
 966	 */
 967	pmds = (void *)linear - PAGE_SIZE;
 968#endif
 969	/*
 970	 * Linear mapping is easy: put every page's address into the
 971	 * mapping in order.
 972	 */
 973	for (i = 0; i < mapped_pages; i++) {
 974		pte_t pte;
 975		pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
 976		if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
 977			return -EFAULT;
 978	}
 979
 980#ifdef CONFIG_X86_PAE
 981	/*
 982	 * Make the Guest PMD entries point to the corresponding place in the
 983	 * linear mapping (up to one page worth of PMD).
 984	 */
 985	for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
 986	     i += PTRS_PER_PTE, j++) {
 987		pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
 988			      __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
 989
 990		if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
 991			return -EFAULT;
 992	}
 993
 994	/* One PGD entry, pointing to that PMD page. */
 995	pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
 996	/* Copy it in as the first PGD entry (ie. addresses 0-1G). */
 997	if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
 998		return -EFAULT;
 999	/*
1000	 * And the other PGD entry to make the linear mapping at PAGE_OFFSET
1001	 */
1002	if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
1003		return -EFAULT;
1004#else
1005	/*
1006	 * The top level points to the linear page table pages above.
1007	 * We setup the identity and linear mappings here.
1008	 */
1009	phys_linear = (unsigned long)linear - mem_base;
1010	for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1011		pgd_t pgd;
1012		/*
1013		 * Create a PGD entry which points to the right part of the
1014		 * linear PTE pages.
1015		 */
1016		pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1017			    (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1018
1019		/*
1020		 * Copy it into the PGD page at 0 and PAGE_OFFSET.
1021		 */
1022		if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1023		    || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1024					   + i / PTRS_PER_PTE],
1025				    &pgd, sizeof(pgd)))
1026			return -EFAULT;
1027	}
1028#endif
1029
1030	/*
1031	 * We return the top level (guest-physical) address: we remember where
1032	 * this is to write it into lguest_data when the Guest initializes.
1033	 */
1034	return (unsigned long)pgdir - mem_base;
1035}
1036
1037/*H:500
1038 * (vii) Setting up the page tables initially.
1039 *
1040 * When a Guest is first created, the Launcher tells us where the toplevel of
1041 * its first page table is.  We set some things up here:
1042 */
1043int init_guest_pagetable(struct lguest *lg)
1044{
1045	u64 mem;
1046	u32 initrd_size;
1047	struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
1048#ifdef CONFIG_X86_PAE
1049	pgd_t *pgd;
1050	pmd_t *pmd_table;
1051#endif
1052	/*
1053	 * Get the Guest memory size and the ramdisk size from the boot header
1054	 * located at lg->mem_base (Guest address 0).
1055	 */
1056	if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1057	    || get_user(initrd_size, &boot->hdr.ramdisk_size))
1058		return -EFAULT;
1059
1060	/*
1061	 * We start on the first shadow page table, and give it a blank PGD
1062	 * page.
1063	 */
1064	lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1065	if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1066		return lg->pgdirs[0].gpgdir;
1067	lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1068	if (!lg->pgdirs[0].pgdir)
1069		return -ENOMEM;
1070
1071#ifdef CONFIG_X86_PAE
1072	/* For PAE, we also create the initial mid-level. */
1073	pgd = lg->pgdirs[0].pgdir;
1074	pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1075	if (!pmd_table)
1076		return -ENOMEM;
1077
1078	set_pgd(pgd + SWITCHER_PGD_INDEX,
1079		__pgd(__pa(pmd_table) | _PAGE_PRESENT));
1080#endif
1081
1082	/* This is the current page table. */
1083	lg->cpus[0].cpu_pgd = 0;
1084	return 0;
1085}
1086
1087/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1088void page_table_guest_data_init(struct lg_cpu *cpu)
1089{
1090	/* We get the kernel address: above this is all kernel memory. */
1091	if (get_user(cpu->lg->kernel_address,
1092		&cpu->lg->lguest_data->kernel_address)
1093		/*
1094		 * We tell the Guest that it can't use the top 2 or 4 MB
1095		 * of virtual addresses used by the Switcher.
1096		 */
1097		|| put_user(RESERVE_MEM * 1024 * 1024,
1098			&cpu->lg->lguest_data->reserve_mem)
1099		|| put_user(cpu->lg->pgdirs[0].gpgdir,
1100			&cpu->lg->lguest_data->pgdir))
1101		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1102
1103	/*
1104	 * In flush_user_mappings() we loop from 0 to
1105	 * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1106	 * Switcher mappings, so check that now.
1107	 */
1108#ifdef CONFIG_X86_PAE
1109	if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1110		pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1111#else
1112	if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1113#endif
1114		kill_guest(cpu, "bad kernel address %#lx",
1115				 cpu->lg->kernel_address);
1116}
1117
1118/* When a Guest dies, our cleanup is fairly simple. */
1119void free_guest_pagetable(struct lguest *lg)
1120{
1121	unsigned int i;
1122
1123	/* Throw away all page table pages. */
1124	release_all_pagetables(lg);
1125	/* Now free the top levels: free_page() can handle 0 just fine. */
1126	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1127		free_page((long)lg->pgdirs[i].pgdir);
1128}
1129
1130/*H:480
1131 * (vi) Mapping the Switcher when the Guest is about to run.
1132 *
1133 * The Switcher and the two pages for this CPU need to be visible in the
1134 * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
1135 * for each CPU already set up, we just need to hook them in now we know which
1136 * Guest is about to run on this CPU.
1137 */
1138void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1139{
1140	pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1141	pte_t regs_pte;
1142
1143#ifdef CONFIG_X86_PAE
1144	pmd_t switcher_pmd;
1145	pmd_t *pmd_table;
1146
1147	switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1148			       PAGE_KERNEL_EXEC);
1149
1150	/* Figure out where the pmd page is, by reading the PGD, and converting
1151	 * it to a virtual address. */
1152	pmd_table = __va(pgd_pfn(cpu->lg->
1153			pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1154								<< PAGE_SHIFT);
1155	/* Now write it into the shadow page table. */
1156	set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1157#else
1158	pgd_t switcher_pgd;
1159
1160	/*
1161	 * Make the last PGD entry for this Guest point to the Switcher's PTE
1162	 * page for this CPU (with appropriate flags).
1163	 */
1164	switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1165
1166	cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1167
1168#endif
1169	/*
1170	 * We also change the Switcher PTE page.  When we're running the Guest,
1171	 * we want the Guest's "regs" page to appear where the first Switcher
1172	 * page for this CPU is.  This is an optimization: when the Switcher
1173	 * saves the Guest registers, it saves them into the first page of this
1174	 * CPU's "struct lguest_pages": if we make sure the Guest's register
1175	 * page is already mapped there, we don't have to copy them out
1176	 * again.
1177	 */
1178	regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1179	set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1180}
1181/*:*/
1182
1183static void free_switcher_pte_pages(void)
1184{
1185	unsigned int i;
1186
1187	for_each_possible_cpu(i)
1188		free_page((long)switcher_pte_page(i));
1189}
1190
1191/*H:520
1192 * Setting up the Switcher PTE page for given CPU is fairly easy, given
1193 * the CPU number and the "struct page"s for the Switcher code itself.
1194 *
1195 * Currently the Switcher is less than a page long, so "pages" is always 1.
1196 */
1197static __init void populate_switcher_pte_page(unsigned int cpu,
1198					      struct page *switcher_page[],
1199					      unsigned int pages)
1200{
1201	unsigned int i;
1202	pte_t *pte = switcher_pte_page(cpu);
1203
1204	/* The first entries are easy: they map the Switcher code. */
1205	for (i = 0; i < pages; i++) {
1206		set_pte(&pte[i], mk_pte(switcher_page[i],
1207				__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1208	}
1209
1210	/* The only other thing we map is this CPU's pair of pages. */
1211	i = pages + cpu*2;
1212
1213	/* First page (Guest registers) is writable from the Guest */
1214	set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1215			 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1216
1217	/*
1218	 * The second page contains the "struct lguest_ro_state", and is
1219	 * read-only.
1220	 */
1221	set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1222			   __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1223}
1224
1225/*
1226 * We've made it through the page table code.  Perhaps our tired brains are
1227 * still processing the details, or perhaps we're simply glad it's over.
1228 *
1229 * If nothing else, note that all this complexity in juggling shadow page tables
1230 * in sync with the Guest's page tables is for one reason: for most Guests this
1231 * page table dance determines how bad performance will be.  This is why Xen
1232 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1233 * have implemented shadow page table support directly into hardware.
1234 *
1235 * There is just one file remaining in the Host.
1236 */
1237
1238/*H:510
1239 * At boot or module load time, init_pagetables() allocates and populates
1240 * the Switcher PTE page for each CPU.
1241 */
1242__init int init_pagetables(struct page **switcher_page, unsigned int pages)
1243{
1244	unsigned int i;
1245
1246	for_each_possible_cpu(i) {
1247		switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1248		if (!switcher_pte_page(i)) {
1249			free_switcher_pte_pages();
1250			return -ENOMEM;
1251		}
1252		populate_switcher_pte_page(i, switcher_page, pages);
1253	}
1254	return 0;
1255}
1256/*:*/
1257
1258/* Cleaning up simply involves freeing the PTE page for each CPU. */
1259void free_pagetables(void)
1260{
1261	free_switcher_pte_pages();
1262}