/caffe2/python/functional.py
Python | 114 lines | 84 code | 21 blank | 9 comment | 21 complexity | 9ab6e12f50c1b8d54257d26f1e7eafe0 MD5 | raw file
- from caffe2.python import core, workspace
- from caffe2.proto import caffe2_pb2
- from caffe2.python.onnx.workspace import Workspace
- from collections import namedtuple
- from six import string_types
- OpSchema = workspace.C.OpSchema
- def namedtupledict(typename, field_names, *args, **kwargs):
- field_names_map = {n: i for i, n in enumerate(field_names)}
- # Some output names are invalid python identifier, e.g. "0"
- kwargs.setdefault('rename', True)
- data = namedtuple(typename, field_names, *args, **kwargs)
- def getitem(self, key):
- if isinstance(key, string_types):
- key = field_names_map[key]
- return super(type(self), self).__getitem__(key)
- data.__getitem__ = getitem
- return data
- class _Functional(object):
- def __getattribute__(self, op_type):
- def op_func(*inputs, **args):
- ws = Workspace()
- schema = OpSchema.get(op_type)
- input_prefix = 'input_'
- output_prefix = 'output_'
- def get_name_list(prefix, num, max_num):
- return [prefix + str(x) for x in range(min(num, max_num))]
- input_names, output_names = [], []
- input_names = get_name_list(
- input_prefix, len(inputs), schema.max_input
- )
- # verify the length of input name is in range
- # of schema
- num_input = len(input_names)
- if num_input > schema.max_input or num_input < \
- schema.min_input or not schema.num_inputs_allowed(num_input):
- raise ValueError(
- "Functional C2: Number of inputs not in \
- range: {} - {} or not allowed."
- .format(schema.min_input, schema.max_input)
- )
- if 'num_output' in args:
- num_output = args['num_output']
- if num_output > schema.max_output or \
- num_output < schema.min_output or \
- not schema.num_outputs_allowed(num_output) or \
- not schema.num_inputs_outputs_allowed(num_input,
- num_output):
- raise ValueError(
- "Functional C2: Number of output \
- not in range: {} - {} or not allowed"
- .format(schema.min_output, schema.max_output)
- )
- output_names = get_name_list(
- output_prefix, num_output, schema.max_output
- )
- args.pop('num_output')
- calculated = schema.CalculateOutput(num_input)
- if not output_names and calculated != -1:
- output_names = get_name_list(
- output_prefix, calculated, schema.max_output
- )
- if not output_names:
- max_output = schema.max_output
- # For an op with max_output == inf
- # and no Output defined in schema
- # user should pass output_size explicitly
- if schema.inf == max_output:
- raise ValueError(
- "For operators with max_output == inf,\
- user should pass num_output explicitly."
- )
- output_names = get_name_list(
- output_prefix, max_output, max_output
- )
- # There could be input-output inplace enforcement; replace the
- # output names with input ones if such enforcements exist
- for i in range(len(input_names)):
- for j in range(len(output_names)):
- if schema.inplace_enforced(i, j):
- output_names[j] = input_names[i]
- op = core.CreateOperator(
- op_type, input_names, output_names, **args
- )
- device_option = args.get('device_option', core.DeviceOption(caffe2_pb2.CPU))
- with core.DeviceScope(device_option):
- for i, input_blob in enumerate(inputs):
- ws.FeedBlob(input_names[i], input_blob)
- # RunOperator
- ws.RunOperatorOnce(op)
- output_values = [ws.FetchBlob(x) for x in output_names]
- return namedtupledict('output', output_names)(*output_values)
- return op_func
- Functional = _Functional()