/xbmc/visualizations/XBMCProjectM/libprojectM/stb_image_aug.c
http://github.com/xbmc/xbmc · C · 3163 lines · 2541 code · 280 blank · 342 comment · 819 complexity · 0a67e6320b93c9e60a9dfaff421fd43a MD5 · raw file
Large files are truncated click here to view the full file
- /* stbi-1.03 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c
- when you control the images you're loading
- QUICK NOTES:
- Primarily of interest to game developers and other people who can
- avoid problematic images and only need the trivial interface
- JPEG baseline (no JPEG progressive, no oddball channel decimations)
- PNG non-interlaced
- BMP non-1bpp, non-RLE
- TGA (not sure what subset, if a subset)
- HDR (radiance rgbE format)
- writes BMP,TGA (define STBI_NO_WRITE to remove code)
- decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code)
- TODO:
- stbi_info_*
- PSD loader
- history:
- 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR
- 1.02 support for (subset of) HDR files, float interface for preferred access to them
- 1.01 fix bug: possible bug in handling right-side up bmps... not sure
- fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all
- 1.00 interface to zlib that skips zlib header
- 0.99 correct handling of alpha in palette
- 0.98 TGA loader by lonesock; dynamically add loaders (untested)
- 0.97 jpeg errors on too large a file; also catch another malloc failure
- 0.96 fix detection of invalid v value - particleman@mollyrocket forum
- 0.95 during header scan, seek to markers in case of padding
- 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same
- 0.93 handle jpegtran output; verbose errors
- 0.92 read 4,8,16,24,32-bit BMP files of several formats
- 0.91 output 24-bit Windows 3.0 BMP files
- 0.90 fix a few more warnings; bump version number to approach 1.0
- 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd
- 0.60 fix compiling as c++
- 0.59 fix warnings: merge Dave Moore's -Wall fixes
- 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian
- 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less
- than 16 available
- 0.56 fix bug: zlib uncompressed mode len vs. nlen
- 0.55 fix bug: restart_interval not initialized to 0
- 0.54 allow NULL for 'int *comp'
- 0.53 fix bug in png 3->4; speedup png decoding
- 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments
- 0.51 obey req_comp requests, 1-component jpegs return as 1-component,
- on 'test' only check type, not whether we support this variant
- */
- #include "stb_image_aug.h"
- #ifndef STBI_NO_STDIO
- #include <stdio.h>
- #endif
- #include <stdlib.h>
- #include <memory.h>
- #include <assert.h>
- #include <stdarg.h>
- #ifndef _MSC_VER
- #define __forceinline
- #endif
- // implementation:
- typedef unsigned char uint8;
- typedef unsigned short uint16;
- typedef signed short int16;
- typedef unsigned int uint32;
- typedef signed int int32;
- typedef unsigned int uint;
- // should produce compiler error if size is wrong
- typedef unsigned char validate_uint32[sizeof(uint32)==4];
- #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE)
- #define STBI_NO_WRITE
- #endif
- #ifndef STBI_NO_DDS
- #include "stbi_DDS_aug.h"
- #endif
- // I (JLD) want full messages for SOIL
- #define STBI_FAILURE_USERMSG 1
- //////////////////////////////////////////////////////////////////////////////
- //
- // Generic API that works on all image types
- //
- static char *failure_reason;
- char *stbi_failure_reason(void)
- {
- return failure_reason;
- }
- static int e(char *str)
- {
- failure_reason = str;
- return 0;
- }
- #ifdef STBI_NO_FAILURE_STRINGS
- #define e(x,y) 0
- #elif defined(STBI_FAILURE_USERMSG)
- #define e(x,y) e(y)
- #else
- #define e(x,y) e(x)
- #endif
- #define ep(x,y) (e(x,y)?NULL:NULL)
- void stbi_image_free(unsigned char *retval_from_stbi_load)
- {
- free(retval_from_stbi_load);
- }
- #define MAX_LOADERS 32
- stbi_loader *loaders[MAX_LOADERS];
- static int max_loaders = 0;
- int stbi_register_loader(stbi_loader *loader)
- {
- int i;
- for (i=0; i < MAX_LOADERS; ++i) {
- // already present?
- if (loaders[i] == loader)
- return 1;
- // end of the list?
- if (loaders[i] == NULL) {
- loaders[i] = loader;
- max_loaders = i+1;
- return 1;
- }
- }
- // no room for it
- return 0;
- }
- #ifndef STBI_NO_HDR
- static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp);
- static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp);
- #endif
- #ifndef STBI_NO_STDIO
- unsigned char *stbi_load(char *filename, int *x, int *y, int *comp, int req_comp)
- {
- FILE *f = fopen(filename, "rb");
- unsigned char *result;
- if (!f) return ep("can't fopen", "Unable to open file");
- result = stbi_load_from_file(f,x,y,comp,req_comp);
- fclose(f);
- return result;
- }
- unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
- {
- int i;
- if (stbi_jpeg_test_file(f))
- return stbi_jpeg_load_from_file(f,x,y,comp,req_comp);
- if (stbi_png_test_file(f))
- return stbi_png_load_from_file(f,x,y,comp,req_comp);
- if (stbi_bmp_test_file(f))
- return stbi_bmp_load_from_file(f,x,y,comp,req_comp);
- #ifndef STBI_NO_DDS
- if (stbi_dds_test_file(f))
- return stbi_dds_load_from_file(f,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_HDR
- if (stbi_hdr_test_file(f)) {
- float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp);
- return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
- }
- #endif
- for (i=0; i < max_loaders; ++i)
- if (loaders[i]->test_file(f))
- return loaders[i]->load_from_file(f,x,y,comp,req_comp);
- // test tga last because it's a crappy test!
- if (stbi_tga_test_file(f))
- return stbi_tga_load_from_file(f,x,y,comp,req_comp);
- return ep("unknown image type", "Image not of any known type, or corrupt");
- }
- #endif
- unsigned char *stbi_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp)
- {
- int i;
- if (stbi_jpeg_test_memory(buffer,len))
- return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp);
- if (stbi_png_test_memory(buffer,len))
- return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp);
- if (stbi_bmp_test_memory(buffer,len))
- return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp);
- #ifndef STBI_NO_DDS
- if (stbi_dds_test_memory(buffer,len))
- return stbi_dds_load_from_memory(buffer,len,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_HDR
- if (stbi_hdr_test_memory(buffer, len)) {
- float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp);
- return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
- }
- #endif
- for (i=0; i < max_loaders; ++i)
- if (loaders[i]->test_memory(buffer,len))
- return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp);
- // test tga last because it's a crappy test!
- if (stbi_tga_test_memory(buffer,len))
- return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp);
- return ep("unknown image type", "Image not of any known type, or corrupt");
- }
- #ifndef STBI_NO_HDR
- #ifndef STBI_NO_STDIO
- float *stbi_loadf(char *filename, int *x, int *y, int *comp, int req_comp)
- {
- FILE *f = fopen(filename, "rb");
- float *result;
- if (!f) return ep("can't fopen", "Unable to open file");
- result = stbi_loadf_from_file(f,x,y,comp,req_comp);
- fclose(f);
- return result;
- }
- float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
- {
- unsigned char *data;
- #ifndef STBI_NO_HDR
- if (stbi_hdr_test_file(f))
- return stbi_hdr_load_from_file(f,x,y,comp,req_comp);
- #endif
- data = stbi_load_from_file(f, x, y, comp, req_comp);
- if (data)
- return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
- return ep("unknown image type", "Image not of any known type, or corrupt");
- }
- #endif
- float *stbi_loadf_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp)
- {
- stbi_uc *data;
- #ifndef STBI_NO_HDR
- if (stbi_hdr_test_memory(buffer, len))
- return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp);
- #endif
- data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp);
- if (data)
- return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
- return ep("unknown image type", "Image not of any known type, or corrupt");
- }
- #endif
- // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is
- // defined, for API simplicity; if STBI_NO_HDR is defined, it always
- // reports false!
- extern int stbi_is_hdr_from_memory(stbi_uc *buffer, int len)
- {
- #ifndef STBI_NO_HDR
- return stbi_hdr_test_memory(buffer, len);
- #else
- return 0;
- #endif
- }
- #ifndef STBI_NO_STDIO
- extern int stbi_is_hdr (char *filename)
- {
- FILE *f = fopen(filename, "rb");
- int result=0;
- if (f) {
- result = stbi_is_hdr_from_file(f);
- fclose(f);
- }
- return result;
- }
- extern int stbi_is_hdr_from_file(FILE *f)
- {
- #ifndef STBI_NO_HDR
- return stbi_hdr_test_file(f);
- #else
- return 0;
- #endif
- }
- #endif
- // @TODO: get image dimensions & components without fully decoding
- #ifndef STBI_NO_STDIO
- extern int stbi_info (char *filename, int *x, int *y, int *comp);
- extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp);
- #endif
- extern int stbi_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp);
- #ifndef STBI_NO_HDR
- static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f;
- static float l2h_gamma=2.2f, l2h_scale=1.0f;
- void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; }
- void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; }
- void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; }
- void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; }
- #endif
- //////////////////////////////////////////////////////////////////////////////
- //
- // Common code used by all image loaders
- //
- // image width, height, # components
- static uint32 img_x, img_y;
- static int img_n, img_out_n;
- enum
- {
- SCAN_load=0,
- SCAN_type,
- SCAN_header,
- };
- // An API for reading either from memory or file.
- #ifndef STBI_NO_STDIO
- static FILE *img_file;
- #endif
- static uint8 *img_buffer, *img_buffer_end;
- #ifndef STBI_NO_STDIO
- static void start_file(FILE *f)
- {
- img_file = f;
- }
- #endif
- static void start_mem(uint8 *buffer, int len)
- {
- #ifndef STBI_NO_STDIO
- img_file = NULL;
- #endif
- img_buffer = buffer;
- img_buffer_end = buffer+len;
- }
- static int get8(void)
- {
- #ifndef STBI_NO_STDIO
- if (img_file) {
- int c = fgetc(img_file);
- return c == EOF ? 0 : c;
- }
- #endif
- if (img_buffer < img_buffer_end)
- return *img_buffer++;
- return 0;
- }
- static int at_eof(void)
- {
- #ifndef STBI_NO_STDIO
- if (img_file)
- return feof(img_file);
- #endif
- return img_buffer >= img_buffer_end;
- }
- static uint8 get8u(void)
- {
- return (uint8) get8();
- }
- static void skip(int n)
- {
- #ifndef STBI_NO_STDIO
- if (img_file)
- fseek(img_file, n, SEEK_CUR);
- else
- #endif
- img_buffer += n;
- }
- static int get16(void)
- {
- int z = get8();
- return (z << 8) + get8();
- }
- static uint32 get32(void)
- {
- uint32 z = get16();
- return (z << 16) + get16();
- }
- static int get16le(void)
- {
- int z = get8();
- return z + (get8() << 8);
- }
- static uint32 get32le(void)
- {
- uint32 z = get16le();
- return z + (get16le() << 16);
- }
- static void getn(stbi_uc *buffer, int n)
- {
- #ifndef STBI_NO_STDIO
- if (img_file) {
- fread(buffer, 1, n, img_file);
- return;
- }
- #endif
- memcpy(buffer, img_buffer, n);
- img_buffer += n;
- }
- //////////////////////////////////////////////////////////////////////////////
- //
- // generic converter from built-in img_n to req_comp
- // individual types do this automatically as much as possible (e.g. jpeg
- // does all cases internally since it needs to colorspace convert anyway,
- // and it never has alpha, so very few cases ). png can automatically
- // interleave an alpha=255 channel, but falls back to this for other cases
- //
- // assume data buffer is malloced, so malloc a new one and free that one
- // only failure mode is malloc failing
- static uint8 compute_y(int r, int g, int b)
- {
- return (uint8) (((r*77) + (g*150) + (29*b)) >> 8);
- }
- static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp)
- {
- uint i,j;
- unsigned char *good;
- if (req_comp == img_n) return data;
- assert(req_comp >= 1 && req_comp <= 4);
- good = (unsigned char *) malloc(req_comp * img_x * img_y);
- if (good == NULL) {
- free(data);
- return ep("outofmem", "Out of memory");
- }
- for (j=0; j < img_y; ++j) {
- unsigned char *src = data + j * img_x * img_n ;
- unsigned char *dest = good + j * img_x * req_comp;
- #define COMBO(a,b) ((a)*8+(b))
- #define CASE(a,b) case COMBO(a,b): for(i=0; i < img_x; ++i, src += a, dest += b)
- // convert source image with img_n components to one with req_comp components;
- // avoid switch per pixel, so use switch per scanline and massive macros
- switch(COMBO(img_n, req_comp)) {
- CASE(1,2) dest[0]=src[0], dest[1]=255; break;
- CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break;
- CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break;
- CASE(2,1) dest[0]=src[0]; break;
- CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break;
- CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break;
- CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break;
- CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break;
- CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break;
- CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break;
- CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break;
- CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break;
- default: assert(0);
- }
- #undef CASE
- }
- free(data);
- img_out_n = req_comp;
- return good;
- }
- #ifndef STBI_NO_HDR
- static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
- {
- int i,k,n;
- float *output = (float *) malloc(x * y * comp * sizeof(float));
- if (output == NULL) { free(data); return ep("outofmem", "Out of memory"); }
- // compute number of non-alpha components
- if (comp & 1) n = comp; else n = comp-1;
- for (i=0; i < x*y; ++i) {
- for (k=0; k < n; ++k) {
- output[i*comp + k] = (float) pow(data[i*comp+k]/255.0, l2h_gamma) * l2h_scale;
- }
- if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f;
- }
- free(data);
- return output;
- }
- #define float2int(x) ((int) (x))
- static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp)
- {
- int i,k,n;
- stbi_uc *output = (stbi_uc *) malloc(x * y * comp);
- if (output == NULL) { free(data); return ep("outofmem", "Out of memory"); }
- // compute number of non-alpha components
- if (comp & 1) n = comp; else n = comp-1;
- for (i=0; i < x*y; ++i) {
- for (k=0; k < n; ++k) {
- float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f;
- if (z < 0) z = 0;
- if (z > 255) z = 255;
- output[i*comp + k] = float2int(z);
- }
- if (k < comp) {
- float z = data[i*comp+k] * 255 + 0.5f;
- if (z < 0) z = 0;
- if (z > 255) z = 255;
- output[i*comp + k] = float2int(z);
- }
- }
- free(data);
- return output;
- }
- #endif
- //////////////////////////////////////////////////////////////////////////////
- //
- // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation)
- //
- // simple implementation
- // - channel subsampling of at most 2 in each dimension
- // - doesn't support delayed output of y-dimension
- // - simple interface (only one output format: 8-bit interleaved RGB)
- // - doesn't try to recover corrupt jpegs
- // - doesn't allow partial loading, loading multiple at once
- // - still fast on x86 (copying globals into locals doesn't help x86)
- // - allocates lots of intermediate memory (full size of all components)
- // - non-interleaved case requires this anyway
- // - allows good upsampling (see next)
- // high-quality
- // - upsampled channels are bilinearly interpolated, even across blocks
- // - quality integer IDCT derived from IJG's 'slow'
- // performance
- // - fast huffman; reasonable integer IDCT
- // - uses a lot of intermediate memory, could cache poorly
- // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4
- // stb_jpeg: 1.34 seconds (MSVC6, default release build)
- // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro)
- // IJL11.dll: 1.08 seconds (compiled by intel)
- // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG)
- // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro)
- int stbi_jpeg_dc_only;
- // huffman decoding acceleration
- #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache
- typedef struct
- {
- uint8 fast[1 << FAST_BITS];
- // weirdly, repacking this into AoS is a 10% speed loss, instead of a win
- uint16 code[256];
- uint8 values[256];
- uint8 size[257];
- unsigned int maxcode[18];
- int delta[17]; // old 'firstsymbol' - old 'firstcode'
- } huffman;
- static huffman huff_dc[4]; // baseline is 2 tables, extended is 4
- static huffman huff_ac[4];
- static uint8 dequant[4][64];
- static int build_huffman(huffman *h, int *count)
- {
- int i,j,k=0,code;
- // build size list for each symbol (from JPEG spec)
- for (i=0; i < 16; ++i)
- for (j=0; j < count[i]; ++j)
- h->size[k++] = (uint8) (i+1);
- h->size[k] = 0;
- // compute actual symbols (from jpeg spec)
- code = 0;
- k = 0;
- for(j=1; j <= 16; ++j) {
- // compute delta to add to code to compute symbol id
- h->delta[j] = k - code;
- if (h->size[k] == j) {
- while (h->size[k] == j)
- h->code[k++] = (uint16) (code++);
- if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG");
- }
- // compute largest code + 1 for this size, preshifted as needed later
- h->maxcode[j] = code << (16-j);
- code <<= 1;
- }
- h->maxcode[j] = 0xffffffff;
- // build non-spec acceleration table; 255 is flag for not-accelerated
- memset(h->fast, 255, 1 << FAST_BITS);
- for (i=0; i < k; ++i) {
- int s = h->size[i];
- if (s <= FAST_BITS) {
- int c = h->code[i] << (FAST_BITS-s);
- int m = 1 << (FAST_BITS-s);
- for (j=0; j < m; ++j) {
- h->fast[c+j] = (uint8) i;
- }
- }
- }
- return 1;
- }
- // sizes for components, interleaved MCUs
- static int img_h_max, img_v_max;
- static int img_mcu_x, img_mcu_y;
- static int img_mcu_w, img_mcu_h;
- // definition of jpeg image component
- static struct
- {
- int id;
- int h,v;
- int tq;
- int hd,ha;
- int dc_pred;
- int x,y,w2,h2;
- uint8 *data;
- } img_comp[4];
- static unsigned long code_buffer; // jpeg entropy-coded buffer
- static int code_bits; // number of valid bits
- static unsigned char marker; // marker seen while filling entropy buffer
- static int nomore; // flag if we saw a marker so must stop
- static void grow_buffer_unsafe(void)
- {
- do {
- int b = nomore ? 0 : get8();
- if (b == 0xff) {
- int c = get8();
- if (c != 0) {
- marker = (unsigned char) c;
- nomore = 1;
- return;
- }
- }
- code_buffer = (code_buffer << 8) | b;
- code_bits += 8;
- } while (code_bits <= 24);
- }
- // (1 << n) - 1
- static unsigned long bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
- // decode a jpeg huffman value from the bitstream
- __forceinline static int decode(huffman *h)
- {
- unsigned int temp;
- int c,k;
- if (code_bits < 16) grow_buffer_unsafe();
- // look at the top FAST_BITS and determine what symbol ID it is,
- // if the code is <= FAST_BITS
- c = (code_buffer >> (code_bits - FAST_BITS)) & ((1 << FAST_BITS)-1);
- k = h->fast[c];
- if (k < 255) {
- if (h->size[k] > code_bits)
- return -1;
- code_bits -= h->size[k];
- return h->values[k];
- }
- // naive test is to shift the code_buffer down so k bits are
- // valid, then test against maxcode. To speed this up, we've
- // preshifted maxcode left so that it has (16-k) 0s at the
- // end; in other words, regardless of the number of bits, it
- // wants to be compared against something shifted to have 16;
- // that way we don't need to shift inside the loop.
- if (code_bits < 16)
- temp = (code_buffer << (16 - code_bits)) & 0xffff;
- else
- temp = (code_buffer >> (code_bits - 16)) & 0xffff;
- for (k=FAST_BITS+1 ; ; ++k)
- if (temp < h->maxcode[k])
- break;
- if (k == 17) {
- // error! code not found
- code_bits -= 16;
- return -1;
- }
- if (k > code_bits)
- return -1;
- // convert the huffman code to the symbol id
- c = ((code_buffer >> (code_bits - k)) & bmask[k]) + h->delta[k];
- assert((((code_buffer) >> (code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]);
- // convert the id to a symbol
- code_bits -= k;
- return h->values[c];
- }
- // combined JPEG 'receive' and JPEG 'extend', since baseline
- // always extends everything it receives.
- __forceinline static int extend_receive(int n)
- {
- unsigned int m = 1 << (n-1);
- unsigned int k;
- if (code_bits < n) grow_buffer_unsafe();
- k = (code_buffer >> (code_bits - n)) & bmask[n];
- code_bits -= n;
- // the following test is probably a random branch that won't
- // predict well. I tried to table accelerate it but failed.
- // maybe it's compiling as a conditional move?
- if (k < m)
- return (-1 << n) + k + 1;
- else
- return k;
- }
- // given a value that's at position X in the zigzag stream,
- // where does it appear in the 8x8 matrix coded as row-major?
- static uint8 dezigzag[64+15] =
- {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
- // let corrupt input sample past end
- 63, 63, 63, 63, 63, 63, 63, 63,
- 63, 63, 63, 63, 63, 63, 63
- };
- // decode one 64-entry block--
- static int decode_block(short data[64], huffman *hdc, huffman *hac, int b)
- {
- int diff,dc,k;
- int t = decode(hdc);
- if (t < 0) return e("bad huffman code","Corrupt JPEG");
- // 0 all the ac values now so we can do it 32-bits at a time
- memset(data,0,64*sizeof(data[0]));
- diff = t ? extend_receive(t) : 0;
- dc = img_comp[b].dc_pred + diff;
- img_comp[b].dc_pred = dc;
- data[0] = (short) dc;
- // decode AC components, see JPEG spec
- k = 1;
- do {
- int r,s;
- int rs = decode(hac);
- if (rs < 0) return e("bad huffman code","Corrupt JPEG");
- s = rs & 15;
- r = rs >> 4;
- if (s == 0) {
- if (rs != 0xf0) break; // end block
- k += 16;
- } else {
- k += r;
- // decode into unzigzag'd location
- data[dezigzag[k++]] = (short) extend_receive(s);
- }
- } while (k < 64);
- return 1;
- }
- // take a -128..127 value and clamp it and convert to 0..255
- __forceinline static uint8 clamp(int x)
- {
- x += 128;
- // trick to use a single test to catch both cases
- if ((unsigned int) x > 255) {
- if (x < 0) return 0;
- if (x > 255) return 255;
- }
- return (uint8) x;
- }
- #define f2f(x) (int) (((x) * 4096 + 0.5))
- #define fsh(x) ((x) << 12)
- // derived from jidctint -- DCT_ISLOW
- #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
- int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
- p2 = s2; \
- p3 = s6; \
- p1 = (p2+p3) * f2f(0.5411961f); \
- t2 = p1 + p3*f2f(-1.847759065f); \
- t3 = p1 + p2*f2f( 0.765366865f); \
- p2 = s0; \
- p3 = s4; \
- t0 = fsh(p2+p3); \
- t1 = fsh(p2-p3); \
- x0 = t0+t3; \
- x3 = t0-t3; \
- x1 = t1+t2; \
- x2 = t1-t2; \
- t0 = s7; \
- t1 = s5; \
- t2 = s3; \
- t3 = s1; \
- p3 = t0+t2; \
- p4 = t1+t3; \
- p1 = t0+t3; \
- p2 = t1+t2; \
- p5 = (p3+p4)*f2f( 1.175875602f); \
- t0 = t0*f2f( 0.298631336f); \
- t1 = t1*f2f( 2.053119869f); \
- t2 = t2*f2f( 3.072711026f); \
- t3 = t3*f2f( 1.501321110f); \
- p1 = p5 + p1*f2f(-0.899976223f); \
- p2 = p5 + p2*f2f(-2.562915447f); \
- p3 = p3*f2f(-1.961570560f); \
- p4 = p4*f2f(-0.390180644f); \
- t3 += p1+p4; \
- t2 += p2+p3; \
- t1 += p2+p4; \
- t0 += p1+p3;
- // .344 seconds on 3*anemones.jpg
- static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize)
- {
- int i,val[64],*v=val;
- uint8 *o,*dq = dequantize;
- short *d = data;
- if (stbi_jpeg_dc_only) {
- // ok, I don't really know why this is right, but it seems to be:
- int z = 128 + ((d[0] * dq[0]) >> 3);
- for (i=0; i < 8; ++i) {
- out[0] = out[1] = out[2] = out[3] = out[4] = out[5] = out[6] = out[7] = z;
- out += out_stride;
- }
- return;
- }
- // columns
- for (i=0; i < 8; ++i,++d,++dq, ++v) {
- // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
- if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
- && d[40]==0 && d[48]==0 && d[56]==0) {
- // no shortcut 0 seconds
- // (1|2|3|4|5|6|7)==0 0 seconds
- // all separate -0.047 seconds
- // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
- int dcterm = d[0] * dq[0] << 2;
- v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
- } else {
- IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24],
- d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56])
- // constants scaled things up by 1<<12; let's bring them back
- // down, but keep 2 extra bits of precision
- x0 += 512; x1 += 512; x2 += 512; x3 += 512;
- v[ 0] = (x0+t3) >> 10;
- v[56] = (x0-t3) >> 10;
- v[ 8] = (x1+t2) >> 10;
- v[48] = (x1-t2) >> 10;
- v[16] = (x2+t1) >> 10;
- v[40] = (x2-t1) >> 10;
- v[24] = (x3+t0) >> 10;
- v[32] = (x3-t0) >> 10;
- }
- }
- for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {
- // no fast case since the first 1D IDCT spread components out
- IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
- // constants scaled things up by 1<<12, plus we had 1<<2 from first
- // loop, plus horizontal and vertical each scale by sqrt(8) so together
- // we've got an extra 1<<3, so 1<<17 total we need to remove.
- x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536;
- o[0] = clamp((x0+t3) >> 17);
- o[7] = clamp((x0-t3) >> 17);
- o[1] = clamp((x1+t2) >> 17);
- o[6] = clamp((x1-t2) >> 17);
- o[2] = clamp((x2+t1) >> 17);
- o[5] = clamp((x2-t1) >> 17);
- o[3] = clamp((x3+t0) >> 17);
- o[4] = clamp((x3-t0) >> 17);
- }
- }
- #define MARKER_none 0xff
- // if there's a pending marker from the entropy stream, return that
- // otherwise, fetch from the stream and get a marker. if there's no
- // marker, return 0xff, which is never a valid marker value
- static uint8 get_marker(void)
- {
- uint8 x;
- if (marker != MARKER_none) { x = marker; marker = MARKER_none; return x; }
- x = get8u();
- if (x != 0xff) return MARKER_none;
- while (x == 0xff)
- x = get8u();
- return x;
- }
- // in each scan, we'll have scan_n components, and the order
- // of the components is specified by order[]
- static int scan_n, order[4];
- static int restart_interval, todo;
- #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)
- // after a restart interval, reset the entropy decoder and
- // the dc prediction
- static void reset(void)
- {
- code_bits = 0;
- code_buffer = 0;
- nomore = 0;
- img_comp[0].dc_pred = img_comp[1].dc_pred = img_comp[2].dc_pred = 0;
- marker = MARKER_none;
- todo = restart_interval ? restart_interval : 0x7fffffff;
- // no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
- // since we don't even allow 1<<30 pixels
- }
- static int parse_entropy_coded_data(void)
- {
- reset();
- if (scan_n == 1) {
- int i,j;
- short data[64];
- int n = order[0];
- // non-interleaved data, we just need to process one block at a time,
- // in trivial scanline order
- // number of blocks to do just depends on how many actual "pixels" this
- // component has, independent of interleaved MCU blocking and such
- int w = (img_comp[n].x+7) >> 3;
- int h = (img_comp[n].y+7) >> 3;
- for (j=0; j < h; ++j) {
- for (i=0; i < w; ++i) {
- if (!decode_block(data, huff_dc+img_comp[n].hd, huff_ac+img_comp[n].ha, n)) return 0;
- idct_block(img_comp[n].data+img_comp[n].w2*j*8+i*8, img_comp[n].w2, data, dequant[img_comp[n].tq]);
- // every data block is an MCU, so countdown the restart interval
- if (--todo <= 0) {
- if (code_bits < 24) grow_buffer_unsafe();
- // if it's NOT a restart, then just bail, so we get corrupt data
- // rather than no data
- if (!RESTART(marker)) return 1;
- reset();
- }
- }
- }
- } else { // interleaved!
- int i,j,k,x,y;
- short data[64];
- for (j=0; j < img_mcu_y; ++j) {
- for (i=0; i < img_mcu_x; ++i) {
- // scan an interleaved mcu... process scan_n components in order
- for (k=0; k < scan_n; ++k) {
- int n = order[k];
- // scan out an mcu's worth of this component; that's just determined
- // by the basic H and V specified for the component
- for (y=0; y < img_comp[n].v; ++y) {
- for (x=0; x < img_comp[n].h; ++x) {
- int x2 = (i*img_comp[n].h + x)*8;
- int y2 = (j*img_comp[n].v + y)*8;
- if (!decode_block(data, huff_dc+img_comp[n].hd, huff_ac+img_comp[n].ha, n)) return 0;
- idct_block(img_comp[n].data+img_comp[n].w2*y2+x2, img_comp[n].w2, data, dequant[img_comp[n].tq]);
- }
- }
- }
- // after all interleaved components, that's an interleaved MCU,
- // so now count down the restart interval
- if (--todo <= 0) {
- if (code_bits < 24) grow_buffer_unsafe();
- // if it's NOT a restart, then just bail, so we get corrupt data
- // rather than no data
- if (!RESTART(marker)) return 1;
- reset();
- }
- }
- }
- }
- return 1;
- }
- static int process_marker(int m)
- {
- int L;
- switch (m) {
- case MARKER_none: // no marker found
- return e("expected marker","Corrupt JPEG");
- case 0xC2: // SOF - progressive
- return e("progressive jpeg","JPEG format not supported (progressive)");
- case 0xDD: // DRI - specify restart interval
- if (get16() != 4) return e("bad DRI len","Corrupt JPEG");
- restart_interval = get16();
- return 1;
- case 0xDB: // DQT - define quantization table
- L = get16()-2;
- while (L > 0) {
- int z = get8();
- int p = z >> 4;
- int t = z & 15,i;
- if (p != 0) return e("bad DQT type","Corrupt JPEG");
- if (t > 3) return e("bad DQT table","Corrupt JPEG");
- for (i=0; i < 64; ++i)
- dequant[t][dezigzag[i]] = get8u();
- L -= 65;
- }
- return L==0;
- case 0xC4: // DHT - define huffman table
- L = get16()-2;
- while (L > 0) {
- uint8 *v;
- int sizes[16],i,m=0;
- int z = get8();
- int tc = z >> 4;
- int th = z & 15;
- if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG");
- for (i=0; i < 16; ++i) {
- sizes[i] = get8();
- m += sizes[i];
- }
- L -= 17;
- if (tc == 0) {
- if (!build_huffman(huff_dc+th, sizes)) return 0;
- v = huff_dc[th].values;
- } else {
- if (!build_huffman(huff_ac+th, sizes)) return 0;
- v = huff_ac[th].values;
- }
- for (i=0; i < m; ++i)
- v[i] = get8u();
- L -= m;
- }
- return L==0;
- }
- // check for comment block or APP blocks
- if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {
- skip(get16()-2);
- return 1;
- }
- return 0;
- }
- // after we see SOS
- static int process_scan_header(void)
- {
- int i;
- int Ls = get16();
- scan_n = get8();
- if (scan_n < 1 || scan_n > 4 || scan_n > (int) img_n) return e("bad SOS component count","Corrupt JPEG");
- if (Ls != 6+2*scan_n) return e("bad SOS len","Corrupt JPEG");
- for (i=0; i < scan_n; ++i) {
- int id = get8(), which;
- int z = get8();
- for (which = 0; which < img_n; ++which)
- if (img_comp[which].id == id)
- break;
- if (which == img_n) return 0;
- img_comp[which].hd = z >> 4; if (img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG");
- img_comp[which].ha = z & 15; if (img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG");
- order[i] = which;
- }
- if (get8() != 0) return e("bad SOS","Corrupt JPEG");
- get8(); // should be 63, but might be 0
- if (get8() != 0) return e("bad SOS","Corrupt JPEG");
- return 1;
- }
- static int process_frame_header(int scan)
- {
- int Lf,p,i,z, h_max=1,v_max=1;
- Lf = get16(); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG
- p = get8(); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline
- img_y = get16(); if (img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
- img_x = get16(); if (img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires
- img_n = get8();
- if (img_n != 3 && img_n != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires
- if (Lf != 8+3*img_n) return e("bad SOF len","Corrupt JPEG");
- for (i=0; i < img_n; ++i) {
- img_comp[i].id = get8();
- if (img_comp[i].id != i+1) // JFIF requires
- if (img_comp[i].id != i) // jpegtran outputs non-JFIF-compliant files!
- return e("bad component ID","Corrupt JPEG");
- z = get8();
- img_comp[i].h = (z >> 4); if (!img_comp[i].h || img_comp[i].h > 4) return e("bad H","Corrupt JPEG");
- img_comp[i].v = z & 15; if (!img_comp[i].v || img_comp[i].v > 4) return e("bad V","Corrupt JPEG");
- img_comp[i].tq = get8(); if (img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG");
- }
- if (scan != SCAN_load) return 1;
- if ((1 << 30) / img_x / img_n < img_y) return e("too large", "Image too large to decode");
- for (i=0; i < img_n; ++i) {
- if (img_comp[i].h > h_max) h_max = img_comp[i].h;
- if (img_comp[i].v > v_max) v_max = img_comp[i].v;
- }
- // compute interleaved mcu info
- img_h_max = h_max;
- img_v_max = v_max;
- img_mcu_w = h_max * 8;
- img_mcu_h = v_max * 8;
- img_mcu_x = (img_x + img_mcu_w-1) / img_mcu_w;
- img_mcu_y = (img_y + img_mcu_h-1) / img_mcu_h;
- for (i=0; i < img_n; ++i) {
- // number of effective pixels (e.g. for non-interleaved MCU)
- img_comp[i].x = (img_x * img_comp[i].h + h_max-1) / h_max;
- img_comp[i].y = (img_y * img_comp[i].v + v_max-1) / v_max;
- // to simplify generation, we'll allocate enough memory to decode
- // the bogus oversized data from using interleaved MCUs and their
- // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
- // discard the extra data until colorspace conversion
- img_comp[i].w2 = img_mcu_x * img_comp[i].h * 8;
- img_comp[i].h2 = img_mcu_y * img_comp[i].v * 8;
- img_comp[i].data = (uint8 *) malloc(img_comp[i].w2 * img_comp[i].h2);
- if (img_comp[i].data == NULL) {
- for(--i; i >= 0; --i)
- free(img_comp[i].data);
- return e("outofmem", "Out of memory");
- }
- }
- return 1;
- }
- // use comparisons since in some cases we handle more than one case (e.g. SOF)
- #define DNL(x) ((x) == 0xdc)
- #define SOI(x) ((x) == 0xd8)
- #define EOI(x) ((x) == 0xd9)
- #define SOF(x) ((x) == 0xc0 || (x) == 0xc1)
- #define SOS(x) ((x) == 0xda)
- static int decode_jpeg_header(int scan)
- {
- int m;
- marker = MARKER_none; // initialize cached marker to empty
- m = get_marker();
- if (!SOI(m)) return e("no SOI","Corrupt JPEG");
- if (scan == SCAN_type) return 1;
- m = get_marker();
- while (!SOF(m)) {
- if (!process_marker(m)) return 0;
- m = get_marker();
- while (m == MARKER_none) {
- // some files have extra padding after their blocks, so ok, we'll scan
- if (at_eof()) return e("no SOF", "Corrupt JPEG");
- m = get_marker();
- }
- }
- if (!process_frame_header(scan)) return 0;
- return 1;
- }
- static int decode_jpeg_image(void)
- {
- int m;
- restart_interval = 0;
- if (!decode_jpeg_header(SCAN_load)) return 0;
- m = get_marker();
- while (!EOI(m)) {
- if (SOS(m)) {
- if (!process_scan_header()) return 0;
- if (!parse_entropy_coded_data()) return 0;
- } else {
- if (!process_marker(m)) return 0;
- }
- m = get_marker();
- }
- return 1;
- }
- // static jfif-centered resampling with cross-block smoothing
- // here by cross-block smoothing what I mean is that the resampling
- // is bilerp and crosses blocks; I dunno what IJG means
- #define div4(x) ((uint8) ((x) >> 2))
- static void resample_v_2(uint8 *out1, uint8 *input, int w, int h, int s)
- {
- // need to generate two samples vertically for every one in input
- uint8 *above;
- uint8 *below;
- uint8 *source;
- uint8 *out2;
- int i,j;
- source = input;
- out2 = out1+w;
- for (j=0; j < h; ++j) {
- above = source;
- source = input + j*s;
- below = source + s; if (j == h-1) below = source;
- for (i=0; i < w; ++i) {
- int n = source[i]*3;
- out1[i] = div4(above[i] + n);
- out2[i] = div4(below[i] + n);
- }
- out1 += w*2;
- out2 += w*2;
- }
- }
- static void resample_h_2(uint8 *out, uint8 *input, int w, int h, int s)
- {
- // need to generate two samples horizontally for every one in input
- int i,j;
- if (w == 1) {
- for (j=0; j < h; ++j)
- out[j*2+0] = out[j*2+1] = input[j*s];
- return;
- }
- for (j=0; j < h; ++j) {
- out[0] = input[0];
- out[1] = div4(input[0]*3 + input[1]);
- for (i=1; i < w-1; ++i) {
- int n = input[i]*3;
- out[i*2-2] = div4(input[i-1] + n);
- out[i*2-1] = div4(input[i+1] + n);
- }
- out[w*2-2] = div4(input[w-2]*3 + input[w-1]);
- out[w*2-1] = input[w-1];
- out += w*2;
- input += s;
- }
- }
- // .172 seconds on 3*anemones.jpg
- static void resample_hv_2(uint8 *out, uint8 *input, int w, int h, int s)
- {
- // need to generate 2x2 samples for every one in input
- int i,j;
- int os = w*2;
- // generate edge samples... @TODO lerp them!
- for (i=0; i < w; ++i) {
- out[i*2+0] = out[i*2+1] = input[i];
- out[i*2+(2*h-1)*os+0] = out[i*2+(2*h-1)*os+1] = input[i+(h-1)*w];
- }
- for (j=0; j < h; ++j) {
- out[j*os*2+0] = out[j*os*2+os+0] = input[j*w];
- out[j*os*2+os-1] = out[j*os*2+os+os-1] = input[j*w+i-1];
- }
- // now generate interior samples; i & j point to top left of input
- for (j=0; j < h-1; ++j) {
- uint8 *in1 = input+j*s;
- uint8 *in2 = in1 + s;
- uint8 *out1 = out + (j*2+1)*os + 1;
- uint8 *out2 = out1 + os;
- for (i=0; i < w-1; ++i) {
- int p00 = in1[0], p01=in1[1], p10=in2[0], p11=in2[1];
- int p00_3 = p00*3, p01_3 = p01*3, p10_3 = p10*3, p11_3 = p11*3;
- #define div16(x) ((uint8) ((x) >> 4))
- out1[0] = div16(p00*9 + p01_3 + p10_3 + p11);
- out1[1] = div16(p01*9 + p00_3 + p01_3 + p10);
- out2[0] = div16(p10*9 + p11_3 + p00_3 + p01);
- out2[1] = div16(p11*9 + p10_3 + p01_3 + p00);
- out1 += 2;
- out2 += 2;
- ++in1;
- ++in2;
- }
- }
- }
- #define float2fixed(x) ((int) ((x) * 65536 + 0.5))
- // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro)
- // VC6 without processor=Pro is generating multiple LEAs per multiply!
- static void YCbCr_to_RGB_row(uint8 *out, uint8 *y, uint8 *pcb, uint8 *pcr, int count, int step)
- {
- int i;
- for (i=0; i < count; ++i) {
- int y_fixed = (y[i] << 16) + 32768; // rounding
- int r,g,b;
- int cr = pcr[i] - 128;
- int cb = pcb[i] - 128;
- r = y_fixed + cr*float2fixed(1.40200f);
- g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f);
- b = y_fixed + cb*float2fixed(1.77200f);
- r >>= 16;
- g >>= 16;
- b >>= 16;
- if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
- if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
- if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
- out[0] = (uint8)r;
- out[1] = (uint8)g;
- out[2] = (uint8)b;
- if (step == 4) out[3] = 255;
- out += step;
- }
- }
- // clean up the temporary component buffers
- static void cleanup_jpeg(void)
- {
- int i;
- for (i=0; i < img_n; ++i) {
- if (img_comp[i].data) {
- free(img_comp[i].data);
- img_comp[i].data = NULL;
- }
- }
- }
- static uint8 *load_jpeg_image(int *out_x, int *out_y, int *comp, int req_comp)
- {
- int i, n;
- // validate req_comp
- if (req_comp < 0 || req_comp > 4) return ep("bad req_comp", "Internal error");
- // load a jpeg image from whichever source
- if (!decode_jpeg_image()) { cleanup_jpeg(); return NULL; }
- // determine actual number of components to generate
- n = req_comp ? req_comp : img_n;
- // resample components to full size... memory wasteful, but this
- // lets us bilerp across blocks while upsampling
- for (i=0; i < img_n; ++i) {
- // if we're outputting fewer than 3 components, we're grey not RGB;
- // in that case, don't bother upsampling Cb or Cr
- if (n < 3 && i) continue;
- // check if the component scale is less than max; if so it needs upsampling
- if (img_comp[i].h != img_h_max || img_comp[i].v != img_v_max) {
- int stride = img_x;
- // allocate final size; make sure it's big enough for upsampling off
- // the edges with upsample up to 4x4 (although we only support 2x2
- // currently)
- uint8 *new_data = (uint8 *) malloc((img_x+3)*(img_y+3));
- if (new_data == NULL) {
- cleanup_jpeg();
- return ep("outofmem", "Out of memory (image too large?)");
- }
- if (img_comp[i].h*2 == img_h_max && img_comp[i].v*2 == img_v_max) {
- int tx = (img_x+1)>>1;
- resample_hv_2(new_data, img_comp[i].data, tx,(img_y+1)>>1, img_comp[i].w2);
- stride = tx*2;
- } else if (img_comp[i].h == img_h_max && img_comp[i].v*2 == img_v_max) {
- resample_v_2(new_data, img_comp[i].data, img_x,(img_y+1)>>1, img_comp[i].w2);
- } else if (img_comp[i].h*2 == img_h_max && img_comp[i].v == img_v_max) {
- int tx = (img_x+1)>>1;
- resample_h_2(new_data, img_comp[i].data, tx,img_y, img_comp[i].w2);
- stride = tx*2;
- } else {
- // @TODO resample uncommon sampling pattern with nearest neighbor
- free(new_data);
- cleanup_jpeg();
- return ep("uncommon H or V", "JPEG not supported: atypical downsampling mode");
- }
- img_comp[i].w2 = stride;
- free(img_comp[i].data);
- img_comp[i].data = new_data;
- }
- }
- // now convert components to output image
- {
- uint32 i,j;
- uint8 *output = (uint8 *) malloc(n * img_x * img_y + 1);
- if (n >= 3) { // output STBI_rgb_*
- for (j=0; j < img_y; ++j) {
- uint8 *y = img_comp[0].data + j*img_comp[0].w2;
- uint8 *out = output + n * img_x * j;
- if (img_n == 3) {
- uint8 *cb = img_comp[1].data + j*img_comp[1].w2;
- uint8 *cr = img_comp[2].data + j*img_comp[2].w2;
- YCbCr_to_RGB_row(out, y, cb, cr, img_x, n);
- } else {
- for (i=0; i < img_x; ++i) {
- out[0] = out[1] = out[2] = y[i];
- out[3] = 255; // not used if n == 3
- out += n;
- }
- }
- }
- } else { // output STBI_grey_*
- for (j=0; j < img_y; ++j) {
- uint8 *y = img_comp[0].data + j*img_comp[0].w2;
- uint8 *out = output + n * img_x * j;
- if (n == 1)
- for (i=0; i < img_x; ++i) *out++ = *y++;
- else
- for (i=0; i < img_x; ++i) *out++ = *y++, *out++ = 255;
- }
- }
- cleanup_jpeg();
- *out_x = img_x;
- *out_y = img_y;
- if (comp) *comp = n; // Changed JLD: report output components
- //if (comp) *comp = img_n; // report original components, not output
- return output;
- }
- }
- #ifndef STBI_NO_STDIO
- unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
- {
- start_file(f);
- return load_jpeg_image(x,y,comp,req_comp);
- }
- unsigned char *stbi_jpeg_load(char *filename, int *x, int *y, int *comp, int req_comp)
- {
- unsigned char *data;
- FILE *f = fopen(filename, "rb");
- if (!f) return NULL;
- data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp);
- fclose(f);
- return data;
- }
- #endif
- unsigned char *stbi_jpeg_load_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp)
- {
- start_mem(buffer,len);
- return load_jpeg_image(x,y,comp,req_comp);
- }
- #ifndef STBI_NO_STDIO
- int stbi_jpeg_test_file(FILE *f)
- {
- int n,r;
- n = ftell(f);
- start_file(f);
- r = decode_jpeg_header(SCAN_type);
- fseek(f,n,SEEK_SET);
- return r;
- }
- #endif
- int stbi_jpeg_test_memory(unsigned char *buffer, int len)
- {
- start_mem(buffer,len);
- return decode_jpeg_header(SCAN_type);
- }
- // @TODO:
- #ifndef STBI_NO_STDIO
- extern int stbi_jpeg_info (char *filename, int *x, int *y, int *comp);
- extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp);
- #endif
- extern int stbi_jpeg_info_from_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp);
- // public domain zlib decode v0.2 Sean Barrett 2006-11-18
- // simple implementation
- // - all input must be provided in an upfront buffer
- // - all output is written to a single output buffer (can malloc/realloc)
- // performance
- // - fast huffman
- // fast-way is faster to check than jpeg huffman, but slow way is slower
- #define ZFAST_BITS 9 // accelerate all cases in default tables
- #define ZFAST_MASK ((1 << ZFAST_BITS) - 1)
- // zlib-style huffman encoding
- // (jpegs packs from left, zlib from right, so can't share code)
- typedef struct
- {
- uint16 fast[1 << ZFAST_BITS];
- uint16 firstcode[16];
- int maxcode[17];
- uint16 firstsymbol[16];
- uint8 size[288];
- uint16 value[288];
- } zhuffman;
- __forceinline static int bitreverse16(int n)
- {
- n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
- n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
- n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
- n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
- return n;
- }
- __forceinline static int bit_reverse(int v, int bits)
- {
- assert(bits <= 16);
- // to bit reverse n bits, reverse 16 and shift
- // e.g. 11 bits, bit reverse and shift away 5
- return bitreverse16(v) >> (16-bits);
- }
- static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
- {
- int i,k=0;
- int code, next_code[16], sizes[17];
- // DEFLATE spec for generating codes
- memset(sizes, 0, sizeof(sizes));
- memset(z->fast, 255, sizeof(z->fast));
- for (i=0; i < num; ++i)
- ++sizes[sizelist[i]];
- sizes[0] = 0;
- for (i=1; i < 16; ++i)
- assert(sizes[i] <= (1 << i));
- code = 0;
- for (i=1; i < 16; ++i) {
- next_code[i] = code;
- z->firstcode[i] = (uint16) code;
- z->firstsymbol[i] = (uint16) k;
- code = (code + sizes[i]);
- if (sizes[i])
- if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG");
- z->maxcode[i] = code << (16-i); // preshift for inner loop
- code <<= 1;
- k += sizes[i];
- }
- z->maxcode[16] = 0x10000; // sentinel
- for (i=0; i < num; ++i) {
- int s = sizelist[i];
- if (s) {
- int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
- z->size[c] = (uint8)s;
- z->value[c] = (uint16)i;
- if (s <= ZFAST_BITS) {
- int k = bit_reverse(next_code[s],s);
- while (k < (1 << ZFAST_BITS)) {
- z->fast[k] = (uint16) c;
- k += (1 << s);
- }
- }
- ++next_code[s];
- }
- }
- return 1;
- }
- // zlib-from-memory implementation for PNG reading
- // because PNG allows splitting the zlib stream arbitrarily,
- // and it's annoying structurally to have PNG call ZLIB call PNG,
- // we require PNG read all the IDATs and combine them into a single
- // memory buffer
- static uint8 *zbuffer, *zbuffer_end;…