/compiler/Eta/Utils/GraphOps.hs
https://github.com/typelead/eta · Haskell · 677 lines · 416 code · 137 blank · 124 comment · 15 complexity · b95aff548a4eee406e76df34d0d17cc9 MD5 · raw file
- -- | Basic operations on graphs.
- --
- module Eta.Utils.GraphOps (
- addNode, delNode, getNode, lookupNode, modNode,
- size,
- union,
- addConflict, delConflict, addConflicts,
- addCoalesce, delCoalesce,
- addExclusion, addExclusions,
- addPreference,
- coalesceNodes, coalesceGraph,
- freezeNode, freezeOneInGraph, freezeAllInGraph,
- scanGraph,
- setColor,
- validateGraph,
- slurpNodeConflictCount
- )
- where
- import Eta.Utils.GraphBase
- import Eta.Utils.Outputable
- import Eta.BasicTypes.Unique
- import Eta.Utils.UniqSet
- import Eta.Utils.UniqFM
- import Data.List hiding (union)
- import Data.Maybe
- -- | Lookup a node from the graph.
- lookupNode
- :: Uniquable k
- => Graph k cls color
- -> k -> Maybe (Node k cls color)
- lookupNode graph k
- = lookupUFM (graphMap graph) k
- -- | Get a node from the graph, throwing an error if it's not there
- getNode
- :: Uniquable k
- => Graph k cls color
- -> k -> Node k cls color
- getNode graph k
- = case lookupUFM (graphMap graph) k of
- Just node -> node
- Nothing -> panic "ColorOps.getNode: not found"
- -- | Add a node to the graph, linking up its edges
- addNode :: Uniquable k
- => k -> Node k cls color
- -> Graph k cls color -> Graph k cls color
- addNode k node graph
- = let
- -- add back conflict edges from other nodes to this one
- map_conflict =
- nonDetFoldUniqSet
- -- It's OK to use nonDetFoldUFM here because the
- -- operation is commutative
- (adjustUFM_C (\n -> n { nodeConflicts =
- addOneToUniqSet (nodeConflicts n) k}))
- (graphMap graph)
- (nodeConflicts node)
- -- add back coalesce edges from other nodes to this one
- map_coalesce =
- nonDetFoldUniqSet
- -- It's OK to use nonDetFoldUFM here because the
- -- operation is commutative
- (adjustUFM_C (\n -> n { nodeCoalesce =
- addOneToUniqSet (nodeCoalesce n) k}))
- map_conflict
- (nodeCoalesce node)
- in graph
- { graphMap = addToUFM map_coalesce k node}
- -- | Delete a node and all its edges from the graph.
- delNode :: (Uniquable k)
- => k -> Graph k cls color -> Maybe (Graph k cls color)
- delNode k graph
- | Just node <- lookupNode graph k
- = let -- delete conflict edges from other nodes to this one.
- graph1 = foldl' (\g k1 -> let Just g' = delConflict k1 k g in g') graph
- $ nonDetEltsUniqSet (nodeConflicts node)
- -- delete coalesce edge from other nodes to this one.
- graph2 = foldl' (\g k1 -> let Just g' = delCoalesce k1 k g in g') graph1
- $ nonDetEltsUniqSet (nodeCoalesce node)
- -- See Note [Unique Determinism and code generation]
- -- delete the node
- graph3 = graphMapModify (\fm -> delFromUFM fm k) graph2
- in Just graph3
- | otherwise
- = Nothing
- -- | Modify a node in the graph.
- -- returns Nothing if the node isn't present.
- --
- modNode :: Uniquable k
- => (Node k cls color -> Node k cls color)
- -> k -> Graph k cls color -> Maybe (Graph k cls color)
- modNode f k graph
- = case lookupNode graph k of
- Just Node{}
- -> Just
- $ graphMapModify
- (\fm -> let Just node = lookupUFM fm k
- node' = f node
- in addToUFM fm k node')
- graph
- Nothing -> Nothing
- -- | Get the size of the graph, O(n)
- size :: Graph k cls color -> Int
- size graph
- = sizeUFM $ graphMap graph
- -- | Union two graphs together.
- union :: Graph k cls color -> Graph k cls color -> Graph k cls color
- union graph1 graph2
- = Graph
- { graphMap = plusUFM (graphMap graph1) (graphMap graph2) }
- -- | Add a conflict between nodes to the graph, creating the nodes required.
- -- Conflicts are virtual regs which need to be colored differently.
- addConflict
- :: Uniquable k
- => (k, cls) -> (k, cls)
- -> Graph k cls color -> Graph k cls color
- addConflict (u1, c1) (u2, c2)
- = let addNeighbor u c u'
- = adjustWithDefaultUFM
- (\node -> node { nodeConflicts = addOneToUniqSet (nodeConflicts node) u' })
- (newNode u c) { nodeConflicts = unitUniqSet u' }
- u
- in graphMapModify
- ( addNeighbor u1 c1 u2
- . addNeighbor u2 c2 u1)
- -- | Delete a conflict edge. k1 -> k2
- -- returns Nothing if the node isn't in the graph
- delConflict
- :: Uniquable k
- => k -> k
- -> Graph k cls color -> Maybe (Graph k cls color)
- delConflict k1 k2
- = modNode
- (\node -> node { nodeConflicts = delOneFromUniqSet (nodeConflicts node) k2 })
- k1
- -- | Add some conflicts to the graph, creating nodes if required.
- -- All the nodes in the set are taken to conflict with each other.
- addConflicts
- :: Uniquable k
- => UniqSet k -> (k -> cls)
- -> Graph k cls color -> Graph k cls color
- addConflicts conflicts getClass
- -- just a single node, but no conflicts, create the node anyway.
- | (u : []) <- nonDetEltsUniqSet conflicts
- = graphMapModify
- $ adjustWithDefaultUFM
- id
- (newNode u (getClass u))
- u
- | otherwise
- = graphMapModify
- $ \fm -> foldl' (\g u -> addConflictSet1 u getClass conflicts g) fm
- $ nonDetEltsUniqSet conflicts
- -- See Note [Unique Determinism and code generation]
- addConflictSet1 :: Uniquable k
- => k -> (k -> cls) -> UniqSet k
- -> UniqFM (Node k cls color)
- -> UniqFM (Node k cls color)
- addConflictSet1 u getClass set
- = case delOneFromUniqSet set u of
- set' -> adjustWithDefaultUFM
- (\node -> node { nodeConflicts = unionUniqSets set' (nodeConflicts node) } )
- (newNode u (getClass u)) { nodeConflicts = set' }
- u
- -- | Add an exclusion to the graph, creating nodes if required.
- -- These are extra colors that the node cannot use.
- addExclusion
- :: (Uniquable k, Uniquable color)
- => k -> (k -> cls) -> color
- -> Graph k cls color -> Graph k cls color
- addExclusion u getClass color
- = graphMapModify
- $ adjustWithDefaultUFM
- (\node -> node { nodeExclusions = addOneToUniqSet (nodeExclusions node) color })
- (newNode u (getClass u)) { nodeExclusions = unitUniqSet color }
- u
- addExclusions
- :: (Uniquable k, Uniquable color)
- => k -> (k -> cls) -> [color]
- -> Graph k cls color -> Graph k cls color
- addExclusions u getClass colors graph
- = foldr (addExclusion u getClass) graph colors
- -- | Add a coalescence edge to the graph, creating nodes if requried.
- -- It is considered adventageous to assign the same color to nodes in a coalesence.
- addCoalesce
- :: Uniquable k
- => (k, cls) -> (k, cls)
- -> Graph k cls color -> Graph k cls color
- addCoalesce (u1, c1) (u2, c2)
- = let addCoalesce u c u'
- = adjustWithDefaultUFM
- (\node -> node { nodeCoalesce = addOneToUniqSet (nodeCoalesce node) u' })
- (newNode u c) { nodeCoalesce = unitUniqSet u' }
- u
- in graphMapModify
- ( addCoalesce u1 c1 u2
- . addCoalesce u2 c2 u1)
- -- | Delete a coalescence edge (k1 -> k2) from the graph.
- delCoalesce
- :: Uniquable k
- => k -> k
- -> Graph k cls color -> Maybe (Graph k cls color)
- delCoalesce k1 k2
- = modNode (\node -> node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k2 })
- k1
- -- | Add a color preference to the graph, creating nodes if required.
- -- The most recently added preference is the most prefered.
- -- The algorithm tries to assign a node it's prefered color if possible.
- --
- addPreference
- :: Uniquable k
- => (k, cls) -> color
- -> Graph k cls color -> Graph k cls color
- addPreference (u, c) color
- = graphMapModify
- $ adjustWithDefaultUFM
- (\node -> node { nodePreference = color : (nodePreference node) })
- (newNode u c) { nodePreference = [color] }
- u
- -- | Do aggressive coalescing on this graph.
- -- returns the new graph and the list of pairs of nodes that got coalesced together.
- -- for each pair, the resulting node will have the least key and be second in the pair.
- --
- coalesceGraph
- :: (Uniquable k, Ord k, Eq cls, Outputable k)
- => Bool -- ^ If True, coalesce nodes even if this might make the graph
- -- less colorable (aggressive coalescing)
- -> Triv k cls color
- -> Graph k cls color
- -> ( Graph k cls color
- , [(k, k)]) -- pairs of nodes that were coalesced, in the order that the
- -- coalescing was applied.
- coalesceGraph aggressive triv graph
- = coalesceGraph' aggressive triv graph []
- coalesceGraph'
- :: (Uniquable k, Ord k, Eq cls, Outputable k)
- => Bool
- -> Triv k cls color
- -> Graph k cls color
- -> [(k, k)]
- -> ( Graph k cls color
- , [(k, k)])
- coalesceGraph' aggressive triv graph kkPairsAcc
- = let
- -- find all the nodes that have coalescence edges
- cNodes = filter (\node -> not $ isEmptyUniqSet (nodeCoalesce node))
- $ nonDetEltsUFM $ graphMap graph
- -- See Note [Unique Determinism and code generation]
- -- build a list of pairs of keys for node's we'll try and coalesce
- -- every pair of nodes will appear twice in this list
- -- ie [(k1, k2), (k2, k1) ... ]
- -- This is ok, GrapOps.coalesceNodes handles this and it's convenient for
- -- build a list of what nodes get coalesced together for later on.
- --
- cList = [ (nodeId node1, k2)
- | node1 <- cNodes
- , k2 <- nonDetEltsUniqSet $ nodeCoalesce node1 ]
- -- See Note [Unique Determinism and code generation]
- -- do the coalescing, returning the new graph and a list of pairs of keys
- -- that got coalesced together.
- (graph', mPairs)
- = mapAccumL (coalesceNodes aggressive triv) graph cList
- -- keep running until there are no more coalesces can be found
- in case catMaybes mPairs of
- [] -> (graph', reverse kkPairsAcc)
- pairs -> coalesceGraph' aggressive triv graph' (reverse pairs ++ kkPairsAcc)
- -- | Coalesce this pair of nodes unconditionally \/ aggressively.
- -- The resulting node is the one with the least key.
- --
- -- returns: Just the pair of keys if the nodes were coalesced
- -- the second element of the pair being the least one
- --
- -- Nothing if either of the nodes weren't in the graph
- coalesceNodes
- :: (Uniquable k, Ord k, Eq cls)
- => Bool -- ^ If True, coalesce nodes even if this might make the graph
- -- less colorable (aggressive coalescing)
- -> Triv k cls color
- -> Graph k cls color
- -> (k, k) -- ^ keys of the nodes to be coalesced
- -> (Graph k cls color, Maybe (k, k))
- coalesceNodes aggressive triv graph (k1, k2)
- | (kMin, kMax) <- if k1 < k2
- then (k1, k2)
- else (k2, k1)
- -- the nodes being coalesced must be in the graph
- , Just nMin <- lookupNode graph kMin
- , Just nMax <- lookupNode graph kMax
- -- can't coalesce conflicting modes
- , not $ elementOfUniqSet kMin (nodeConflicts nMax)
- , not $ elementOfUniqSet kMax (nodeConflicts nMin)
- -- can't coalesce the same node
- , nodeId nMin /= nodeId nMax
- = coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax
- -- don't do the coalescing after all
- | otherwise
- = (graph, Nothing)
- coalesceNodes_merge
- :: (Uniquable k, Eq cls)
- => Bool
- -> Triv k cls color
- -> Graph k cls color
- -> k -> k
- -> Node k cls color
- -> Node k cls color
- -> (Graph k cls color, Maybe (k, k))
- coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax
- -- sanity checks
- | nodeClass nMin /= nodeClass nMax
- = error "GraphOps.coalesceNodes: can't coalesce nodes of different classes."
- | not (isNothing (nodeColor nMin) && isNothing (nodeColor nMax))
- = error "GraphOps.coalesceNodes: can't coalesce colored nodes."
- ---
- | otherwise
- = let
- -- the new node gets all the edges from its two components
- node =
- Node { nodeId = kMin
- , nodeClass = nodeClass nMin
- , nodeColor = Nothing
- -- nodes don't conflict with themselves..
- , nodeConflicts
- = (unionUniqSets (nodeConflicts nMin) (nodeConflicts nMax))
- `delOneFromUniqSet` kMin
- `delOneFromUniqSet` kMax
- , nodeExclusions = unionUniqSets (nodeExclusions nMin) (nodeExclusions nMax)
- , nodePreference = nodePreference nMin ++ nodePreference nMax
- -- nodes don't coalesce with themselves..
- , nodeCoalesce
- = (unionUniqSets (nodeCoalesce nMin) (nodeCoalesce nMax))
- `delOneFromUniqSet` kMin
- `delOneFromUniqSet` kMax
- }
- in coalesceNodes_check aggressive triv graph kMin kMax node
- coalesceNodes_check
- :: Uniquable k
- => Bool
- -> Triv k cls color
- -> Graph k cls color
- -> k -> k
- -> Node k cls color
- -> (Graph k cls color, Maybe (k, k))
- coalesceNodes_check aggressive triv graph kMin kMax node
- -- Unless we're coalescing aggressively, if the result node is not trivially
- -- colorable then don't do the coalescing.
- | not aggressive
- , not $ triv (nodeClass node) (nodeConflicts node) (nodeExclusions node)
- = (graph, Nothing)
- | otherwise
- = let -- delete the old nodes from the graph and add the new one
- Just graph1 = delNode kMax graph
- Just graph2 = delNode kMin graph1
- graph3 = addNode kMin node graph2
- in (graph3, Just (kMax, kMin))
- -- | Freeze a node
- -- This is for the iterative coalescer.
- -- By freezing a node we give up on ever coalescing it.
- -- Move all its coalesce edges into the frozen set - and update
- -- back edges from other nodes.
- --
- freezeNode
- :: Uniquable k
- => k -- ^ key of the node to freeze
- -> Graph k cls color -- ^ the graph
- -> Graph k cls color -- ^ graph with that node frozen
- freezeNode k
- = graphMapModify
- $ \fm ->
- let -- freeze all the edges in the node to be frozen
- Just node = lookupUFM fm k
- node' = node
- { nodeCoalesce = emptyUniqSet }
- fm1 = addToUFM fm k node'
- -- update back edges pointing to this node
- freezeEdge k node
- = if elementOfUniqSet k (nodeCoalesce node)
- then node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k }
- else node -- panic "GraphOps.freezeNode: edge to freeze wasn't in the coalesce set"
- -- If the edge isn't actually in the coelesce set then just ignore it.
- fm2 = nonDetFoldUniqSet (adjustUFM_C (freezeEdge k)) fm1
- -- It's OK to use nonDetFoldUFM here because the operation
- -- is commutative
- $ nodeCoalesce node
- in fm2
- -- | Freeze one node in the graph
- -- This if for the iterative coalescer.
- -- Look for a move related node of low degree and freeze it.
- --
- -- We probably don't need to scan the whole graph looking for the node of absolute
- -- lowest degree. Just sample the first few and choose the one with the lowest
- -- degree out of those. Also, we don't make any distinction between conflicts of different
- -- classes.. this is just a heuristic, after all.
- --
- -- IDEA: freezing a node might free it up for Simplify.. would be good to check for triv
- -- right here, and add it to a worklist if known triv\/non-move nodes.
- --
- freezeOneInGraph
- :: (Uniquable k)
- => Graph k cls color
- -> ( Graph k cls color -- the new graph
- , Bool ) -- whether we found a node to freeze
- freezeOneInGraph graph
- = let compareNodeDegree n1 n2
- = compare (sizeUniqSet $ nodeConflicts n1) (sizeUniqSet $ nodeConflicts n2)
- candidates
- = sortBy compareNodeDegree
- $ take 5 -- 5 isn't special, it's just a small number.
- $ scanGraph (\node -> not $ isEmptyUniqSet (nodeCoalesce node)) graph
- in case candidates of
- -- there wasn't anything available to freeze
- [] -> (graph, False)
- -- we found something to freeze
- (n : _)
- -> ( freezeNode (nodeId n) graph
- , True)
- -- | Freeze all the nodes in the graph
- -- for debugging the iterative allocator.
- --
- freezeAllInGraph
- :: (Uniquable k)
- => Graph k cls color
- -> Graph k cls color
- freezeAllInGraph graph
- = foldr freezeNode graph
- $ map nodeId
- $ nonDetEltsUFM $ graphMap graph
- -- See Note [Unique Determinism and code generation]
- -- | Find all the nodes in the graph that meet some criteria
- --
- scanGraph
- :: (Node k cls color -> Bool)
- -> Graph k cls color
- -> [Node k cls color]
- scanGraph match graph
- = filter match $ nonDetEltsUFM $ graphMap graph
- -- See Note [Unique Determinism and code generation]
- -- | validate the internal structure of a graph
- -- all its edges should point to valid nodes
- -- If they don't then throw an error
- --
- validateGraph
- :: (Uniquable k, Outputable k, Eq color)
- => SDoc -- ^ extra debugging info to display on error
- -> Bool -- ^ whether this graph is supposed to be colored.
- -> Graph k cls color -- ^ graph to validate
- -> Graph k cls color -- ^ validated graph
- validateGraph doc isColored graph
- -- Check that all edges point to valid nodes.
- | edges <- unionManyUniqSets
- ( (map nodeConflicts $ nonDetEltsUFM $ graphMap graph)
- ++ (map nodeCoalesce $ nonDetEltsUFM $ graphMap graph))
- , nodes <- mkUniqSet $ map nodeId $ nonDetEltsUFM $ graphMap graph
- , badEdges <- minusUniqSet edges nodes
- , not $ isEmptyUniqSet badEdges
- = pprPanic "GraphOps.validateGraph"
- ( text "Graph has edges that point to non-existent nodes"
- $$ text " bad edges: " <> pprUFM (getUniqSet badEdges) (vcat . map ppr)
- $$ doc )
- -- Check that no conflicting nodes have the same color
- | badNodes <- filter (not . (checkNode graph))
- $ nonDetEltsUFM $ graphMap graph
- -- See Note [Unique Determinism and code generation]
- , not $ null badNodes
- = pprPanic "GraphOps.validateGraph"
- ( text "Node has same color as one of it's conflicts"
- $$ text " bad nodes: " <> hcat (map (ppr . nodeId) badNodes)
- $$ doc)
- -- If this is supposed to be a colored graph,
- -- check that all nodes have a color.
- | isColored
- , badNodes <- filter (\n -> isNothing $ nodeColor n)
- $ nonDetEltsUFM $ graphMap graph
- , not $ null badNodes
- = pprPanic "GraphOps.validateGraph"
- ( text "Supposably colored graph has uncolored nodes."
- $$ text " uncolored nodes: " <> hcat (map (ppr . nodeId) badNodes)
- $$ doc )
- -- graph looks ok
- | otherwise
- = graph
- -- | If this node is colored, check that all the nodes which
- -- conflict with it have different colors.
- checkNode
- :: (Uniquable k, Eq color)
- => Graph k cls color
- -> Node k cls color
- -> Bool -- ^ True if this node is ok
- checkNode graph node
- | Just color <- nodeColor node
- , Just neighbors <- sequence $ map (lookupNode graph)
- $ nonDetEltsUniqSet $ nodeConflicts node
- -- See Note [Unique Determinism and code generation]
- , neighbourColors <- catMaybes $ map nodeColor neighbors
- , elem color neighbourColors
- = False
- | otherwise
- = True
- -- | Slurp out a map of how many nodes had a certain number of conflict neighbours
- slurpNodeConflictCount
- :: Graph k cls color
- -> UniqFM (Int, Int) -- ^ (conflict neighbours, num nodes with that many conflicts)
- slurpNodeConflictCount graph
- = addListToUFM_C
- (\(c1, n1) (_, n2) -> (c1, n1 + n2))
- emptyUFM
- $ map (\node
- -> let count = sizeUniqSet $ nodeConflicts node
- in (count, (count, 1)))
- $ nonDetEltsUFM
- -- See Note [Unique Determinism and code generation]
- $ graphMap graph
- -- | Set the color of a certain node
- setColor
- :: Uniquable k
- => k -> color
- -> Graph k cls color -> Graph k cls color
- setColor u color
- = graphMapModify
- $ adjustUFM_C
- (\n -> n { nodeColor = Just color })
- u
- {-# INLINE adjustWithDefaultUFM #-}
- adjustWithDefaultUFM
- :: Uniquable k
- => (a -> a) -> a -> k
- -> UniqFM a -> UniqFM a
- adjustWithDefaultUFM f def k map
- = addToUFM_C
- (\old _ -> f old)
- map
- k def
- -- Argument order different from UniqFM's adjustUFM
- {-# INLINE adjustUFM_C #-}
- adjustUFM_C
- :: Uniquable k
- => (a -> a)
- -> k -> UniqFM a -> UniqFM a
- adjustUFM_C f k map
- = case lookupUFM map k of
- Nothing -> map
- Just a -> addToUFM map k (f a)