/Tensorflow_Pandas_Numpy/source3.6/tensorflow/contrib/resampler/ops/gen_resampler_ops.py
https://github.com/ryfeus/lambda-packs · Python · 167 lines · 65 code · 12 blank · 90 comment · 4 complexity · 986dafc068b6b8d872f527b9e2059aab MD5 · raw file
- """Python wrappers around TensorFlow ops.
- This file is MACHINE GENERATED! Do not edit.
- Original C++ source file: resampler_ops.cc
- """
- import collections as _collections
- from tensorflow.python.eager import execute as _execute
- from tensorflow.python.eager import context as _context
- from tensorflow.python.eager import core as _core
- from tensorflow.python.framework import dtypes as _dtypes
- from tensorflow.python.framework import tensor_shape as _tensor_shape
- from tensorflow.core.framework import op_def_pb2 as _op_def_pb2
- # Needed to trigger the call to _set_call_cpp_shape_fn.
- from tensorflow.python.framework import common_shapes as _common_shapes
- from tensorflow.python.framework import op_def_registry as _op_def_registry
- from tensorflow.python.framework import ops as _ops
- from tensorflow.python.framework import op_def_library as _op_def_library
- def resampler(data, warp, name=None):
- r"""Resampler op.
- Args:
- data: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
- warp: A `Tensor`. Must have the same type as `data`.
- name: A name for the operation (optional).
- Returns:
- A `Tensor`. Has the same type as `data`.
- """
- _ctx = _context.context()
- if _ctx.in_graph_mode():
- _, _, _op = _op_def_lib._apply_op_helper(
- "Resampler", data=data, warp=warp, name=name)
- _result = _op.outputs[:]
- _inputs_flat = _op.inputs
- _attrs = ("T", _op.get_attr("T"))
- else:
- _attr_T, _inputs_T = _execute.args_to_matching_eager([data, warp], _ctx)
- (data, warp) = _inputs_T
- _attr_T = _attr_T.as_datatype_enum
- _inputs_flat = [data, warp]
- _attrs = ("T", _attr_T)
- _result = _execute.execute(b"Resampler", 1, inputs=_inputs_flat,
- attrs=_attrs, ctx=_ctx, name=name)
- _execute.record_gradient(
- "Resampler", _inputs_flat, _attrs, _result, name)
- _result, = _result
- return _result
- _ops.RegisterShape("Resampler")(None)
- _resampler_grad_outputs = ["grad_data", "grad_warp"]
- _ResamplerGradOutput = _collections.namedtuple(
- "ResamplerGrad", _resampler_grad_outputs)
- def resampler_grad(data, warp, grad_output, name=None):
- r"""Resampler Grad op.
- Args:
- data: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
- warp: A `Tensor`. Must have the same type as `data`.
- grad_output: A `Tensor`. Must have the same type as `data`.
- name: A name for the operation (optional).
- Returns:
- A tuple of `Tensor` objects (grad_data, grad_warp).
- grad_data: A `Tensor`. Has the same type as `data`.
- grad_warp: A `Tensor`. Has the same type as `data`.
- """
- _ctx = _context.context()
- if _ctx.in_graph_mode():
- _, _, _op = _op_def_lib._apply_op_helper(
- "ResamplerGrad", data=data, warp=warp, grad_output=grad_output,
- name=name)
- _result = _op.outputs[:]
- _inputs_flat = _op.inputs
- _attrs = ("T", _op.get_attr("T"))
- else:
- _attr_T, _inputs_T = _execute.args_to_matching_eager([data, warp, grad_output], _ctx)
- (data, warp, grad_output) = _inputs_T
- _attr_T = _attr_T.as_datatype_enum
- _inputs_flat = [data, warp, grad_output]
- _attrs = ("T", _attr_T)
- _result = _execute.execute(b"ResamplerGrad", 2, inputs=_inputs_flat,
- attrs=_attrs, ctx=_ctx, name=name)
- _execute.record_gradient(
- "ResamplerGrad", _inputs_flat, _attrs, _result, name)
- _result = _ResamplerGradOutput._make(_result)
- return _result
- _ops.RegisterShape("ResamplerGrad")(None)
- def _InitOpDefLibrary(op_list_proto_bytes):
- op_list = _op_def_pb2.OpList()
- op_list.ParseFromString(op_list_proto_bytes)
- _op_def_registry.register_op_list(op_list)
- op_def_lib = _op_def_library.OpDefLibrary()
- op_def_lib.add_op_list(op_list)
- return op_def_lib
- # op {
- # name: "Resampler"
- # input_arg {
- # name: "data"
- # type_attr: "T"
- # }
- # input_arg {
- # name: "warp"
- # type_attr: "T"
- # }
- # output_arg {
- # name: "output"
- # type_attr: "T"
- # }
- # attr {
- # name: "T"
- # type: "type"
- # allowed_values {
- # list {
- # type: DT_HALF
- # type: DT_FLOAT
- # type: DT_DOUBLE
- # }
- # }
- # }
- # }
- # op {
- # name: "ResamplerGrad"
- # input_arg {
- # name: "data"
- # type_attr: "T"
- # }
- # input_arg {
- # name: "warp"
- # type_attr: "T"
- # }
- # input_arg {
- # name: "grad_output"
- # type_attr: "T"
- # }
- # output_arg {
- # name: "grad_data"
- # type_attr: "T"
- # }
- # output_arg {
- # name: "grad_warp"
- # type_attr: "T"
- # }
- # attr {
- # name: "T"
- # type: "type"
- # allowed_values {
- # list {
- # type: DT_HALF
- # type: DT_FLOAT
- # type: DT_DOUBLE
- # }
- # }
- # }
- # }
- _op_def_lib = _InitOpDefLibrary(b"\nB\n\tResampler\022\t\n\004data\"\001T\022\t\n\004warp\"\001T\032\013\n\006output\"\001T\"\022\n\001T\022\004type:\007\n\0052\003\023\001\002\nk\n\rResamplerGrad\022\t\n\004data\"\001T\022\t\n\004warp\"\001T\022\020\n\013grad_output\"\001T\032\016\n\tgrad_data\"\001T\032\016\n\tgrad_warp\"\001T\"\022\n\001T\022\004type:\007\n\0052\003\023\001\002")