/tools/human_genome_variation/lps.xml
XML | 304 lines | 244 code | 36 blank | 24 comment | 0 complexity | 301e74897a8daebcaec0d12ff9422e16 MD5 | raw file
- <tool id="hgv_lps" name="LPS" version="1.0.0">
- <description>LASSO-Patternsearch algorithm</description>
- <command interpreter="bash">
- lps_tool_wrapper.sh $lambda_fac $input_file $label_column $output_file $log_file
- Initialization 0
- #if $advanced.options == "true":
- Sample $advanced.sample
- Verbosity $advanced.verbosity
- Standardize $advanced.standardize
- initialLambda $advanced.initialLambda
- #if $advanced.continuation.continuation == "1":
- Continuation $advanced.continuation.continuation
- continuationSteps $advanced.continuation.continuationSteps
- accurateIntermediates $advanced.continuation.accurateIntermediates
- #end if
- printFreq $advanced.printFreq
- #if $advanced.newton.newton == "1":
- Newton $advanced.newton.newton
- NewtonThreshold $advanced.newton.newtonThreshold
- #end if
- HessianSampleFraction $advanced.hessianSampleFraction
- BB 0
- Monotone 0
- FullGradient $advanced.fullGradient
- GradientFraction $advanced.gradientFraction
- InitialAlpha $advanced.initialAlpha
- AlphaIncrease $advanced.alphaIncrease
- AlphaDecrease $advanced.alphaDecrease
- AlphaMax $advanced.alphaMax
- c1 $advanced.c1
- MaxIter $advanced.maxIter
- StopTol $advanced.stopTol
- IntermediateTol $advanced.intermediateTol
- FinalOnly $advanced.finalOnly
- #end if
- </command>
- <inputs>
- <param name="input_file" type="data" format="tabular" label="Dataset"/>
- <param name="label_column" type="data_column" data_ref="input_file" numerical="true" label="Label column" help="Column containing outcome labels: +1 or -1."/>
- <param name="lambda_fac" label="Lambda_fac" type="float" value="0.03" help="Target value of the regularization parameter, expressed as a fraction of the calculated lambda_max.">
- <validator type="in_range" message="0.00 < lambda_fac <= 1.00" min="0.00" max="1.00"/>
- </param>
- <conditional name="advanced">
- <param name="options" type="select" label="Advanced Options">
- <option value="false" selected="true">Hide advanced options</option>
- <option value="true">Show advanced options</option>
- </param>
- <when value="false">
- <!-- no options -->
- </when>
- <when value="true">
- <!-- HARDCODED: 'Sample' we don't support passing an array -->
- <param name="sample" type="float" value="1.0" label="Sample fraction" help="Sample this fraction of the data set.">
- <validator type="in_range" message="0.0 <= sample <= 1.0" min="0.0" max="1.0"/>
- </param>
- <!-- HARDCODED: 'Initialization' = 0 :: Initialize at beta=0 -->
- <param name="verbosity" type="select" format="integer" label="Verbosity">
- <option value="0" selected="true">Little output</option>
- <option value="1">More output</option>
- <option value="2">Still more output</option>
- </param>
- <param name="standardize" type="select" format="integer" label="Standardize" help="Scales and shifts each column so that it has mean zero and variance 1.">
- <option value="0" selected="true">Don't standardize</option>
- <option value="1">Standardize</option>
- </param>
- <param name="initialLambda" type="float" value="0.8" label="Initial lambda" help="First value of lambda to be used in the continuation scheme, expressed as a fraction of lambda_max.">
- <validator type="in_range" message="0.0 < initialLambda < 1.0" min="0.0" max="1.0"/>
- </param>
- <conditional name="continuation">
- <param name="continuation" type="select" format="integer" label="Continuation" help="Use continuation strategy to start with a larger value of lambda, decreasing it successively to lambda_fac.">
- <option value="0" selected="true">Don't use continuation</option>
- <option value="1">Use continuation</option>
- </param>
- <when value="0">
- <!-- no options -->
- </when>
- <when value="1">
- <param name="continuationSteps" type="integer" value="5" label="Continuation steps" help="Number of lambda values to use in continuation <em>prior</em> to target value lambda_fac."/>
- <param name="accurateIntermediates" type="select" format="integer" label="Accurate intermediates" help="Indicates whether accurate solutions are required for lambda values other than the target value lambda_fac.">
- <option value="0" selected="true">Don't need accurate intemediates</option>
- <option value="1">Calculate accurate intermediates</option>
- </param>
- </when>
- </conditional> <!-- name="continuation" -->
- <param name="printFreq" type="integer" value="1" label="Print frequency" help="Print a progress report every NI iterations, where NI is the supplied value of this parameter.">
- <validator type="in_range" message="printFreq >= 1" min="1"/>
- </param>
- <conditional name="newton">
- <param name="newton" type="select" format="integer" label="Projected Newton steps">
- <option value="0" selected="true">No Newton steps</option>
- <option value="1">Try projected Newton steps</option>
- </param>
- <when value="0">
- <!-- no options -->
- </when>
- <when value="1">
- <param name="newtonThreshold" type="integer" value="500" label="Newton threshold" help="Maximum size of free variable subvector for Newton."/>
- </when>
- </conditional>
- <param name="hessianSampleFraction" type="float" value="1.0" label="Hessian sample fraction" help="Fraction of terms to use in approximate Hessian calculation.">
- <validator type="in_range" message="0.01 < hessianSampleFraction <= 1.00" min="0.01" max="1.00"/>
- </param>
- <!-- HARDCODED: 'BB' = 0 :: don't use Barzilai-Borwein steps -->
- <!-- HARDCODED: 'Monotone' = 0 :: don't force monotonicity -->
- <param name="fullGradient" type="select" format="integer" label="Partial gradient vector selection">
- <option value="0">Use randomly selected partial gradient, including current active components ("biased")</option>
- <option value="1">Use full gradient vector at every step</option>
- <option value="2">Randomly selected partial gradient, without regard to current active set ("unbiased")</option>
- </param>
- <param name="gradientFraction" type="float" value="0.1" label="Gradient fraction" help="Fraction of inactive gradient vector to evaluate.">
- <validator type="in_range" message="0.0 < gradientFraction <= 1" min="0.0" max="1.0"/>
- </param>
- <param name="initialAlpha" type="float" value="1.0" label="Initial value of alpha"/>
- <param name="alphaIncrease" type="float" value="2.0" label="Alpha increase" help="Factor by which to increase alpha after descent not obtained."/>
- <param name="alphaDecrease" type="float" value="0.8" label="Alpha decrease" help="Factor by which to decrease alpha after successful first-order step."/>
- <param name="alphaMax" type="float" value="1e12" label="Alpha max" help="Maximum value of alpha; terminate with error if we exceed this."/>
- <param name="c1" type="float" value="1e-3" help="Parameter defining the margin by which the first-order step is required to decrease before being taken.">
- <validator type="in_range" message="0.0 < c1 < 1.0" min="0.0" max="1.0"/>
- </param>
- <param name="maxIter" type="integer" value="10000" label="Maximum number of iterations" help="Terminate with error if we exceed this."/>
- <param name="stopTol" type="float" value="1e-6" label="Stop tolerance" help="Convergence tolerance for target value of lambda."/>
- <param name="intermediateTol" type="float" value="1e-4" label="Intermediate tolerance" help="Convergence tolerance for intermediate values of lambda."/>
- <param name="finalOnly" type="select" format="integer" label="Final only">
- <option value="0" selected="true">Return information for all intermediate values</option>
- <option value="1">Just return information at the last lambda</option>
- </param>
- </when> <!-- value="advanced" -->
- </conditional> <!-- name="advanced" -->
- </inputs>
- <outputs>
- <data name="output_file" format="tabular" label="${tool.name} on ${on_string}: results"/>
- <data name="log_file" format="txt" label="${tool.name} on ${on_string}: log"/>
- </outputs>
- <requirements>
- <requirement type="package">lps_tool</requirement>
- </requirements>
- <tests>
- <test>
- <param name="input_file" value="lps_arrhythmia.tabular"/>
- <param name="label_column" value="280"/>
- <param name="lambda_fac" value="0.03"/>
- <param name="options" value="true"/>
- <param name="sample" value="1.0"/>
- <param name="verbosity" value="1"/>
- <param name="standardize" value="0"/>
- <param name="initialLambda" value="0.9"/>
- <param name="continuation" value="1"/>
- <param name="continuationSteps" value="10"/>
- <param name="accurateIntermediates" value="0"/>
- <param name="printFreq" value="1"/>
- <param name="newton" value="1"/>
- <param name="newtonThreshold" value="500"/>
- <param name="hessianSampleFraction" value="1.0"/>
- <param name="fullGradient" value="1"/>
- <param name="gradientFraction" value="0.5"/>
- <param name="initialAlpha" value="1.0"/>
- <param name="alphaIncrease" value="2.0"/>
- <param name="alphaDecrease" value="0.8"/>
- <param name="alphaMax" value="1e12"/>
- <param name="c1" value="1e-3"/>
- <param name="maxIter" value="2500"/>
- <param name="stopTol" value="1e-6"/>
- <param name="intermediateTol" value="1e-6"/>
- <param name="finalOnly" value="0"/>
- <output name="ouput_file" file="lps_arrhythmia_beta.tabular"/>
- <output name="log_file" file="lps_arrhythmia_log.txt"/>
- </test>
- </tests>
- <help>
- **Dataset formats**
- The input and output datasets are tabular_. The columns are described below.
- There is a second output dataset (a log) that is in text_ format.
- (`Dataset missing?`_)
- .. _tabular: ./static/formatHelp.html#tab
- .. _text: ./static/formatHelp.html#text
- .. _Dataset missing?: ./static/formatHelp.html
- -----
- **What it does**
- The LASSO-Patternsearch algorithm fits your dataset to an L1-regularized
- logistic regression model. A benefit of using L1-regularization is
- that it typically yields a weight vector with relatively few non-zero
- coefficients.
- For example, say you have a dataset containing M rows (subjects)
- and N columns (attributes) where one of these N attributes is binary,
- indicating whether or not the subject has some property of interest P.
- In simple terms, LPS calculates a weight for each of the other attributes
- in your dataset. This weight indicates how "relevant" that attribute
- is for predicting whether or not a given subject has property P.
- The L1-regularization causes most of these weights to be equal to zero,
- which means LPS will find a "small" subset of the remaining N-1 attributes
- in your dataset that can be used to predict P.
- In other words, LPS can be used for feature selection.
- The input dataset is tabular, and must contain a label column which
- indicates whether or not a given row has property P. In the current
- version of this tool, P must be encoded using +1 and -1. The Lambda_fac
- parameter ranges from 0 to 1, and controls how sparse the weight
- vector will be. At the low end, when Lambda_fac = 0, there will be
- no regularization. At the high end, when Lambda_fac = 1, there will be
- "too much" regularization, and all of the weights will equal zero.
- The LPS tool creates two output datasets. The first, called the results
- file, is a tabular dataset containing one column of weights for each
- value of the regularization parameter lambda that was tried. The weight
- columns are in order from left to right by decreasing values of lambda.
- The first N-1 rows in each column are the weights for the N-1 attributes
- in your input dataset. The final row is a constant, the intercept.
- Let **x** be a row from your input dataset and let **b** be a column
- from the results file. To compute the probability that row **x** has
- a label value of +1:
- Probability(row **x** has label value = +1) = 1 / [1 + exp{**x** \* **b**\[1..N-1\] + **b**\[N\]}]
- where **x** \* **b**\[1..N-1\] represents matrix multiplication.
- The second output dataset, called the log file, is a text file which
- contains additional data about the fitted L1-regularized logistic
- regression model. These data include the number of features, the
- computed value of lambda_max, the actual values of lambda used, the
- optimal values of the log-likelihood and regularized log-likelihood
- functions, the number of non-zeros, and the number of iterations.
- Website: http://pages.cs.wisc.edu/~swright/LPS/
- -----
- **Example**
- - input file::
- +1 1 0 0 0 0 1 0 1 1 ...
- +1 1 1 1 0 0 1 0 1 1 ...
- +1 1 0 1 0 1 0 1 0 1 ...
- etc.
- - output results file::
- 0
- 0
- 0
- 0
- 0.025541
- etc.
- - output log file::
- Data set has 100 vectors with 50 features.
- calculateLambdaMax: n=50, m=100, m+=50, m-=50
- computed value of lambda_max: 5.0000e-01
-
- lambda=2.96e-02 solution:
- optimal log-likelihood function value: 6.46e-01
- optimal *regularized* log-likelihood function value: 6.79e-01
- number of nonzeros at the optimum: 5
- number of iterations required: 43
- etc.
- -----
- **References**
- Koh K, Kim S-J, Boyd S. (2007)
- An interior-point method for large-scale l1-regularized logistic regression.
- Journal of Machine Learning Research. 8:1519-1555.
- Shi W, Wahba G, Wright S, Lee K, Klein R, Klein B. (2008)
- LASSO-Patternsearch algorithm with application to ophthalmology and genomic data.
- Stat Interface. 1(1):137-153.
- <!--
- Wright S, Novak R, Figueiredo M. (2009)
- Sparse reconstruction via separable approximation.
- IEEE Transactions on Signal Processing. 57:2479-2403.
- Shi J, Yin W, Osher S, Sajda P. (2010)
- A fast hybrid algorithm for large scale l1-regularized logistic regression.
- Journal of Machine Learning Research. 11:713-741.
- Byrd R, Chin G, Neveitt W, Nocedal J. (2010)
- On the use of stochastic Hessian information in unconstrained optimization.
- Technical Report. Northwestern University. June 16, 2010.
- Wright S. (2010)
- Accelerated block-coordinate relaxation for regularized optimization.
- Technical Report. University of Wisconsin. August 10, 2010.
- -->
- </help>
- </tool>