/tools/regVariation/best_regression_subsets.py
Python | 90 lines | 76 code | 13 blank | 1 comment | 17 complexity | 23a774896b797f177edb7b97479b92aa MD5 | raw file
- #!/usr/bin/env python
- from galaxy import eggs
- import sys, string
- from rpy import *
- import numpy
- def stop_err(msg):
- sys.stderr.write(msg)
- sys.exit()
- infile = sys.argv[1]
- y_col = int(sys.argv[2])-1
- x_cols = sys.argv[3].split(',')
- outfile = sys.argv[4]
- outfile2 = sys.argv[5]
- print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
- fout = open(outfile,'w')
- for i, line in enumerate( file ( infile )):
- line = line.rstrip('\r\n')
- if len( line )>0 and not line.startswith( '#' ):
- elems = line.split( '\t' )
- break
- if i == 30:
- break # Hopefully we'll never get here...
- if len( elems )<1:
- stop_err( "The data in your input dataset is either missing or not formatted properly." )
- y_vals = []
- x_vals = []
- for k,col in enumerate(x_cols):
- x_cols[k] = int(col)-1
- x_vals.append([])
-
- NA = 'NA'
- for ind,line in enumerate( file( infile )):
- if line and not line.startswith( '#' ):
- try:
- fields = line.split("\t")
- try:
- yval = float(fields[y_col])
- except Exception, ey:
- yval = r('NA')
- y_vals.append(yval)
- for k,col in enumerate(x_cols):
- try:
- xval = float(fields[col])
- except Exception, ex:
- xval = r('NA')
- x_vals[k].append(xval)
- except:
- pass
- response_term = ""
- x_vals1 = numpy.asarray(x_vals).transpose()
- dat= r.list(x=array(x_vals1), y=y_vals)
- r.library("leaps")
-
- set_default_mode(NO_CONVERSION)
- try:
- leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat))
- except RException, rex:
- stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.")
- set_default_mode(BASIC_CONVERSION)
- summary = r.summary(leaps)
- tot = len(x_vals)
- pattern = "["
- for i in range(tot):
- pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' '
- pattern = pattern.strip() + ']'
- print >>fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" %(pattern)
- for ind,item in enumerate(summary['outmat']):
- print >>fout, "%s\t%s\t%s\t%s\t%s\t%s" %(str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind])
- r.pdf( outfile2, 8, 8 )
- r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion")
- r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion")
- r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion")
- r.plot(leaps, scale="bic", main="Best subsets using bic Criterion")
- r.dev_off()