/drivers/edac/amd64_edac.c
https://bitbucket.org/cresqo/cm7-p500-kernel · C · 3087 lines · 1869 code · 520 blank · 698 comment · 305 complexity · 2296b64b5b7caa0e645455e3e5c17301 MD5 · raw file
Large files are truncated click here to view the full file
- #include "amd64_edac.h"
- #include <asm/k8.h>
- static struct edac_pci_ctl_info *amd64_ctl_pci;
- static int report_gart_errors;
- module_param(report_gart_errors, int, 0644);
- /*
- * Set by command line parameter. If BIOS has enabled the ECC, this override is
- * cleared to prevent re-enabling the hardware by this driver.
- */
- static int ecc_enable_override;
- module_param(ecc_enable_override, int, 0644);
- static struct msr __percpu *msrs;
- /* Lookup table for all possible MC control instances */
- struct amd64_pvt;
- static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
- static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
- /*
- * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
- * later.
- */
- static int ddr2_dbam_revCG[] = {
- [0] = 32,
- [1] = 64,
- [2] = 128,
- [3] = 256,
- [4] = 512,
- [5] = 1024,
- [6] = 2048,
- };
- static int ddr2_dbam_revD[] = {
- [0] = 32,
- [1] = 64,
- [2 ... 3] = 128,
- [4] = 256,
- [5] = 512,
- [6] = 256,
- [7] = 512,
- [8 ... 9] = 1024,
- [10] = 2048,
- };
- static int ddr2_dbam[] = { [0] = 128,
- [1] = 256,
- [2 ... 4] = 512,
- [5 ... 6] = 1024,
- [7 ... 8] = 2048,
- [9 ... 10] = 4096,
- [11] = 8192,
- };
- static int ddr3_dbam[] = { [0] = -1,
- [1] = 256,
- [2] = 512,
- [3 ... 4] = -1,
- [5 ... 6] = 1024,
- [7 ... 8] = 2048,
- [9 ... 10] = 4096,
- [11] = 8192,
- };
- /*
- * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
- * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
- * or higher value'.
- *
- *FIXME: Produce a better mapping/linearisation.
- */
- struct scrubrate scrubrates[] = {
- { 0x01, 1600000000UL},
- { 0x02, 800000000UL},
- { 0x03, 400000000UL},
- { 0x04, 200000000UL},
- { 0x05, 100000000UL},
- { 0x06, 50000000UL},
- { 0x07, 25000000UL},
- { 0x08, 12284069UL},
- { 0x09, 6274509UL},
- { 0x0A, 3121951UL},
- { 0x0B, 1560975UL},
- { 0x0C, 781440UL},
- { 0x0D, 390720UL},
- { 0x0E, 195300UL},
- { 0x0F, 97650UL},
- { 0x10, 48854UL},
- { 0x11, 24427UL},
- { 0x12, 12213UL},
- { 0x13, 6101UL},
- { 0x14, 3051UL},
- { 0x15, 1523UL},
- { 0x16, 761UL},
- { 0x00, 0UL}, /* scrubbing off */
- };
- /*
- * Memory scrubber control interface. For K8, memory scrubbing is handled by
- * hardware and can involve L2 cache, dcache as well as the main memory. With
- * F10, this is extended to L3 cache scrubbing on CPU models sporting that
- * functionality.
- *
- * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
- * (dram) over to cache lines. This is nasty, so we will use bandwidth in
- * bytes/sec for the setting.
- *
- * Currently, we only do dram scrubbing. If the scrubbing is done in software on
- * other archs, we might not have access to the caches directly.
- */
- /*
- * scan the scrub rate mapping table for a close or matching bandwidth value to
- * issue. If requested is too big, then use last maximum value found.
- */
- static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
- u32 min_scrubrate)
- {
- u32 scrubval;
- int i;
- /*
- * map the configured rate (new_bw) to a value specific to the AMD64
- * memory controller and apply to register. Search for the first
- * bandwidth entry that is greater or equal than the setting requested
- * and program that. If at last entry, turn off DRAM scrubbing.
- */
- for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
- /*
- * skip scrub rates which aren't recommended
- * (see F10 BKDG, F3x58)
- */
- if (scrubrates[i].scrubval < min_scrubrate)
- continue;
- if (scrubrates[i].bandwidth <= new_bw)
- break;
- /*
- * if no suitable bandwidth found, turn off DRAM scrubbing
- * entirely by falling back to the last element in the
- * scrubrates array.
- */
- }
- scrubval = scrubrates[i].scrubval;
- if (scrubval)
- edac_printk(KERN_DEBUG, EDAC_MC,
- "Setting scrub rate bandwidth: %u\n",
- scrubrates[i].bandwidth);
- else
- edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
- pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
- return 0;
- }
- static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 min_scrubrate = 0x0;
- switch (boot_cpu_data.x86) {
- case 0xf:
- min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
- break;
- case 0x10:
- min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
- break;
- case 0x11:
- min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
- break;
- default:
- amd64_printk(KERN_ERR, "Unsupported family!\n");
- return -EINVAL;
- }
- return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
- min_scrubrate);
- }
- static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 scrubval = 0;
- int status = -1, i;
- amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
- scrubval = scrubval & 0x001F;
- edac_printk(KERN_DEBUG, EDAC_MC,
- "pci-read, sdram scrub control value: %d \n", scrubval);
- for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
- if (scrubrates[i].scrubval == scrubval) {
- *bw = scrubrates[i].bandwidth;
- status = 0;
- break;
- }
- }
- return status;
- }
- /* Map from a CSROW entry to the mask entry that operates on it */
- static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
- {
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
- return csrow;
- else
- return csrow >> 1;
- }
- /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
- static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
- {
- if (dct == 0)
- return pvt->dcsb0[csrow];
- else
- return pvt->dcsb1[csrow];
- }
- /*
- * Return the 'mask' address the i'th CS entry. This function is needed because
- * there number of DCSM registers on Rev E and prior vs Rev F and later is
- * different.
- */
- static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
- {
- if (dct == 0)
- return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
- else
- return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
- }
- /*
- * In *base and *limit, pass back the full 40-bit base and limit physical
- * addresses for the node given by node_id. This information is obtained from
- * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
- * base and limit addresses are of type SysAddr, as defined at the start of
- * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
- * in the address range they represent.
- */
- static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
- u64 *base, u64 *limit)
- {
- *base = pvt->dram_base[node_id];
- *limit = pvt->dram_limit[node_id];
- }
- /*
- * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
- * with node_id
- */
- static int amd64_base_limit_match(struct amd64_pvt *pvt,
- u64 sys_addr, int node_id)
- {
- u64 base, limit, addr;
- amd64_get_base_and_limit(pvt, node_id, &base, &limit);
- /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
- * all ones if the most significant implemented address bit is 1.
- * Here we discard bits 63-40. See section 3.4.2 of AMD publication
- * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
- * Application Programming.
- */
- addr = sys_addr & 0x000000ffffffffffull;
- return (addr >= base) && (addr <= limit);
- }
- /*
- * Attempt to map a SysAddr to a node. On success, return a pointer to the
- * mem_ctl_info structure for the node that the SysAddr maps to.
- *
- * On failure, return NULL.
- */
- static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
- u64 sys_addr)
- {
- struct amd64_pvt *pvt;
- int node_id;
- u32 intlv_en, bits;
- /*
- * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
- * 3.4.4.2) registers to map the SysAddr to a node ID.
- */
- pvt = mci->pvt_info;
- /*
- * The value of this field should be the same for all DRAM Base
- * registers. Therefore we arbitrarily choose to read it from the
- * register for node 0.
- */
- intlv_en = pvt->dram_IntlvEn[0];
- if (intlv_en == 0) {
- for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
- if (amd64_base_limit_match(pvt, sys_addr, node_id))
- goto found;
- }
- goto err_no_match;
- }
- if (unlikely((intlv_en != 0x01) &&
- (intlv_en != 0x03) &&
- (intlv_en != 0x07))) {
- amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
- "IntlvEn field of DRAM Base Register for node 0: "
- "this probably indicates a BIOS bug.\n", intlv_en);
- return NULL;
- }
- bits = (((u32) sys_addr) >> 12) & intlv_en;
- for (node_id = 0; ; ) {
- if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
- break; /* intlv_sel field matches */
- if (++node_id >= DRAM_REG_COUNT)
- goto err_no_match;
- }
- /* sanity test for sys_addr */
- if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
- amd64_printk(KERN_WARNING,
- "%s(): sys_addr 0x%llx falls outside base/limit "
- "address range for node %d with node interleaving "
- "enabled.\n",
- __func__, sys_addr, node_id);
- return NULL;
- }
- found:
- return edac_mc_find(node_id);
- err_no_match:
- debugf2("sys_addr 0x%lx doesn't match any node\n",
- (unsigned long)sys_addr);
- return NULL;
- }
- /*
- * Extract the DRAM CS base address from selected csrow register.
- */
- static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
- {
- return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
- pvt->dcs_shift;
- }
- /*
- * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
- */
- static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
- {
- u64 dcsm_bits, other_bits;
- u64 mask;
- /* Extract bits from DRAM CS Mask. */
- dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
- other_bits = pvt->dcsm_mask;
- other_bits = ~(other_bits << pvt->dcs_shift);
- /*
- * The extracted bits from DCSM belong in the spaces represented by
- * the cleared bits in other_bits.
- */
- mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
- return mask;
- }
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Return the
- * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
- */
- static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- int csrow;
- u64 base, mask;
- pvt = mci->pvt_info;
- /*
- * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
- * base/mask register pair, test the condition shown near the start of
- * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
- */
- for (csrow = 0; csrow < pvt->cs_count; csrow++) {
- /* This DRAM chip select is disabled on this node */
- if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
- continue;
- base = base_from_dct_base(pvt, csrow);
- mask = ~mask_from_dct_mask(pvt, csrow);
- if ((input_addr & mask) == (base & mask)) {
- debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
- (unsigned long)input_addr, csrow,
- pvt->mc_node_id);
- return csrow;
- }
- }
- debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
- (unsigned long)input_addr, pvt->mc_node_id);
- return -1;
- }
- /*
- * Return the base value defined by the DRAM Base register for the node
- * represented by mci. This function returns the full 40-bit value despite the
- * fact that the register only stores bits 39-24 of the value. See section
- * 3.4.4.1 (BKDG #26094, K8, revA-E)
- */
- static inline u64 get_dram_base(struct mem_ctl_info *mci)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- return pvt->dram_base[pvt->mc_node_id];
- }
- /*
- * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
- * for the node represented by mci. Info is passed back in *hole_base,
- * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
- * info is invalid. Info may be invalid for either of the following reasons:
- *
- * - The revision of the node is not E or greater. In this case, the DRAM Hole
- * Address Register does not exist.
- *
- * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
- * indicating that its contents are not valid.
- *
- * The values passed back in *hole_base, *hole_offset, and *hole_size are
- * complete 32-bit values despite the fact that the bitfields in the DHAR
- * only represent bits 31-24 of the base and offset values.
- */
- int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
- u64 *hole_offset, u64 *hole_size)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 base;
- /* only revE and later have the DRAM Hole Address Register */
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
- debugf1(" revision %d for node %d does not support DHAR\n",
- pvt->ext_model, pvt->mc_node_id);
- return 1;
- }
- /* only valid for Fam10h */
- if (boot_cpu_data.x86 == 0x10 &&
- (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
- debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
- return 1;
- }
- if ((pvt->dhar & DHAR_VALID) == 0) {
- debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
- pvt->mc_node_id);
- return 1;
- }
- /* This node has Memory Hoisting */
- /* +------------------+--------------------+--------------------+-----
- * | memory | DRAM hole | relocated |
- * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
- * | | | DRAM hole |
- * | | | [0x100000000, |
- * | | | (0x100000000+ |
- * | | | (0xffffffff-x))] |
- * +------------------+--------------------+--------------------+-----
- *
- * Above is a diagram of physical memory showing the DRAM hole and the
- * relocated addresses from the DRAM hole. As shown, the DRAM hole
- * starts at address x (the base address) and extends through address
- * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
- * addresses in the hole so that they start at 0x100000000.
- */
- base = dhar_base(pvt->dhar);
- *hole_base = base;
- *hole_size = (0x1ull << 32) - base;
- if (boot_cpu_data.x86 > 0xf)
- *hole_offset = f10_dhar_offset(pvt->dhar);
- else
- *hole_offset = k8_dhar_offset(pvt->dhar);
- debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
- pvt->mc_node_id, (unsigned long)*hole_base,
- (unsigned long)*hole_offset, (unsigned long)*hole_size);
- return 0;
- }
- EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
- /*
- * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
- * assumed that sys_addr maps to the node given by mci.
- *
- * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
- * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
- * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
- * then it is also involved in translating a SysAddr to a DramAddr. Sections
- * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
- * These parts of the documentation are unclear. I interpret them as follows:
- *
- * When node n receives a SysAddr, it processes the SysAddr as follows:
- *
- * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
- * Limit registers for node n. If the SysAddr is not within the range
- * specified by the base and limit values, then node n ignores the Sysaddr
- * (since it does not map to node n). Otherwise continue to step 2 below.
- *
- * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
- * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
- * the range of relocated addresses (starting at 0x100000000) from the DRAM
- * hole. If not, skip to step 3 below. Else get the value of the
- * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
- * offset defined by this value from the SysAddr.
- *
- * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
- * Base register for node n. To obtain the DramAddr, subtract the base
- * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
- */
- static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
- int ret = 0;
- dram_base = get_dram_base(mci);
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((sys_addr >= (1ull << 32)) &&
- (sys_addr < ((1ull << 32) + hole_size))) {
- /* use DHAR to translate SysAddr to DramAddr */
- dram_addr = sys_addr - hole_offset;
- debugf2("using DHAR to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n",
- (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- }
- /*
- * Translate the SysAddr to a DramAddr as shown near the start of
- * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
- * only deals with 40-bit values. Therefore we discard bits 63-40 of
- * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
- * discard are all 1s. Otherwise the bits we discard are all 0s. See
- * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
- * Programmer's Manual Volume 1 Application Programming.
- */
- dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
- debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n", (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- /*
- * @intlv_en is the value of the IntlvEn field from a DRAM Base register
- * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
- * for node interleaving.
- */
- static int num_node_interleave_bits(unsigned intlv_en)
- {
- static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
- int n;
- BUG_ON(intlv_en > 7);
- n = intlv_shift_table[intlv_en];
- return n;
- }
- /* Translate the DramAddr given by @dram_addr to an InputAddr. */
- static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt;
- int intlv_shift;
- u64 input_addr;
- pvt = mci->pvt_info;
- /*
- * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * concerning translating a DramAddr to an InputAddr.
- */
- intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
- input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
- (dram_addr & 0xfff);
- debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
- intlv_shift, (unsigned long)dram_addr,
- (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
- * assumed that @sys_addr maps to the node given by mci.
- */
- static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- u64 input_addr;
- input_addr =
- dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
- debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
- (unsigned long)sys_addr, (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node represented by mci.
- * Translate @input_addr to a DramAddr and return the result.
- */
- static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- int node_id, intlv_shift;
- u64 bits, dram_addr;
- u32 intlv_sel;
- /*
- * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * shows how to translate a DramAddr to an InputAddr. Here we reverse
- * this procedure. When translating from a DramAddr to an InputAddr, the
- * bits used for node interleaving are discarded. Here we recover these
- * bits from the IntlvSel field of the DRAM Limit register (section
- * 3.4.4.2) for the node that input_addr is associated with.
- */
- pvt = mci->pvt_info;
- node_id = pvt->mc_node_id;
- BUG_ON((node_id < 0) || (node_id > 7));
- intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
- if (intlv_shift == 0) {
- debugf1(" InputAddr 0x%lx translates to DramAddr of "
- "same value\n", (unsigned long)input_addr);
- return input_addr;
- }
- bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
- (input_addr & 0xfff);
- intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
- dram_addr = bits + (intlv_sel << 12);
- debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
- "(%d node interleave bits)\n", (unsigned long)input_addr,
- (unsigned long)dram_addr, intlv_shift);
- return dram_addr;
- }
- /*
- * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
- * @dram_addr to a SysAddr.
- */
- static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
- int ret = 0;
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((dram_addr >= hole_base) &&
- (dram_addr < (hole_base + hole_size))) {
- sys_addr = dram_addr + hole_offset;
- debugf1("using DHAR to translate DramAddr 0x%lx to "
- "SysAddr 0x%lx\n", (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- }
- amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
- sys_addr = dram_addr + base;
- /*
- * The sys_addr we have computed up to this point is a 40-bit value
- * because the k8 deals with 40-bit values. However, the value we are
- * supposed to return is a full 64-bit physical address. The AMD
- * x86-64 architecture specifies that the most significant implemented
- * address bit through bit 63 of a physical address must be either all
- * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
- * 64-bit value below. See section 3.4.2 of AMD publication 24592:
- * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
- * Programming.
- */
- sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
- debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
- pvt->mc_node_id, (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Translate
- * @input_addr to a SysAddr.
- */
- static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
- u64 input_addr)
- {
- return dram_addr_to_sys_addr(mci,
- input_addr_to_dram_addr(mci, input_addr));
- }
- /*
- * Find the minimum and maximum InputAddr values that map to the given @csrow.
- * Pass back these values in *input_addr_min and *input_addr_max.
- */
- static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
- u64 *input_addr_min, u64 *input_addr_max)
- {
- struct amd64_pvt *pvt;
- u64 base, mask;
- pvt = mci->pvt_info;
- BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
- base = base_from_dct_base(pvt, csrow);
- mask = mask_from_dct_mask(pvt, csrow);
- *input_addr_min = base & ~mask;
- *input_addr_max = base | mask | pvt->dcs_mask_notused;
- }
- /* Map the Error address to a PAGE and PAGE OFFSET. */
- static inline void error_address_to_page_and_offset(u64 error_address,
- u32 *page, u32 *offset)
- {
- *page = (u32) (error_address >> PAGE_SHIFT);
- *offset = ((u32) error_address) & ~PAGE_MASK;
- }
- /*
- * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
- * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
- * of a node that detected an ECC memory error. mci represents the node that
- * the error address maps to (possibly different from the node that detected
- * the error). Return the number of the csrow that sys_addr maps to, or -1 on
- * error.
- */
- static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
- {
- int csrow;
- csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
- if (csrow == -1)
- amd64_mc_printk(mci, KERN_ERR,
- "Failed to translate InputAddr to csrow for "
- "address 0x%lx\n", (unsigned long)sys_addr);
- return csrow;
- }
- static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
- static void amd64_cpu_display_info(struct amd64_pvt *pvt)
- {
- if (boot_cpu_data.x86 == 0x11)
- edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
- else if (boot_cpu_data.x86 == 0x10)
- edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
- else if (boot_cpu_data.x86 == 0xf)
- edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
- (pvt->ext_model >= K8_REV_F) ?
- "Rev F or later" : "Rev E or earlier");
- else
- /* we'll hardly ever ever get here */
- edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
- }
- /*
- * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
- * are ECC capable.
- */
- static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
- {
- int bit;
- enum dev_type edac_cap = EDAC_FLAG_NONE;
- bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
- ? 19
- : 17;
- if (pvt->dclr0 & BIT(bit))
- edac_cap = EDAC_FLAG_SECDED;
- return edac_cap;
- }
- static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
- static void amd64_dump_dramcfg_low(u32 dclr, int chan)
- {
- debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
- debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
- (dclr & BIT(16)) ? "un" : "",
- (dclr & BIT(19)) ? "yes" : "no");
- debugf1(" PAR/ERR parity: %s\n",
- (dclr & BIT(8)) ? "enabled" : "disabled");
- debugf1(" DCT 128bit mode width: %s\n",
- (dclr & BIT(11)) ? "128b" : "64b");
- debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
- (dclr & BIT(12)) ? "yes" : "no",
- (dclr & BIT(13)) ? "yes" : "no",
- (dclr & BIT(14)) ? "yes" : "no",
- (dclr & BIT(15)) ? "yes" : "no");
- }
- /* Display and decode various NB registers for debug purposes. */
- static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
- {
- int ganged;
- debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
- debugf1(" NB two channel DRAM capable: %s\n",
- (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
- debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
- (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
- (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
- amd64_dump_dramcfg_low(pvt->dclr0, 0);
- debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
- debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
- "offset: 0x%08x\n",
- pvt->dhar,
- dhar_base(pvt->dhar),
- (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
- : f10_dhar_offset(pvt->dhar));
- debugf1(" DramHoleValid: %s\n",
- (pvt->dhar & DHAR_VALID) ? "yes" : "no");
- /* everything below this point is Fam10h and above */
- if (boot_cpu_data.x86 == 0xf) {
- amd64_debug_display_dimm_sizes(0, pvt);
- return;
- }
- /* Only if NOT ganged does dclr1 have valid info */
- if (!dct_ganging_enabled(pvt))
- amd64_dump_dramcfg_low(pvt->dclr1, 1);
- /*
- * Determine if ganged and then dump memory sizes for first controller,
- * and if NOT ganged dump info for 2nd controller.
- */
- ganged = dct_ganging_enabled(pvt);
- amd64_debug_display_dimm_sizes(0, pvt);
- if (!ganged)
- amd64_debug_display_dimm_sizes(1, pvt);
- }
- /* Read in both of DBAM registers */
- static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
- {
- amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
- if (boot_cpu_data.x86 >= 0x10)
- amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
- }
- /*
- * NOTE: CPU Revision Dependent code: Rev E and Rev F
- *
- * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
- * set the shift factor for the DCSB and DCSM values.
- *
- * ->dcs_mask_notused, RevE:
- *
- * To find the max InputAddr for the csrow, start with the base address and set
- * all bits that are "don't care" bits in the test at the start of section
- * 3.5.4 (p. 84).
- *
- * The "don't care" bits are all set bits in the mask and all bits in the gaps
- * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
- * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
- * gaps.
- *
- * ->dcs_mask_notused, RevF and later:
- *
- * To find the max InputAddr for the csrow, start with the base address and set
- * all bits that are "don't care" bits in the test at the start of NPT section
- * 4.5.4 (p. 87).
- *
- * The "don't care" bits are all set bits in the mask and all bits in the gaps
- * between bit ranges [36:27] and [21:13].
- *
- * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
- * which are all bits in the above-mentioned gaps.
- */
- static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
- {
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
- pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
- pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
- pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
- pvt->dcs_shift = REV_E_DCS_SHIFT;
- pvt->cs_count = 8;
- pvt->num_dcsm = 8;
- } else {
- pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
- pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
- pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
- pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
- if (boot_cpu_data.x86 == 0x11) {
- pvt->cs_count = 4;
- pvt->num_dcsm = 2;
- } else {
- pvt->cs_count = 8;
- pvt->num_dcsm = 4;
- }
- }
- }
- /*
- * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
- */
- static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
- {
- int cs, reg;
- amd64_set_dct_base_and_mask(pvt);
- for (cs = 0; cs < pvt->cs_count; cs++) {
- reg = K8_DCSB0 + (cs * 4);
- if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
- debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsb0[cs], reg);
- /* If DCT are NOT ganged, then read in DCT1's base */
- if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
- reg = F10_DCSB1 + (cs * 4);
- if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
- &pvt->dcsb1[cs]))
- debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsb1[cs], reg);
- } else {
- pvt->dcsb1[cs] = 0;
- }
- }
- for (cs = 0; cs < pvt->num_dcsm; cs++) {
- reg = K8_DCSM0 + (cs * 4);
- if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
- debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsm0[cs], reg);
- /* If DCT are NOT ganged, then read in DCT1's mask */
- if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
- reg = F10_DCSM1 + (cs * 4);
- if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
- &pvt->dcsm1[cs]))
- debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsm1[cs], reg);
- } else {
- pvt->dcsm1[cs] = 0;
- }
- }
- }
- static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
- {
- enum mem_type type;
- if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
- if (pvt->dchr0 & DDR3_MODE)
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
- else
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
- } else {
- type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
- }
- debugf1(" Memory type is: %s\n", edac_mem_types[type]);
- return type;
- }
- /*
- * Read the DRAM Configuration Low register. It differs between CG, D & E revs
- * and the later RevF memory controllers (DDR vs DDR2)
- *
- * Return:
- * number of memory channels in operation
- * Pass back:
- * contents of the DCL0_LOW register
- */
- static int k8_early_channel_count(struct amd64_pvt *pvt)
- {
- int flag, err = 0;
- err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- return err;
- if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
- /* RevF (NPT) and later */
- flag = pvt->dclr0 & F10_WIDTH_128;
- } else {
- /* RevE and earlier */
- flag = pvt->dclr0 & REVE_WIDTH_128;
- }
- /* not used */
- pvt->dclr1 = 0;
- return (flag) ? 2 : 1;
- }
- /* extract the ERROR ADDRESS for the K8 CPUs */
- static u64 k8_get_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- return (((u64) (info->nbeah & 0xff)) << 32) +
- (info->nbeal & ~0x03);
- }
- /*
- * Read the Base and Limit registers for K8 based Memory controllers; extract
- * fields from the 'raw' reg into separate data fields
- *
- * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
- */
- static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
- {
- u32 low;
- u32 off = dram << 3; /* 8 bytes between DRAM entries */
- amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
- /* Extract parts into separate data entries */
- pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
- pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
- pvt->dram_rw_en[dram] = (low & 0x3);
- amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
- /*
- * Extract parts into separate data entries. Limit is the HIGHEST memory
- * location of the region, so lower 24 bits need to be all ones
- */
- pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
- pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
- pvt->dram_DstNode[dram] = (low & 0x7);
- }
- static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
- struct err_regs *info,
- u64 sys_addr)
- {
- struct mem_ctl_info *src_mci;
- unsigned short syndrome;
- int channel, csrow;
- u32 page, offset;
- /* Extract the syndrome parts and form a 16-bit syndrome */
- syndrome = HIGH_SYNDROME(info->nbsl) << 8;
- syndrome |= LOW_SYNDROME(info->nbsh);
- /* CHIPKILL enabled */
- if (info->nbcfg & K8_NBCFG_CHIPKILL) {
- channel = get_channel_from_ecc_syndrome(mci, syndrome);
- if (channel < 0) {
- /*
- * Syndrome didn't map, so we don't know which of the
- * 2 DIMMs is in error. So we need to ID 'both' of them
- * as suspect.
- */
- amd64_mc_printk(mci, KERN_WARNING,
- "unknown syndrome 0x%x - possible error "
- "reporting race\n", syndrome);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- } else {
- /*
- * non-chipkill ecc mode
- *
- * The k8 documentation is unclear about how to determine the
- * channel number when using non-chipkill memory. This method
- * was obtained from email communication with someone at AMD.
- * (Wish the email was placed in this comment - norsk)
- */
- channel = ((sys_addr & BIT(3)) != 0);
- }
- /*
- * Find out which node the error address belongs to. This may be
- * different from the node that detected the error.
- */
- src_mci = find_mc_by_sys_addr(mci, sys_addr);
- if (!src_mci) {
- amd64_mc_printk(mci, KERN_ERR,
- "failed to map error address 0x%lx to a node\n",
- (unsigned long)sys_addr);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- /* Now map the sys_addr to a CSROW */
- csrow = sys_addr_to_csrow(src_mci, sys_addr);
- if (csrow < 0) {
- edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
- } else {
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
- channel, EDAC_MOD_STR);
- }
- }
- static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
- {
- int *dbam_map;
- if (pvt->ext_model >= K8_REV_F)
- dbam_map = ddr2_dbam;
- else if (pvt->ext_model >= K8_REV_D)
- dbam_map = ddr2_dbam_revD;
- else
- dbam_map = ddr2_dbam_revCG;
- return dbam_map[cs_mode];
- }
- /*
- * Get the number of DCT channels in use.
- *
- * Return:
- * number of Memory Channels in operation
- * Pass back:
- * contents of the DCL0_LOW register
- */
- static int f10_early_channel_count(struct amd64_pvt *pvt)
- {
- int dbams[] = { DBAM0, DBAM1 };
- int i, j, channels = 0;
- u32 dbam;
- /* If we are in 128 bit mode, then we are using 2 channels */
- if (pvt->dclr0 & F10_WIDTH_128) {
- channels = 2;
- return channels;
- }
- /*
- * Need to check if in unganged mode: In such, there are 2 channels,
- * but they are not in 128 bit mode and thus the above 'dclr0' status
- * bit will be OFF.
- *
- * Need to check DCT0[0] and DCT1[0] to see if only one of them has
- * their CSEnable bit on. If so, then SINGLE DIMM case.
- */
- debugf0("Data width is not 128 bits - need more decoding\n");
- /*
- * Check DRAM Bank Address Mapping values for each DIMM to see if there
- * is more than just one DIMM present in unganged mode. Need to check
- * both controllers since DIMMs can be placed in either one.
- */
- for (i = 0; i < ARRAY_SIZE(dbams); i++) {
- if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
- goto err_reg;
- for (j = 0; j < 4; j++) {
- if (DBAM_DIMM(j, dbam) > 0) {
- channels++;
- break;
- }
- }
- }
- if (channels > 2)
- channels = 2;
- debugf0("MCT channel count: %d\n", channels);
- return channels;
- err_reg:
- return -1;
- }
- static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
- {
- int *dbam_map;
- if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
- dbam_map = ddr3_dbam;
- else
- dbam_map = ddr2_dbam;
- return dbam_map[cs_mode];
- }
- /* Enable extended configuration access via 0xCF8 feature */
- static void amd64_setup(struct amd64_pvt *pvt)
- {
- u32 reg;
- amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
- pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
- reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
- }
- /* Restore the extended configuration access via 0xCF8 feature */
- static void amd64_teardown(struct amd64_pvt *pvt)
- {
- u32 reg;
- amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
- reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- if (pvt->flags.cf8_extcfg)
- reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
- }
- static u64 f10_get_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- return (((u64) (info->nbeah & 0xffff)) << 32) +
- (info->nbeal & ~0x01);
- }
- /*
- * Read the Base and Limit registers for F10 based Memory controllers. Extract
- * fields from the 'raw' reg into separate data fields.
- *
- * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
- */
- static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
- {
- u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
- low_offset = K8_DRAM_BASE_LOW + (dram << 3);
- high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
- /* read the 'raw' DRAM BASE Address register */
- amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
- /* Read from the ECS data register */
- amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
- /* Extract parts into separate data entries */
- pvt->dram_rw_en[dram] = (low_base & 0x3);
- if (pvt->dram_rw_en[dram] == 0)
- return;
- pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
- pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
- (((u64)low_base & 0xFFFF0000) << 8);
- low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
- high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
- /* read the 'raw' LIMIT registers */
- amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
- /* Read from the ECS data register for the HIGH portion */
- amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
- pvt->dram_DstNode[dram] = (low_limit & 0x7);
- pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
- /*
- * Extract address values and form a LIMIT address. Limit is the HIGHEST
- * memory location of the region, so low 24 bits need to be all ones.
- */
- pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
- (((u64) low_limit & 0xFFFF0000) << 8) |
- 0x00FFFFFF;
- }
- static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
- {
- if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
- &pvt->dram_ctl_select_low)) {
- debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
- "High range addresses at: 0x%x\n",
- pvt->dram_ctl_select_low,
- dct_sel_baseaddr(pvt));
- debugf0(" DCT mode: %s, All DCTs on: %s\n",
- (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
- (dct_dram_enabled(pvt) ? "yes" : "no"));
- if (!dct_ganging_enabled(pvt))
- debugf0(" Address range split per DCT: %s\n",
- (dct_high_range_enabled(pvt) ? "yes" : "no"));
- debugf0(" DCT data interleave for ECC: %s, "
- "DRAM cleared since last warm reset: %s\n",
- (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
- (dct_memory_cleared(pvt) ? "yes" : "no"));
- debugf0(" DCT channel interleave: %s, "
- "DCT interleave bits selector: 0x%x\n",
- (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
- dct_sel_interleave_addr(pvt));
- }
- amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
- &pvt->dram_ctl_select_high);
- }
- /*
- * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
- * Interleaving Modes.
- */
- static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
- int hi_range_sel, u32 intlv_en)
- {
- u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
- if (dct_ganging_enabled(pvt))
- cs = 0;
- else if (hi_range_sel)
- cs = dct_sel_high;
- else if (dct_interleave_enabled(pvt)) {
- /*
- * see F2x110[DctSelIntLvAddr] - channel interleave mode
- */
- if (dct_sel_interleave_addr(pvt) == 0)
- cs = sys_addr >> 6 & 1;
- else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
- temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
- if (dct_sel_interleave_addr(pvt) & 1)
- cs = (sys_addr >> 9 & 1) ^ temp;
- else
- cs = (sys_addr >> 6 & 1) ^ temp;
- } else if (intlv_en & 4)
- cs = sys_addr >> 15 & 1;
- else if (intlv_en & 2)
- cs = sys_addr >> 14 & 1;
- else if (intlv_en & 1)
- cs = sys_addr >> 13 & 1;
- else
- cs = sys_addr >> 12 & 1;
- } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
- cs = ~dct_sel_high & 1;
- else
- cs = 0;
- return cs;
- }
- static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
- {
- if (intlv_en == 1)
- return 1;
- else if (intlv_en == 3)
- return 2;
- else if (intlv_en == 7)
- return 3;
- return 0;
- }
- /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
- static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
- u32 dct_sel_base_addr,
- u64 dct_sel_base_off,
- u32 hole_valid, u32 hole_off,
- u64 dram_base)
- {
- u64 chan_off;
- if (hi_range_sel) {
- if (!(dct_sel_base_addr & 0xFFFF0000) &&
- hole_valid && (sys_addr >= 0x100000000ULL))
- chan_off = hole_off << 16;
- else
- chan_off = dct_sel_base_off;
- } else {
- if (hole_valid && (sys_addr >= 0x100000000ULL))
- chan_off = hole_off << 16;
- else
- chan_off = dram_base & 0xFFFFF8000000ULL;
- }
- return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
- (chan_off & 0x0000FFFFFF800000ULL);
- }
- /* Hack for the time being - Can we get this from BIOS?? */
- #define CH0SPARE_RANK 0
- #define CH1SPARE_RANK 1
- /*
- * checks if the csrow passed in is marked as SPARED, if so returns the new
- * spare row
- */
- static inline int f10_process_possible_spare(int csrow,
- u32 cs, struct amd64_pvt *pvt)
- {
- u32 swap_done;
- u32 bad_dram_cs;
- /* Depending on channel, isolate respective SPARING info */
- if (cs) {
- swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
- bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
- if (swap_done && (csrow == bad_dram_cs))
- csrow = CH1SPARE_RANK;
- } else {
- swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
- bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
- if (swap_done && (csrow == bad_dram_cs))
- csrow = CH0SPARE_RANK;
- }
- return csrow;
- }
- /*
- * Iterate over the DRAM DCT "base" and "mask" registers looking for a
- * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
- *
- * Return:
- * -EINVAL: NOT FOUND
- * 0..csrow = Chip-Select Row
- */
- static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- u32 cs_base, cs_mask;
- int cs_found = -EINVAL;
- int csrow;
- mci = mci_lookup[nid];
- if (!mci)
- return cs_found;
- pvt = mci->pvt_info;
- debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
- for (csrow = 0; csrow < pvt->cs_count; csrow++) {
- cs_base = amd64_get_dct_base(pvt, cs, csrow);
- if (!(cs_base & K8_DCSB_CS_ENABLE))
- continue;
- /*
- * We have an ENABLED CSROW, Isolate just the MASK bits of the
- * target: [28:19] and [13:5], which map to [36:27] and [21:13]
- * of the actual address.
- */
- cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
- /*
- * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
- * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
- */
- cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
- debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
- csrow, cs_base, cs_mask);
- cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
- debugf1(" Final CSMask=0x%x\n", cs_mask);
- debugf1(" (InputAddr & ~CSMask)=0x%x "
- "(CSBase & ~CSMask)=0x%x\n",
- (in_addr & ~cs_mask), (cs_base & ~cs_mask));
- if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
- cs_found = f10_process_possible_spare(csrow, cs, pvt);
- debugf1(" MATCH csrow=%d\n", cs_found);
- break;
- }
- }
- return cs_found;
- }
- /* For a given @dram_range, check if @sys_addr falls within it. */
- static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
- u64 sys_addr, int *nid, int *chan_sel)
- {
- int node_id, cs_found = -EINVAL, high_range = 0;
- u32 intlv_en, intlv_sel, intlv_shift, hole_off;
- u32 hole_valid, tmp, dct_sel_base, channel;
- u64 dram_base, chan_addr, dct_sel_base_off;
- dram_base = pvt->dram_base[dram_range];
- intlv_en = pvt->dram_IntlvEn[dram_range];
- node_id = pvt->dram_DstNode[dram_range];
- intlv_sel = pvt->dram_IntlvSel[dram_range];
- debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
- dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
- /*
- * This assumes that one node's DHAR is the same as all the other
- * nodes' DHAR.
- */
- hole_off = (pvt->dhar & 0x0000FF80);
- hole_valid = (pvt->dhar & 0x1);
- dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
- debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
- hole_off, hole_valid, intlv_sel);
- if (intlv_en ||
- (intlv_sel != ((sys_addr >> 12) & intlv_en)))
- return -EINVAL;
- dct_sel_base = dct_sel_baseaddr(pvt);
- /*
- * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
- * select between DCT0 and DCT1.
- */
- if (dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt) &&
- ((sys_addr >> 27) >= (dct_sel_base >> 11)))
- high_range = 1;
- channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
- chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
- dct_sel_base_off, hole_valid,
- hole_off, dram_base);
- intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
- /* remove Node ID (in case of memory interleaving) */
- tmp = chan_addr & 0xFC0;
- chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
- /* remove channel interleave and hash */
- if (dct_interleave_enabled(pvt) &&
- !dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt)) {
- if (dct_sel_interleave_addr(pvt) != 1)
- chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
- else {
- tmp = chan_addr & 0xFC0;
- chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
- | tmp;
- }
- }
- debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
- chan_addr, (u32)(chan_addr >> 8));
- cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
- if (cs_found >= 0) {
- *nid = node_id;
- *chan_sel = channel;
- }
- return cs_found;
- }
- static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
- int *node, int *chan_sel)
- {
- int dram_range, cs_found = -EINVAL;
- u64 dram_base, dram_limit;
- for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
- if (!pvt->dram_rw_en[dram_range])
- continue;
- dram_base = pvt->dram_base[dram_range];
- dram_limit = pvt->dram_limit[dram_range];
- if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
- cs_found = f10_match_to_this_node(pvt, dram_range,
- sys_addr, node,
- chan_sel);
- if (cs_found >= 0)
- break;
- }
- }
- return cs_found;
- }
- /*
- * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
- * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
- *
- * The @sys_addr is usually an error address received from the hardware
- * (MCX_ADDR).
- */
- static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
- struct err_regs *info,
- u64 sys_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 page, offset;
- unsigned short syndrome;
- int nid, csrow, chan = 0;
- csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
- if (csrow < 0) {
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- syndrome = HIGH_SYNDROME(info->nbsl) << 8;
- syndrome |= LOW_SYNDROME(info->nbsh);
- /*
- * We need the syndromes for channel detection only when we're
- * ganged. Otherwise @chan should already contain the channel at
- * this point.
- */
- if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
- chan = get_channel_from_ecc_syndrome(mci, syndrome);
- if (chan >= 0)
- edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
- EDAC_MOD_STR);
- else
- /*
- * Channel unknown, report all channels on this CSROW as failed.
- */
- for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
- edac_mc_handle_ce(mci, page, offset, syndrome,
- csrow, chan, EDAC_MOD_STR);
- }
- /*
- * debug routine to display the memory sizes of all logical DIMMs and its
- * CSROWs as well
- */
- static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
- {
- int dimm, size0, size1, factor = 0;
- u32 dbam;
- u32 *dcsb;
- if (boot_cpu_data.x86 == 0xf) {
- if (pvt->dclr0 & F10_WIDTH_128)
- factor = 1;
- /* K8 families < revF not supported yet */
- if (pvt->ext_model < K8_REV_F)
- return;
- else
- WARN_ON(ctrl != 0);
- }
- debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
- ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
- dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
- dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
- edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
- /* Dump memory sizes for DIMM and its CSROWs */
- for (dimm = 0; dimm < 4; dimm++) {
- size0 = 0;
- if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
- size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
- size1 = 0;
- if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
- size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
- edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
- dimm * 2, size0 << factor,
- dimm * 2 + 1, size1 << factor);
- }
- }
- /*
- * There currently are 3 typ…