/arch/x86/kernel/ftrace.c
C | 512 lines | 303 code | 97 blank | 112 comment | 29 complexity | d5cf04d0dab0508041544bb427388970 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
- /*
- * Code for replacing ftrace calls with jumps.
- *
- * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
- *
- * Thanks goes to Ingo Molnar, for suggesting the idea.
- * Mathieu Desnoyers, for suggesting postponing the modifications.
- * Arjan van de Ven, for keeping me straight, and explaining to me
- * the dangers of modifying code on the run.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/spinlock.h>
- #include <linux/hardirq.h>
- #include <linux/uaccess.h>
- #include <linux/ftrace.h>
- #include <linux/percpu.h>
- #include <linux/sched.h>
- #include <linux/init.h>
- #include <linux/list.h>
- #include <trace/syscall.h>
- #include <asm/cacheflush.h>
- #include <asm/ftrace.h>
- #include <asm/nops.h>
- #include <asm/nmi.h>
- #ifdef CONFIG_DYNAMIC_FTRACE
- /*
- * modifying_code is set to notify NMIs that they need to use
- * memory barriers when entering or exiting. But we don't want
- * to burden NMIs with unnecessary memory barriers when code
- * modification is not being done (which is most of the time).
- *
- * A mutex is already held when ftrace_arch_code_modify_prepare
- * and post_process are called. No locks need to be taken here.
- *
- * Stop machine will make sure currently running NMIs are done
- * and new NMIs will see the updated variable before we need
- * to worry about NMIs doing memory barriers.
- */
- static int modifying_code __read_mostly;
- static DEFINE_PER_CPU(int, save_modifying_code);
- int ftrace_arch_code_modify_prepare(void)
- {
- set_kernel_text_rw();
- modifying_code = 1;
- return 0;
- }
- int ftrace_arch_code_modify_post_process(void)
- {
- modifying_code = 0;
- set_kernel_text_ro();
- return 0;
- }
- union ftrace_code_union {
- char code[MCOUNT_INSN_SIZE];
- struct {
- char e8;
- int offset;
- } __attribute__((packed));
- };
- static int ftrace_calc_offset(long ip, long addr)
- {
- return (int)(addr - ip);
- }
- static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
- {
- static union ftrace_code_union calc;
- calc.e8 = 0xe8;
- calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
- /*
- * No locking needed, this must be called via kstop_machine
- * which in essence is like running on a uniprocessor machine.
- */
- return calc.code;
- }
- /*
- * Modifying code must take extra care. On an SMP machine, if
- * the code being modified is also being executed on another CPU
- * that CPU will have undefined results and possibly take a GPF.
- * We use kstop_machine to stop other CPUS from exectuing code.
- * But this does not stop NMIs from happening. We still need
- * to protect against that. We separate out the modification of
- * the code to take care of this.
- *
- * Two buffers are added: An IP buffer and a "code" buffer.
- *
- * 1) Put the instruction pointer into the IP buffer
- * and the new code into the "code" buffer.
- * 2) Wait for any running NMIs to finish and set a flag that says
- * we are modifying code, it is done in an atomic operation.
- * 3) Write the code
- * 4) clear the flag.
- * 5) Wait for any running NMIs to finish.
- *
- * If an NMI is executed, the first thing it does is to call
- * "ftrace_nmi_enter". This will check if the flag is set to write
- * and if it is, it will write what is in the IP and "code" buffers.
- *
- * The trick is, it does not matter if everyone is writing the same
- * content to the code location. Also, if a CPU is executing code
- * it is OK to write to that code location if the contents being written
- * are the same as what exists.
- */
- #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
- static atomic_t nmi_running = ATOMIC_INIT(0);
- static int mod_code_status; /* holds return value of text write */
- static void *mod_code_ip; /* holds the IP to write to */
- static void *mod_code_newcode; /* holds the text to write to the IP */
- static unsigned nmi_wait_count;
- static atomic_t nmi_update_count = ATOMIC_INIT(0);
- int ftrace_arch_read_dyn_info(char *buf, int size)
- {
- int r;
- r = snprintf(buf, size, "%u %u",
- nmi_wait_count,
- atomic_read(&nmi_update_count));
- return r;
- }
- static void clear_mod_flag(void)
- {
- int old = atomic_read(&nmi_running);
- for (;;) {
- int new = old & ~MOD_CODE_WRITE_FLAG;
- if (old == new)
- break;
- old = atomic_cmpxchg(&nmi_running, old, new);
- }
- }
- static void ftrace_mod_code(void)
- {
- /*
- * Yes, more than one CPU process can be writing to mod_code_status.
- * (and the code itself)
- * But if one were to fail, then they all should, and if one were
- * to succeed, then they all should.
- */
- mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
- MCOUNT_INSN_SIZE);
- /* if we fail, then kill any new writers */
- if (mod_code_status)
- clear_mod_flag();
- }
- void ftrace_nmi_enter(void)
- {
- __get_cpu_var(save_modifying_code) = modifying_code;
- if (!__get_cpu_var(save_modifying_code))
- return;
- if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
- smp_rmb();
- ftrace_mod_code();
- atomic_inc(&nmi_update_count);
- }
- /* Must have previous changes seen before executions */
- smp_mb();
- }
- void ftrace_nmi_exit(void)
- {
- if (!__get_cpu_var(save_modifying_code))
- return;
- /* Finish all executions before clearing nmi_running */
- smp_mb();
- atomic_dec(&nmi_running);
- }
- static void wait_for_nmi_and_set_mod_flag(void)
- {
- if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
- return;
- do {
- cpu_relax();
- } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
- nmi_wait_count++;
- }
- static void wait_for_nmi(void)
- {
- if (!atomic_read(&nmi_running))
- return;
- do {
- cpu_relax();
- } while (atomic_read(&nmi_running));
- nmi_wait_count++;
- }
- static inline int
- within(unsigned long addr, unsigned long start, unsigned long end)
- {
- return addr >= start && addr < end;
- }
- static int
- do_ftrace_mod_code(unsigned long ip, void *new_code)
- {
- /*
- * On x86_64, kernel text mappings are mapped read-only with
- * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
- * of the kernel text mapping to modify the kernel text.
- *
- * For 32bit kernels, these mappings are same and we can use
- * kernel identity mapping to modify code.
- */
- if (within(ip, (unsigned long)_text, (unsigned long)_etext))
- ip = (unsigned long)__va(__pa(ip));
- mod_code_ip = (void *)ip;
- mod_code_newcode = new_code;
- /* The buffers need to be visible before we let NMIs write them */
- smp_mb();
- wait_for_nmi_and_set_mod_flag();
- /* Make sure all running NMIs have finished before we write the code */
- smp_mb();