PageRenderTime 590ms CodeModel.GetById 113ms app.highlight 151ms RepoModel.GetById 3ms app.codeStats 1ms

/arch/x86/kernel/cpu/cpufreq/powernow-k8.c

https://bitbucket.org/cresqo/cm7-p500-kernel
C | 1599 lines | 1188 code | 278 blank | 133 comment | 255 complexity | 94c364ed941e0ef79f49455a78550c08 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
   1/*
   2 *   (c) 2003-2010 Advanced Micro Devices, Inc.
   3 *  Your use of this code is subject to the terms and conditions of the
   4 *  GNU general public license version 2. See "COPYING" or
   5 *  http://www.gnu.org/licenses/gpl.html
   6 *
   7 *  Support : mark.langsdorf@amd.com
   8 *
   9 *  Based on the powernow-k7.c module written by Dave Jones.
  10 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  11 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  12 *  (C) 2004 Pavel Machek <pavel@suse.cz>
  13 *  Licensed under the terms of the GNU GPL License version 2.
  14 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  15 *
  16 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  17 *  Dominik Brodowski, Jacob Shin, and others.
  18 *  Originally developed by Paul Devriendt.
  19 *  Processor information obtained from Chapter 9 (Power and Thermal Management)
  20 *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
  21 *  Opteron Processors" available for download from www.amd.com
  22 *
  23 *  Tables for specific CPUs can be inferred from
  24 *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/smp.h>
  29#include <linux/module.h>
  30#include <linux/init.h>
  31#include <linux/cpufreq.h>
  32#include <linux/slab.h>
  33#include <linux/string.h>
  34#include <linux/cpumask.h>
  35#include <linux/sched.h>	/* for current / set_cpus_allowed() */
  36#include <linux/io.h>
  37#include <linux/delay.h>
  38
  39#include <asm/msr.h>
  40
  41#include <linux/acpi.h>
  42#include <linux/mutex.h>
  43#include <acpi/processor.h>
  44
  45#define PFX "powernow-k8: "
  46#define VERSION "version 2.20.00"
  47#include "powernow-k8.h"
  48#include "mperf.h"
  49
  50/* serialize freq changes  */
  51static DEFINE_MUTEX(fidvid_mutex);
  52
  53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  54
  55static int cpu_family = CPU_OPTERON;
  56
  57/* core performance boost */
  58static bool cpb_capable, cpb_enabled;
  59static struct msr __percpu *msrs;
  60
  61static struct cpufreq_driver cpufreq_amd64_driver;
  62
  63#ifndef CONFIG_SMP
  64static inline const struct cpumask *cpu_core_mask(int cpu)
  65{
  66	return cpumask_of(0);
  67}
  68#endif
  69
  70/* Return a frequency in MHz, given an input fid */
  71static u32 find_freq_from_fid(u32 fid)
  72{
  73	return 800 + (fid * 100);
  74}
  75
  76/* Return a frequency in KHz, given an input fid */
  77static u32 find_khz_freq_from_fid(u32 fid)
  78{
  79	return 1000 * find_freq_from_fid(fid);
  80}
  81
  82static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  83		u32 pstate)
  84{
  85	return data[pstate].frequency;
  86}
  87
  88/* Return the vco fid for an input fid
  89 *
  90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  91 * only from corresponding high fids. This returns "high" fid corresponding to
  92 * "low" one.
  93 */
  94static u32 convert_fid_to_vco_fid(u32 fid)
  95{
  96	if (fid < HI_FID_TABLE_BOTTOM)
  97		return 8 + (2 * fid);
  98	else
  99		return fid;
 100}
 101
 102/*
 103 * Return 1 if the pending bit is set. Unless we just instructed the processor
 104 * to transition to a new state, seeing this bit set is really bad news.
 105 */
 106static int pending_bit_stuck(void)
 107{
 108	u32 lo, hi;
 109
 110	if (cpu_family == CPU_HW_PSTATE)
 111		return 0;
 112
 113	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 114	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
 115}
 116
 117/*
 118 * Update the global current fid / vid values from the status msr.
 119 * Returns 1 on error.
 120 */
 121static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 122{
 123	u32 lo, hi;
 124	u32 i = 0;
 125
 126	if (cpu_family == CPU_HW_PSTATE) {
 127		rdmsr(MSR_PSTATE_STATUS, lo, hi);
 128		i = lo & HW_PSTATE_MASK;
 129		data->currpstate = i;
 130
 131		/*
 132		 * a workaround for family 11h erratum 311 might cause
 133		 * an "out-of-range Pstate if the core is in Pstate-0
 134		 */
 135		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
 136			data->currpstate = HW_PSTATE_0;
 137
 138		return 0;
 139	}
 140	do {
 141		if (i++ > 10000) {
 142			dprintk("detected change pending stuck\n");
 143			return 1;
 144		}
 145		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 146	} while (lo & MSR_S_LO_CHANGE_PENDING);
 147
 148	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 149	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 150
 151	return 0;
 152}
 153
 154/* the isochronous relief time */
 155static void count_off_irt(struct powernow_k8_data *data)
 156{
 157	udelay((1 << data->irt) * 10);
 158	return;
 159}
 160
 161/* the voltage stabilization time */
 162static void count_off_vst(struct powernow_k8_data *data)
 163{
 164	udelay(data->vstable * VST_UNITS_20US);
 165	return;
 166}
 167
 168/* need to init the control msr to a safe value (for each cpu) */
 169static void fidvid_msr_init(void)
 170{
 171	u32 lo, hi;
 172	u8 fid, vid;
 173
 174	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 175	vid = hi & MSR_S_HI_CURRENT_VID;
 176	fid = lo & MSR_S_LO_CURRENT_FID;
 177	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 178	hi = MSR_C_HI_STP_GNT_BENIGN;
 179	dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 180	wrmsr(MSR_FIDVID_CTL, lo, hi);
 181}
 182
 183/* write the new fid value along with the other control fields to the msr */
 184static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 185{
 186	u32 lo;
 187	u32 savevid = data->currvid;
 188	u32 i = 0;
 189
 190	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 191		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
 192		return 1;
 193	}
 194
 195	lo = fid;
 196	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 197	lo |= MSR_C_LO_INIT_FID_VID;
 198
 199	dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 200		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 201
 202	do {
 203		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 204		if (i++ > 100) {
 205			printk(KERN_ERR PFX
 206				"Hardware error - pending bit very stuck - "
 207				"no further pstate changes possible\n");
 208			return 1;
 209		}
 210	} while (query_current_values_with_pending_wait(data));
 211
 212	count_off_irt(data);
 213
 214	if (savevid != data->currvid) {
 215		printk(KERN_ERR PFX
 216			"vid change on fid trans, old 0x%x, new 0x%x\n",
 217			savevid, data->currvid);
 218		return 1;
 219	}
 220
 221	if (fid != data->currfid) {
 222		printk(KERN_ERR PFX
 223			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 224			data->currfid);
 225		return 1;
 226	}
 227
 228	return 0;
 229}
 230
 231/* Write a new vid to the hardware */
 232static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 233{
 234	u32 lo;
 235	u32 savefid = data->currfid;
 236	int i = 0;
 237
 238	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 239		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
 240		return 1;
 241	}
 242
 243	lo = data->currfid;
 244	lo |= (vid << MSR_C_LO_VID_SHIFT);
 245	lo |= MSR_C_LO_INIT_FID_VID;
 246
 247	dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 248		vid, lo, STOP_GRANT_5NS);
 249
 250	do {
 251		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 252		if (i++ > 100) {
 253			printk(KERN_ERR PFX "internal error - pending bit "
 254					"very stuck - no further pstate "
 255					"changes possible\n");
 256			return 1;
 257		}
 258	} while (query_current_values_with_pending_wait(data));
 259
 260	if (savefid != data->currfid) {
 261		printk(KERN_ERR PFX "fid changed on vid trans, old "
 262			"0x%x new 0x%x\n",
 263		       savefid, data->currfid);
 264		return 1;
 265	}
 266
 267	if (vid != data->currvid) {
 268		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
 269				"curr 0x%x\n",
 270				vid, data->currvid);
 271		return 1;
 272	}
 273
 274	return 0;
 275}
 276
 277/*
 278 * Reduce the vid by the max of step or reqvid.
 279 * Decreasing vid codes represent increasing voltages:
 280 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 281 */
 282static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 283		u32 reqvid, u32 step)
 284{
 285	if ((data->currvid - reqvid) > step)
 286		reqvid = data->currvid - step;
 287
 288	if (write_new_vid(data, reqvid))
 289		return 1;
 290
 291	count_off_vst(data);
 292
 293	return 0;
 294}
 295
 296/* Change hardware pstate by single MSR write */
 297static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
 298{
 299	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
 300	data->currpstate = pstate;
 301	return 0;
 302}
 303
 304/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 305static int transition_fid_vid(struct powernow_k8_data *data,
 306		u32 reqfid, u32 reqvid)
 307{
 308	if (core_voltage_pre_transition(data, reqvid, reqfid))
 309		return 1;
 310
 311	if (core_frequency_transition(data, reqfid))
 312		return 1;
 313
 314	if (core_voltage_post_transition(data, reqvid))
 315		return 1;
 316
 317	if (query_current_values_with_pending_wait(data))
 318		return 1;
 319
 320	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 321		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
 322				"curr 0x%x 0x%x\n",
 323				smp_processor_id(),
 324				reqfid, reqvid, data->currfid, data->currvid);
 325		return 1;
 326	}
 327
 328	dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 329		smp_processor_id(), data->currfid, data->currvid);
 330
 331	return 0;
 332}
 333
 334/* Phase 1 - core voltage transition ... setup voltage */
 335static int core_voltage_pre_transition(struct powernow_k8_data *data,
 336		u32 reqvid, u32 reqfid)
 337{
 338	u32 rvosteps = data->rvo;
 339	u32 savefid = data->currfid;
 340	u32 maxvid, lo, rvomult = 1;
 341
 342	dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
 343		"reqvid 0x%x, rvo 0x%x\n",
 344		smp_processor_id(),
 345		data->currfid, data->currvid, reqvid, data->rvo);
 346
 347	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 348		rvomult = 2;
 349	rvosteps *= rvomult;
 350	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 351	maxvid = 0x1f & (maxvid >> 16);
 352	dprintk("ph1 maxvid=0x%x\n", maxvid);
 353	if (reqvid < maxvid) /* lower numbers are higher voltages */
 354		reqvid = maxvid;
 355
 356	while (data->currvid > reqvid) {
 357		dprintk("ph1: curr 0x%x, req vid 0x%x\n",
 358			data->currvid, reqvid);
 359		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 360			return 1;
 361	}
 362
 363	while ((rvosteps > 0) &&
 364			((rvomult * data->rvo + data->currvid) > reqvid)) {
 365		if (data->currvid == maxvid) {
 366			rvosteps = 0;
 367		} else {
 368			dprintk("ph1: changing vid for rvo, req 0x%x\n",
 369				data->currvid - 1);
 370			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 371				return 1;
 372			rvosteps--;
 373		}
 374	}
 375
 376	if (query_current_values_with_pending_wait(data))
 377		return 1;
 378
 379	if (savefid != data->currfid) {
 380		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
 381				data->currfid);
 382		return 1;
 383	}
 384
 385	dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 386		data->currfid, data->currvid);
 387
 388	return 0;
 389}
 390
 391/* Phase 2 - core frequency transition */
 392static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 393{
 394	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 395	u32 fid_interval, savevid = data->currvid;
 396
 397	if (data->currfid == reqfid) {
 398		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
 399				data->currfid);
 400		return 0;
 401	}
 402
 403	dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
 404		"reqfid 0x%x\n",
 405		smp_processor_id(),
 406		data->currfid, data->currvid, reqfid);
 407
 408	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 409	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 410	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 411	    : vcoreqfid - vcocurrfid;
 412
 413	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 414		vcofiddiff = 0;
 415
 416	while (vcofiddiff > 2) {
 417		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 418
 419		if (reqfid > data->currfid) {
 420			if (data->currfid > LO_FID_TABLE_TOP) {
 421				if (write_new_fid(data,
 422						data->currfid + fid_interval))
 423					return 1;
 424			} else {
 425				if (write_new_fid
 426				    (data,
 427				     2 + convert_fid_to_vco_fid(data->currfid)))
 428					return 1;
 429			}
 430		} else {
 431			if (write_new_fid(data, data->currfid - fid_interval))
 432				return 1;
 433		}
 434
 435		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 436		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 437		    : vcoreqfid - vcocurrfid;
 438	}
 439
 440	if (write_new_fid(data, reqfid))
 441		return 1;
 442
 443	if (query_current_values_with_pending_wait(data))
 444		return 1;
 445
 446	if (data->currfid != reqfid) {
 447		printk(KERN_ERR PFX
 448			"ph2: mismatch, failed fid transition, "
 449			"curr 0x%x, req 0x%x\n",
 450			data->currfid, reqfid);
 451		return 1;
 452	}
 453
 454	if (savevid != data->currvid) {
 455		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
 456			savevid, data->currvid);
 457		return 1;
 458	}
 459
 460	dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 461		data->currfid, data->currvid);
 462
 463	return 0;
 464}
 465
 466/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 467static int core_voltage_post_transition(struct powernow_k8_data *data,
 468		u32 reqvid)
 469{
 470	u32 savefid = data->currfid;
 471	u32 savereqvid = reqvid;
 472
 473	dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 474		smp_processor_id(),
 475		data->currfid, data->currvid);
 476
 477	if (reqvid != data->currvid) {
 478		if (write_new_vid(data, reqvid))
 479			return 1;
 480
 481		if (savefid != data->currfid) {
 482			printk(KERN_ERR PFX
 483			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
 484			       savefid, data->currfid);
 485			return 1;
 486		}
 487
 488		if (data->currvid != reqvid) {
 489			printk(KERN_ERR PFX
 490			       "ph3: failed vid transition\n, "
 491			       "req 0x%x, curr 0x%x",
 492			       reqvid, data->currvid);
 493			return 1;
 494		}
 495	}
 496
 497	if (query_current_values_with_pending_wait(data))
 498		return 1;
 499
 500	if (savereqvid != data->currvid) {
 501		dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
 502		return 1;
 503	}
 504
 505	if (savefid != data->currfid) {
 506		dprintk("ph3 failed, currfid changed 0x%x\n",
 507			data->currfid);
 508		return 1;
 509	}
 510
 511	dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 512		data->currfid, data->currvid);
 513
 514	return 0;
 515}
 516
 517static void check_supported_cpu(void *_rc)
 518{
 519	u32 eax, ebx, ecx, edx;
 520	int *rc = _rc;
 521
 522	*rc = -ENODEV;
 523
 524	if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
 525		return;
 526
 527	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 528	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
 529	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
 530		return;
 531
 532	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 533		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 534		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 535			printk(KERN_INFO PFX
 536				"Processor cpuid %x not supported\n", eax);
 537			return;
 538		}
 539
 540		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 541		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 542			printk(KERN_INFO PFX
 543			       "No frequency change capabilities detected\n");
 544			return;
 545		}
 546
 547		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 548		if ((edx & P_STATE_TRANSITION_CAPABLE)
 549			!= P_STATE_TRANSITION_CAPABLE) {
 550			printk(KERN_INFO PFX
 551				"Power state transitions not supported\n");
 552			return;
 553		}
 554	} else { /* must be a HW Pstate capable processor */
 555		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 556		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
 557			cpu_family = CPU_HW_PSTATE;
 558		else
 559			return;
 560	}
 561
 562	*rc = 0;
 563}
 564
 565static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 566		u8 maxvid)
 567{
 568	unsigned int j;
 569	u8 lastfid = 0xff;
 570
 571	for (j = 0; j < data->numps; j++) {
 572		if (pst[j].vid > LEAST_VID) {
 573			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
 574			       j, pst[j].vid);
 575			return -EINVAL;
 576		}
 577		if (pst[j].vid < data->rvo) {
 578			/* vid + rvo >= 0 */
 579			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
 580			       " %d\n", j);
 581			return -ENODEV;
 582		}
 583		if (pst[j].vid < maxvid + data->rvo) {
 584			/* vid + rvo >= maxvid */
 585			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
 586			       " %d\n", j);
 587			return -ENODEV;
 588		}
 589		if (pst[j].fid > MAX_FID) {
 590			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
 591			       " %d\n", j);
 592			return -ENODEV;
 593		}
 594		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 595			/* Only first fid is allowed to be in "low" range */
 596			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
 597			       "0x%x\n", j, pst[j].fid);
 598			return -EINVAL;
 599		}
 600		if (pst[j].fid < lastfid)
 601			lastfid = pst[j].fid;
 602	}
 603	if (lastfid & 1) {
 604		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
 605		return -EINVAL;
 606	}
 607	if (lastfid > LO_FID_TABLE_TOP)
 608		printk(KERN_INFO FW_BUG PFX
 609			"first fid not from lo freq table\n");
 610
 611	return 0;
 612}
 613
 614static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 615		unsigned int entry)
 616{
 617	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 618}
 619
 620static void print_basics(struct powernow_k8_data *data)
 621{
 622	int j;
 623	for (j = 0; j < data->numps; j++) {
 624		if (data->powernow_table[j].frequency !=
 625				CPUFREQ_ENTRY_INVALID) {
 626			if (cpu_family == CPU_HW_PSTATE) {
 627				printk(KERN_INFO PFX
 628					"   %d : pstate %d (%d MHz)\n", j,
 629					data->powernow_table[j].index,
 630					data->powernow_table[j].frequency/1000);
 631			} else {
 632				printk(KERN_INFO PFX
 633					"   %d : fid 0x%x (%d MHz), vid 0x%x\n",
 634					j,
 635					data->powernow_table[j].index & 0xff,
 636					data->powernow_table[j].frequency/1000,
 637					data->powernow_table[j].index >> 8);
 638			}
 639		}
 640	}
 641	if (data->batps)
 642		printk(KERN_INFO PFX "Only %d pstates on battery\n",
 643				data->batps);
 644}
 645
 646static u32 freq_from_fid_did(u32 fid, u32 did)
 647{
 648	u32 mhz = 0;
 649
 650	if (boot_cpu_data.x86 == 0x10)
 651		mhz = (100 * (fid + 0x10)) >> did;
 652	else if (boot_cpu_data.x86 == 0x11)
 653		mhz = (100 * (fid + 8)) >> did;
 654	else
 655		BUG();
 656
 657	return mhz * 1000;
 658}
 659
 660static int fill_powernow_table(struct powernow_k8_data *data,
 661		struct pst_s *pst, u8 maxvid)
 662{
 663	struct cpufreq_frequency_table *powernow_table;
 664	unsigned int j;
 665
 666	if (data->batps) {
 667		/* use ACPI support to get full speed on mains power */
 668		printk(KERN_WARNING PFX
 669			"Only %d pstates usable (use ACPI driver for full "
 670			"range\n", data->batps);
 671		data->numps = data->batps;
 672	}
 673
 674	for (j = 1; j < data->numps; j++) {
 675		if (pst[j-1].fid >= pst[j].fid) {
 676			printk(KERN_ERR PFX "PST out of sequence\n");
 677			return -EINVAL;
 678		}
 679	}
 680
 681	if (data->numps < 2) {
 682		printk(KERN_ERR PFX "no p states to transition\n");
 683		return -ENODEV;
 684	}
 685
 686	if (check_pst_table(data, pst, maxvid))
 687		return -EINVAL;
 688
 689	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 690		* (data->numps + 1)), GFP_KERNEL);
 691	if (!powernow_table) {
 692		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
 693		return -ENOMEM;
 694	}
 695
 696	for (j = 0; j < data->numps; j++) {
 697		int freq;
 698		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
 699		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
 700		freq = find_khz_freq_from_fid(pst[j].fid);
 701		powernow_table[j].frequency = freq;
 702	}
 703	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 704	powernow_table[data->numps].index = 0;
 705
 706	if (query_current_values_with_pending_wait(data)) {
 707		kfree(powernow_table);
 708		return -EIO;
 709	}
 710
 711	dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 712	data->powernow_table = powernow_table;
 713	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 714		print_basics(data);
 715
 716	for (j = 0; j < data->numps; j++)
 717		if ((pst[j].fid == data->currfid) &&
 718		    (pst[j].vid == data->currvid))
 719			return 0;
 720
 721	dprintk("currfid/vid do not match PST, ignoring\n");
 722	return 0;
 723}
 724
 725/* Find and validate the PSB/PST table in BIOS. */
 726static int find_psb_table(struct powernow_k8_data *data)
 727{
 728	struct psb_s *psb;
 729	unsigned int i;
 730	u32 mvs;
 731	u8 maxvid;
 732	u32 cpst = 0;
 733	u32 thiscpuid;
 734
 735	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 736		/* Scan BIOS looking for the signature. */
 737		/* It can not be at ffff0 - it is too big. */
 738
 739		psb = phys_to_virt(i);
 740		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 741			continue;
 742
 743		dprintk("found PSB header at 0x%p\n", psb);
 744
 745		dprintk("table vers: 0x%x\n", psb->tableversion);
 746		if (psb->tableversion != PSB_VERSION_1_4) {
 747			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
 748			return -ENODEV;
 749		}
 750
 751		dprintk("flags: 0x%x\n", psb->flags1);
 752		if (psb->flags1) {
 753			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
 754			return -ENODEV;
 755		}
 756
 757		data->vstable = psb->vstable;
 758		dprintk("voltage stabilization time: %d(*20us)\n",
 759				data->vstable);
 760
 761		dprintk("flags2: 0x%x\n", psb->flags2);
 762		data->rvo = psb->flags2 & 3;
 763		data->irt = ((psb->flags2) >> 2) & 3;
 764		mvs = ((psb->flags2) >> 4) & 3;
 765		data->vidmvs = 1 << mvs;
 766		data->batps = ((psb->flags2) >> 6) & 3;
 767
 768		dprintk("ramp voltage offset: %d\n", data->rvo);
 769		dprintk("isochronous relief time: %d\n", data->irt);
 770		dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 771
 772		dprintk("numpst: 0x%x\n", psb->num_tables);
 773		cpst = psb->num_tables;
 774		if ((psb->cpuid == 0x00000fc0) ||
 775		    (psb->cpuid == 0x00000fe0)) {
 776			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 777			if ((thiscpuid == 0x00000fc0) ||
 778			    (thiscpuid == 0x00000fe0))
 779				cpst = 1;
 780		}
 781		if (cpst != 1) {
 782			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
 783			return -ENODEV;
 784		}
 785
 786		data->plllock = psb->plllocktime;
 787		dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 788		dprintk("maxfid: 0x%x\n", psb->maxfid);
 789		dprintk("maxvid: 0x%x\n", psb->maxvid);
 790		maxvid = psb->maxvid;
 791
 792		data->numps = psb->numps;
 793		dprintk("numpstates: 0x%x\n", data->numps);
 794		return fill_powernow_table(data,
 795				(struct pst_s *)(psb+1), maxvid);
 796	}
 797	/*
 798	 * If you see this message, complain to BIOS manufacturer. If
 799	 * he tells you "we do not support Linux" or some similar
 800	 * nonsense, remember that Windows 2000 uses the same legacy
 801	 * mechanism that the old Linux PSB driver uses. Tell them it
 802	 * is broken with Windows 2000.
 803	 *
 804	 * The reference to the AMD documentation is chapter 9 in the
 805	 * BIOS and Kernel Developer's Guide, which is available on
 806	 * www.amd.com
 807	 */
 808	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
 809	return -ENODEV;
 810}
 811
 812static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 813		unsigned int index)
 814{
 815	u64 control;
 816
 817	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
 818		return;
 819
 820	control = data->acpi_data.states[index].control;
 821	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 822	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 823	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 824	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 825	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 826	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 827}
 828
 829static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 830{
 831	struct cpufreq_frequency_table *powernow_table;
 832	int ret_val = -ENODEV;
 833	u64 control, status;
 834
 835	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 836		dprintk("register performance failed: bad ACPI data\n");
 837		return -EIO;
 838	}
 839
 840	/* verify the data contained in the ACPI structures */
 841	if (data->acpi_data.state_count <= 1) {
 842		dprintk("No ACPI P-States\n");
 843		goto err_out;
 844	}
 845
 846	control = data->acpi_data.control_register.space_id;
 847	status = data->acpi_data.status_register.space_id;
 848
 849	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 850	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 851		dprintk("Invalid control/status registers (%x - %x)\n",
 852			control, status);
 853		goto err_out;
 854	}
 855
 856	/* fill in data->powernow_table */
 857	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 858		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 859	if (!powernow_table) {
 860		dprintk("powernow_table memory alloc failure\n");
 861		goto err_out;
 862	}
 863
 864	/* fill in data */
 865	data->numps = data->acpi_data.state_count;
 866	powernow_k8_acpi_pst_values(data, 0);
 867
 868	if (cpu_family == CPU_HW_PSTATE)
 869		ret_val = fill_powernow_table_pstate(data, powernow_table);
 870	else
 871		ret_val = fill_powernow_table_fidvid(data, powernow_table);
 872	if (ret_val)
 873		goto err_out_mem;
 874
 875	powernow_table[data->acpi_data.state_count].frequency =
 876		CPUFREQ_TABLE_END;
 877	powernow_table[data->acpi_data.state_count].index = 0;
 878	data->powernow_table = powernow_table;
 879
 880	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 881		print_basics(data);
 882
 883	/* notify BIOS that we exist */
 884	acpi_processor_notify_smm(THIS_MODULE);
 885
 886	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 887		printk(KERN_ERR PFX
 888				"unable to alloc powernow_k8_data cpumask\n");
 889		ret_val = -ENOMEM;
 890		goto err_out_mem;
 891	}
 892
 893	return 0;
 894
 895err_out_mem:
 896	kfree(powernow_table);
 897
 898err_out:
 899	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
 900
 901	/* data->acpi_data.state_count informs us at ->exit()
 902	 * whether ACPI was used */
 903	data->acpi_data.state_count = 0;
 904
 905	return ret_val;
 906}
 907
 908static int fill_powernow_table_pstate(struct powernow_k8_data *data,
 909		struct cpufreq_frequency_table *powernow_table)
 910{
 911	int i;
 912	u32 hi = 0, lo = 0;
 913	rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
 914	data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
 915
 916	for (i = 0; i < data->acpi_data.state_count; i++) {
 917		u32 index;
 918
 919		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
 920		if (index > data->max_hw_pstate) {
 921			printk(KERN_ERR PFX "invalid pstate %d - "
 922					"bad value %d.\n", i, index);
 923			printk(KERN_ERR PFX "Please report to BIOS "
 924					"manufacturer\n");
 925			invalidate_entry(powernow_table, i);
 926			continue;
 927		}
 928		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
 929		if (!(hi & HW_PSTATE_VALID_MASK)) {
 930			dprintk("invalid pstate %d, ignoring\n", index);
 931			invalidate_entry(powernow_table, i);
 932			continue;
 933		}
 934
 935		powernow_table[i].index = index;
 936
 937		/* Frequency may be rounded for these */
 938		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
 939				 || boot_cpu_data.x86 == 0x11) {
 940			powernow_table[i].frequency =
 941				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
 942		} else
 943			powernow_table[i].frequency =
 944				data->acpi_data.states[i].core_frequency * 1000;
 945	}
 946	return 0;
 947}
 948
 949static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 950		struct cpufreq_frequency_table *powernow_table)
 951{
 952	int i;
 953
 954	for (i = 0; i < data->acpi_data.state_count; i++) {
 955		u32 fid;
 956		u32 vid;
 957		u32 freq, index;
 958		u64 status, control;
 959
 960		if (data->exttype) {
 961			status =  data->acpi_data.states[i].status;
 962			fid = status & EXT_FID_MASK;
 963			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 964		} else {
 965			control =  data->acpi_data.states[i].control;
 966			fid = control & FID_MASK;
 967			vid = (control >> VID_SHIFT) & VID_MASK;
 968		}
 969
 970		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 971
 972		index = fid | (vid<<8);
 973		powernow_table[i].index = index;
 974
 975		freq = find_khz_freq_from_fid(fid);
 976		powernow_table[i].frequency = freq;
 977
 978		/* verify frequency is OK */
 979		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 980			dprintk("invalid freq %u kHz, ignoring\n", freq);
 981			invalidate_entry(powernow_table, i);
 982			continue;
 983		}
 984
 985		/* verify voltage is OK -
 986		 * BIOSs are using "off" to indicate invalid */
 987		if (vid == VID_OFF) {
 988			dprintk("invalid vid %u, ignoring\n", vid);
 989			invalidate_entry(powernow_table, i);
 990			continue;
 991		}
 992
 993		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
 994			printk(KERN_INFO PFX "invalid freq entries "
 995				"%u kHz vs. %u kHz\n", freq,
 996				(unsigned int)
 997				(data->acpi_data.states[i].core_frequency
 998				 * 1000));
 999			invalidate_entry(powernow_table, i);
1000			continue;
1001		}
1002	}
1003	return 0;
1004}
1005
1006static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1007{
1008	if (data->acpi_data.state_count)
1009		acpi_processor_unregister_performance(&data->acpi_data,
1010				data->cpu);
1011	free_cpumask_var(data->acpi_data.shared_cpu_map);
1012}
1013
1014static int get_transition_latency(struct powernow_k8_data *data)
1015{
1016	int max_latency = 0;
1017	int i;
1018	for (i = 0; i < data->acpi_data.state_count; i++) {
1019		int cur_latency = data->acpi_data.states[i].transition_latency
1020			+ data->acpi_data.states[i].bus_master_latency;
1021		if (cur_latency > max_latency)
1022			max_latency = cur_latency;
1023	}
1024	if (max_latency == 0) {
1025		/*
1026		 * Fam 11h and later may return 0 as transition latency. This
1027		 * is intended and means "very fast". While cpufreq core and
1028		 * governors currently can handle that gracefully, better set it
1029		 * to 1 to avoid problems in the future.
1030		 */
1031		if (boot_cpu_data.x86 < 0x11)
1032			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1033				"latency\n");
1034		max_latency = 1;
1035	}
1036	/* value in usecs, needs to be in nanoseconds */
1037	return 1000 * max_latency;
1038}
1039
1040/* Take a frequency, and issue the fid/vid transition command */
1041static int transition_frequency_fidvid(struct powernow_k8_data *data,
1042		unsigned int index)
1043{
1044	u32 fid = 0;
1045	u32 vid = 0;
1046	int res, i;
1047	struct cpufreq_freqs freqs;
1048
1049	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1050
1051	/* fid/vid correctness check for k8 */
1052	/* fid are the lower 8 bits of the index we stored into
1053	 * the cpufreq frequency table in find_psb_table, vid
1054	 * are the upper 8 bits.
1055	 */
1056	fid = data->powernow_table[index].index & 0xFF;
1057	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1058
1059	dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1060
1061	if (query_current_values_with_pending_wait(data))
1062		return 1;
1063
1064	if ((data->currvid == vid) && (data->currfid == fid)) {
1065		dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1066			fid, vid);
1067		return 0;
1068	}
1069
1070	dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1071		smp_processor_id(), fid, vid);
1072	freqs.old = find_khz_freq_from_fid(data->currfid);
1073	freqs.new = find_khz_freq_from_fid(fid);
1074
1075	for_each_cpu(i, data->available_cores) {
1076		freqs.cpu = i;
1077		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1078	}
1079
1080	res = transition_fid_vid(data, fid, vid);
1081	freqs.new = find_khz_freq_from_fid(data->currfid);
1082
1083	for_each_cpu(i, data->available_cores) {
1084		freqs.cpu = i;
1085		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1086	}
1087	return res;
1088}
1089
1090/* Take a frequency, and issue the hardware pstate transition command */
1091static int transition_frequency_pstate(struct powernow_k8_data *data,
1092		unsigned int index)
1093{
1094	u32 pstate = 0;
1095	int res, i;
1096	struct cpufreq_freqs freqs;
1097
1098	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1099
1100	/* get MSR index for hardware pstate transition */
1101	pstate = index & HW_PSTATE_MASK;
1102	if (pstate > data->max_hw_pstate)
1103		return 0;
1104	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1105			data->currpstate);
1106	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1107
1108	for_each_cpu(i, data->available_cores) {
1109		freqs.cpu = i;
1110		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1111	}
1112
1113	res = transition_pstate(data, pstate);
1114	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1115
1116	for_each_cpu(i, data->available_cores) {
1117		freqs.cpu = i;
1118		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1119	}
1120	return res;
1121}
1122
1123/* Driver entry point to switch to the target frequency */
1124static int powernowk8_target(struct cpufreq_policy *pol,
1125		unsigned targfreq, unsigned relation)
1126{
1127	cpumask_var_t oldmask;
1128	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1129	u32 checkfid;
1130	u32 checkvid;
1131	unsigned int newstate;
1132	int ret = -EIO;
1133
1134	if (!data)
1135		return -EINVAL;
1136
1137	checkfid = data->currfid;
1138	checkvid = data->currvid;
1139
1140	/* only run on specific CPU from here on. */
1141	/* This is poor form: use a workqueue or smp_call_function_single */
1142	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1143		return -ENOMEM;
1144
1145	cpumask_copy(oldmask, tsk_cpus_allowed(current));
1146	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1147
1148	if (smp_processor_id() != pol->cpu) {
1149		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1150		goto err_out;
1151	}
1152
1153	if (pending_bit_stuck()) {
1154		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1155		goto err_out;
1156	}
1157
1158	dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1159		pol->cpu, targfreq, pol->min, pol->max, relation);
1160
1161	if (query_current_values_with_pending_wait(data))
1162		goto err_out;
1163
1164	if (cpu_family != CPU_HW_PSTATE) {
1165		dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1166		data->currfid, data->currvid);
1167
1168		if ((checkvid != data->currvid) ||
1169		    (checkfid != data->currfid)) {
1170			printk(KERN_INFO PFX
1171				"error - out of sync, fix 0x%x 0x%x, "
1172				"vid 0x%x 0x%x\n",
1173				checkfid, data->currfid,
1174				checkvid, data->currvid);
1175		}
1176	}
1177
1178	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1179				targfreq, relation, &newstate))
1180		goto err_out;
1181
1182	mutex_lock(&fidvid_mutex);
1183
1184	powernow_k8_acpi_pst_values(data, newstate);
1185
1186	if (cpu_family == CPU_HW_PSTATE)
1187		ret = transition_frequency_pstate(data, newstate);
1188	else
1189		ret = transition_frequency_fidvid(data, newstate);
1190	if (ret) {
1191		printk(KERN_ERR PFX "transition frequency failed\n");
1192		ret = 1;
1193		mutex_unlock(&fidvid_mutex);
1194		goto err_out;
1195	}
1196	mutex_unlock(&fidvid_mutex);
1197
1198	if (cpu_family == CPU_HW_PSTATE)
1199		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1200				newstate);
1201	else
1202		pol->cur = find_khz_freq_from_fid(data->currfid);
1203	ret = 0;
1204
1205err_out:
1206	set_cpus_allowed_ptr(current, oldmask);
1207	free_cpumask_var(oldmask);
1208	return ret;
1209}
1210
1211/* Driver entry point to verify the policy and range of frequencies */
1212static int powernowk8_verify(struct cpufreq_policy *pol)
1213{
1214	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1215
1216	if (!data)
1217		return -EINVAL;
1218
1219	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1220}
1221
1222struct init_on_cpu {
1223	struct powernow_k8_data *data;
1224	int rc;
1225};
1226
1227static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1228{
1229	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1230
1231	if (pending_bit_stuck()) {
1232		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1233		init_on_cpu->rc = -ENODEV;
1234		return;
1235	}
1236
1237	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1238		init_on_cpu->rc = -ENODEV;
1239		return;
1240	}
1241
1242	if (cpu_family == CPU_OPTERON)
1243		fidvid_msr_init();
1244
1245	init_on_cpu->rc = 0;
1246}
1247
1248/* per CPU init entry point to the driver */
1249static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1250{
1251	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1252		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1253		FW_BUG PFX "Try again with latest BIOS.\n";
1254	struct powernow_k8_data *data;
1255	struct init_on_cpu init_on_cpu;
1256	int rc;
1257	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1258
1259	if (!cpu_online(pol->cpu))
1260		return -ENODEV;
1261
1262	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1263	if (rc)
1264		return -ENODEV;
1265
1266	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1267	if (!data) {
1268		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1269		return -ENOMEM;
1270	}
1271
1272	data->cpu = pol->cpu;
1273	data->currpstate = HW_PSTATE_INVALID;
1274
1275	if (powernow_k8_cpu_init_acpi(data)) {
1276		/*
1277		 * Use the PSB BIOS structure. This is only availabe on
1278		 * an UP version, and is deprecated by AMD.
1279		 */
1280		if (num_online_cpus() != 1) {
1281			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1282			goto err_out;
1283		}
1284		if (pol->cpu != 0) {
1285			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1286			       "CPU other than CPU0. Complain to your BIOS "
1287			       "vendor.\n");
1288			goto err_out;
1289		}
1290		rc = find_psb_table(data);
1291		if (rc)
1292			goto err_out;
1293
1294		/* Take a crude guess here.
1295		 * That guess was in microseconds, so multiply with 1000 */
1296		pol->cpuinfo.transition_latency = (
1297			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1298			 ((1 << data->irt) * 30)) * 1000;
1299	} else /* ACPI _PSS objects available */
1300		pol->cpuinfo.transition_latency = get_transition_latency(data);
1301
1302	/* only run on specific CPU from here on */
1303	init_on_cpu.data = data;
1304	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1305				 &init_on_cpu, 1);
1306	rc = init_on_cpu.rc;
1307	if (rc != 0)
1308		goto err_out_exit_acpi;
1309
1310	if (cpu_family == CPU_HW_PSTATE)
1311		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1312	else
1313		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1314	data->available_cores = pol->cpus;
1315
1316	if (cpu_family == CPU_HW_PSTATE)
1317		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1318				data->currpstate);
1319	else
1320		pol->cur = find_khz_freq_from_fid(data->currfid);
1321	dprintk("policy current frequency %d kHz\n", pol->cur);
1322
1323	/* min/max the cpu is capable of */
1324	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1325		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1326		powernow_k8_cpu_exit_acpi(data);
1327		kfree(data->powernow_table);
1328		kfree(data);
1329		return -EINVAL;
1330	}
1331
1332	/* Check for APERF/MPERF support in hardware */
1333	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1334		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1335
1336	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1337
1338	if (cpu_family == CPU_HW_PSTATE)
1339		dprintk("cpu_init done, current pstate 0x%x\n",
1340				data->currpstate);
1341	else
1342		dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1343			data->currfid, data->currvid);
1344
1345	per_cpu(powernow_data, pol->cpu) = data;
1346
1347	return 0;
1348
1349err_out_exit_acpi:
1350	powernow_k8_cpu_exit_acpi(data);
1351
1352err_out:
1353	kfree(data);
1354	return -ENODEV;
1355}
1356
1357static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1358{
1359	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1360
1361	if (!data)
1362		return -EINVAL;
1363
1364	powernow_k8_cpu_exit_acpi(data);
1365
1366	cpufreq_frequency_table_put_attr(pol->cpu);
1367
1368	kfree(data->powernow_table);
1369	kfree(data);
1370	per_cpu(powernow_data, pol->cpu) = NULL;
1371
1372	return 0;
1373}
1374
1375static void query_values_on_cpu(void *_err)
1376{
1377	int *err = _err;
1378	struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1379
1380	*err = query_current_values_with_pending_wait(data);
1381}
1382
1383static unsigned int powernowk8_get(unsigned int cpu)
1384{
1385	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1386	unsigned int khz = 0;
1387	int err;
1388
1389	if (!data)
1390		return 0;
1391
1392	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1393	if (err)
1394		goto out;
1395
1396	if (cpu_family == CPU_HW_PSTATE)
1397		khz = find_khz_freq_from_pstate(data->powernow_table,
1398						data->currpstate);
1399	else
1400		khz = find_khz_freq_from_fid(data->currfid);
1401
1402
1403out:
1404	return khz;
1405}
1406
1407static void _cpb_toggle_msrs(bool t)
1408{
1409	int cpu;
1410
1411	get_online_cpus();
1412
1413	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1414
1415	for_each_cpu(cpu, cpu_online_mask) {
1416		struct msr *reg = per_cpu_ptr(msrs, cpu);
1417		if (t)
1418			reg->l &= ~BIT(25);
1419		else
1420			reg->l |= BIT(25);
1421	}
1422	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1423
1424	put_online_cpus();
1425}
1426
1427/*
1428 * Switch on/off core performance boosting.
1429 *
1430 * 0=disable
1431 * 1=enable.
1432 */
1433static void cpb_toggle(bool t)
1434{
1435	if (!cpb_capable)
1436		return;
1437
1438	if (t && !cpb_enabled) {
1439		cpb_enabled = true;
1440		_cpb_toggle_msrs(t);
1441		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1442	} else if (!t && cpb_enabled) {
1443		cpb_enabled = false;
1444		_cpb_toggle_msrs(t);
1445		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1446	}
1447}
1448
1449static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1450				 size_t count)
1451{
1452	int ret = -EINVAL;
1453	unsigned long val = 0;
1454
1455	ret = strict_strtoul(buf, 10, &val);
1456	if (!ret && (val == 0 || val == 1) && cpb_capable)
1457		cpb_toggle(val);
1458	else
1459		return -EINVAL;
1460
1461	return count;
1462}
1463
1464static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1465{
1466	return sprintf(buf, "%u\n", cpb_enabled);
1467}
1468
1469#define define_one_rw(_name) \
1470static struct freq_attr _name = \
1471__ATTR(_name, 0644, show_##_name, store_##_name)
1472
1473define_one_rw(cpb);
1474
1475static struct freq_attr *powernow_k8_attr[] = {
1476	&cpufreq_freq_attr_scaling_available_freqs,
1477	&cpb,
1478	NULL,
1479};
1480
1481static struct cpufreq_driver cpufreq_amd64_driver = {
1482	.verify		= powernowk8_verify,
1483	.target		= powernowk8_target,
1484	.bios_limit	= acpi_processor_get_bios_limit,
1485	.init		= powernowk8_cpu_init,
1486	.exit		= __devexit_p(powernowk8_cpu_exit),
1487	.get		= powernowk8_get,
1488	.name		= "powernow-k8",
1489	.owner		= THIS_MODULE,
1490	.attr		= powernow_k8_attr,
1491};
1492
1493/*
1494 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1495 * cannot block the remaining ones from boosting. On the CPU_UP path we
1496 * simply keep the boost-disable flag in sync with the current global
1497 * state.
1498 */
1499static int cpb_notify(struct notifier_block *nb, unsigned long action,
1500		      void *hcpu)
1501{
1502	unsigned cpu = (long)hcpu;
1503	u32 lo, hi;
1504
1505	switch (action) {
1506	case CPU_UP_PREPARE:
1507	case CPU_UP_PREPARE_FROZEN:
1508
1509		if (!cpb_enabled) {
1510			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1511			lo |= BIT(25);
1512			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1513		}
1514		break;
1515
1516	case CPU_DOWN_PREPARE:
1517	case CPU_DOWN_PREPARE_FROZEN:
1518		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1519		lo &= ~BIT(25);
1520		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1521		break;
1522
1523	default:
1524		break;
1525	}
1526
1527	return NOTIFY_OK;
1528}
1529
1530static struct notifier_block cpb_nb = {
1531	.notifier_call		= cpb_notify,
1532};
1533
1534/* driver entry point for init */
1535static int __cpuinit powernowk8_init(void)
1536{
1537	unsigned int i, supported_cpus = 0, cpu;
1538
1539	for_each_online_cpu(i) {
1540		int rc;
1541		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1542		if (rc == 0)
1543			supported_cpus++;
1544	}
1545
1546	if (supported_cpus != num_online_cpus())
1547		return -ENODEV;
1548
1549	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1550		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1551
1552	if (boot_cpu_has(X86_FEATURE_CPB)) {
1553
1554		cpb_capable = true;
1555
1556		register_cpu_notifier(&cpb_nb);
1557
1558		msrs = msrs_alloc();
1559		if (!msrs) {
1560			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1561			return -ENOMEM;
1562		}
1563
1564		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1565
1566		for_each_cpu(cpu, cpu_online_mask) {
1567			struct msr *reg = per_cpu_ptr(msrs, cpu);
1568			cpb_enabled |= !(!!(reg->l & BIT(25)));
1569		}
1570
1571		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1572			(cpb_enabled ? "on" : "off"));
1573	}
1574
1575	return cpufreq_register_driver(&cpufreq_amd64_driver);
1576}
1577
1578/* driver entry point for term */
1579static void __exit powernowk8_exit(void)
1580{
1581	dprintk("exit\n");
1582
1583	if (boot_cpu_has(X86_FEATURE_CPB)) {
1584		msrs_free(msrs);
1585		msrs = NULL;
1586
1587		unregister_cpu_notifier(&cpb_nb);
1588	}
1589
1590	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1591}
1592
1593MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1594		"Mark Langsdorf <mark.langsdorf@amd.com>");
1595MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1596MODULE_LICENSE("GPL");
1597
1598late_initcall(powernowk8_init);
1599module_exit(powernowk8_exit);