PageRenderTime 86ms CodeModel.GetById 25ms RepoModel.GetById 0ms app.codeStats 0ms

/arch/sparc/math-emu/math_64.c

https://bitbucket.org/cresqo/cm7-p500-kernel
C | 515 lines | 420 code | 26 blank | 69 comment | 101 complexity | 45dd8c8197511df4b5380412d2b8dc5b MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. /*
  2. * arch/sparc64/math-emu/math.c
  3. *
  4. * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
  5. * Copyright (C) 1999 David S. Miller (davem@redhat.com)
  6. *
  7. * Emulation routines originate from soft-fp package, which is part
  8. * of glibc and has appropriate copyrights in it.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/errno.h>
  13. #include <linux/perf_event.h>
  14. #include <asm/fpumacro.h>
  15. #include <asm/ptrace.h>
  16. #include <asm/uaccess.h>
  17. #include "sfp-util_64.h"
  18. #include <math-emu/soft-fp.h>
  19. #include <math-emu/single.h>
  20. #include <math-emu/double.h>
  21. #include <math-emu/quad.h>
  22. /* QUAD - ftt == 3 */
  23. #define FMOVQ 0x003
  24. #define FNEGQ 0x007
  25. #define FABSQ 0x00b
  26. #define FSQRTQ 0x02b
  27. #define FADDQ 0x043
  28. #define FSUBQ 0x047
  29. #define FMULQ 0x04b
  30. #define FDIVQ 0x04f
  31. #define FDMULQ 0x06e
  32. #define FQTOX 0x083
  33. #define FXTOQ 0x08c
  34. #define FQTOS 0x0c7
  35. #define FQTOD 0x0cb
  36. #define FITOQ 0x0cc
  37. #define FSTOQ 0x0cd
  38. #define FDTOQ 0x0ce
  39. #define FQTOI 0x0d3
  40. /* SUBNORMAL - ftt == 2 */
  41. #define FSQRTS 0x029
  42. #define FSQRTD 0x02a
  43. #define FADDS 0x041
  44. #define FADDD 0x042
  45. #define FSUBS 0x045
  46. #define FSUBD 0x046
  47. #define FMULS 0x049
  48. #define FMULD 0x04a
  49. #define FDIVS 0x04d
  50. #define FDIVD 0x04e
  51. #define FSMULD 0x069
  52. #define FSTOX 0x081
  53. #define FDTOX 0x082
  54. #define FDTOS 0x0c6
  55. #define FSTOD 0x0c9
  56. #define FSTOI 0x0d1
  57. #define FDTOI 0x0d2
  58. #define FXTOS 0x084 /* Only Ultra-III generates this. */
  59. #define FXTOD 0x088 /* Only Ultra-III generates this. */
  60. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  61. #define FITOS 0x0c4 /* Only Ultra-III generates this. */
  62. #endif
  63. #define FITOD 0x0c8 /* Only Ultra-III generates this. */
  64. /* FPOP2 */
  65. #define FCMPQ 0x053
  66. #define FCMPEQ 0x057
  67. #define FMOVQ0 0x003
  68. #define FMOVQ1 0x043
  69. #define FMOVQ2 0x083
  70. #define FMOVQ3 0x0c3
  71. #define FMOVQI 0x103
  72. #define FMOVQX 0x183
  73. #define FMOVQZ 0x027
  74. #define FMOVQLE 0x047
  75. #define FMOVQLZ 0x067
  76. #define FMOVQNZ 0x0a7
  77. #define FMOVQGZ 0x0c7
  78. #define FMOVQGE 0x0e7
  79. #define FSR_TEM_SHIFT 23UL
  80. #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
  81. #define FSR_AEXC_SHIFT 5UL
  82. #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
  83. #define FSR_CEXC_SHIFT 0UL
  84. #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
  85. /* All routines returning an exception to raise should detect
  86. * such exceptions _before_ rounding to be consistent with
  87. * the behavior of the hardware in the implemented cases
  88. * (and thus with the recommendations in the V9 architecture
  89. * manual).
  90. *
  91. * We return 0 if a SIGFPE should be sent, 1 otherwise.
  92. */
  93. static inline int record_exception(struct pt_regs *regs, int eflag)
  94. {
  95. u64 fsr = current_thread_info()->xfsr[0];
  96. int would_trap;
  97. /* Determine if this exception would have generated a trap. */
  98. would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
  99. /* If trapping, we only want to signal one bit. */
  100. if(would_trap != 0) {
  101. eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
  102. if((eflag & (eflag - 1)) != 0) {
  103. if(eflag & FP_EX_INVALID)
  104. eflag = FP_EX_INVALID;
  105. else if(eflag & FP_EX_OVERFLOW)
  106. eflag = FP_EX_OVERFLOW;
  107. else if(eflag & FP_EX_UNDERFLOW)
  108. eflag = FP_EX_UNDERFLOW;
  109. else if(eflag & FP_EX_DIVZERO)
  110. eflag = FP_EX_DIVZERO;
  111. else if(eflag & FP_EX_INEXACT)
  112. eflag = FP_EX_INEXACT;
  113. }
  114. }
  115. /* Set CEXC, here is the rule:
  116. *
  117. * In general all FPU ops will set one and only one
  118. * bit in the CEXC field, this is always the case
  119. * when the IEEE exception trap is enabled in TEM.
  120. */
  121. fsr &= ~(FSR_CEXC_MASK);
  122. fsr |= ((long)eflag << FSR_CEXC_SHIFT);
  123. /* Set the AEXC field, rule is:
  124. *
  125. * If a trap would not be generated, the
  126. * CEXC just generated is OR'd into the
  127. * existing value of AEXC.
  128. */
  129. if(would_trap == 0)
  130. fsr |= ((long)eflag << FSR_AEXC_SHIFT);
  131. /* If trapping, indicate fault trap type IEEE. */
  132. if(would_trap != 0)
  133. fsr |= (1UL << 14);
  134. current_thread_info()->xfsr[0] = fsr;
  135. /* If we will not trap, advance the program counter over
  136. * the instruction being handled.
  137. */
  138. if(would_trap == 0) {
  139. regs->tpc = regs->tnpc;
  140. regs->tnpc += 4;
  141. }
  142. return (would_trap ? 0 : 1);
  143. }
  144. typedef union {
  145. u32 s;
  146. u64 d;
  147. u64 q[2];
  148. } *argp;
  149. int do_mathemu(struct pt_regs *regs, struct fpustate *f)
  150. {
  151. unsigned long pc = regs->tpc;
  152. unsigned long tstate = regs->tstate;
  153. u32 insn = 0;
  154. int type = 0;
  155. /* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
  156. whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
  157. non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
  158. #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
  159. int freg;
  160. static u64 zero[2] = { 0L, 0L };
  161. int flags;
  162. FP_DECL_EX;
  163. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  164. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  165. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  166. int IR;
  167. long XR, xfsr;
  168. if (tstate & TSTATE_PRIV)
  169. die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
  170. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  171. if (test_thread_flag(TIF_32BIT))
  172. pc = (u32)pc;
  173. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  174. if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
  175. switch ((insn >> 5) & 0x1ff) {
  176. /* QUAD - ftt == 3 */
  177. case FMOVQ:
  178. case FNEGQ:
  179. case FABSQ: TYPE(3,3,0,3,0,0,0); break;
  180. case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
  181. case FADDQ:
  182. case FSUBQ:
  183. case FMULQ:
  184. case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
  185. case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
  186. case FQTOX: TYPE(3,2,0,3,1,0,0); break;
  187. case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
  188. case FQTOS: TYPE(3,1,1,3,1,0,0); break;
  189. case FQTOD: TYPE(3,2,1,3,1,0,0); break;
  190. case FITOQ: TYPE(3,3,1,1,0,0,0); break;
  191. case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
  192. case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
  193. case FQTOI: TYPE(3,1,0,3,1,0,0); break;
  194. /* We can get either unimplemented or unfinished
  195. * for these cases. Pre-Niagara systems generate
  196. * unfinished fpop for SUBNORMAL cases, and Niagara
  197. * always gives unimplemented fpop for fsqrt{s,d}.
  198. */
  199. case FSQRTS: {
  200. unsigned long x = current_thread_info()->xfsr[0];
  201. x = (x >> 14) & 0xf;
  202. TYPE(x,1,1,1,1,0,0);
  203. break;
  204. }
  205. case FSQRTD: {
  206. unsigned long x = current_thread_info()->xfsr[0];
  207. x = (x >> 14) & 0xf;
  208. TYPE(x,2,1,2,1,0,0);
  209. break;
  210. }
  211. /* SUBNORMAL - ftt == 2 */
  212. case FADDD:
  213. case FSUBD:
  214. case FMULD:
  215. case FDIVD: TYPE(2,2,1,2,1,2,1); break;
  216. case FADDS:
  217. case FSUBS:
  218. case FMULS:
  219. case FDIVS: TYPE(2,1,1,1,1,1,1); break;
  220. case FSMULD: TYPE(2,2,1,1,1,1,1); break;
  221. case FSTOX: TYPE(2,2,0,1,1,0,0); break;
  222. case FDTOX: TYPE(2,2,0,2,1,0,0); break;
  223. case FDTOS: TYPE(2,1,1,2,1,0,0); break;
  224. case FSTOD: TYPE(2,2,1,1,1,0,0); break;
  225. case FSTOI: TYPE(2,1,0,1,1,0,0); break;
  226. case FDTOI: TYPE(2,1,0,2,1,0,0); break;
  227. /* Only Ultra-III generates these */
  228. case FXTOS: TYPE(2,1,1,2,0,0,0); break;
  229. case FXTOD: TYPE(2,2,1,2,0,0,0); break;
  230. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  231. case FITOS: TYPE(2,1,1,1,0,0,0); break;
  232. #endif
  233. case FITOD: TYPE(2,2,1,1,0,0,0); break;
  234. }
  235. }
  236. else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
  237. IR = 2;
  238. switch ((insn >> 5) & 0x1ff) {
  239. case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
  240. case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
  241. /* Now the conditional fmovq support */
  242. case FMOVQ0:
  243. case FMOVQ1:
  244. case FMOVQ2:
  245. case FMOVQ3:
  246. /* fmovq %fccX, %fY, %fZ */
  247. if (!((insn >> 11) & 3))
  248. XR = current_thread_info()->xfsr[0] >> 10;
  249. else
  250. XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
  251. XR &= 3;
  252. IR = 0;
  253. switch ((insn >> 14) & 0x7) {
  254. /* case 0: IR = 0; break; */ /* Never */
  255. case 1: if (XR) IR = 1; break; /* Not Equal */
  256. case 2: if (XR == 1 || XR == 2) IR = 1; break; /* Less or Greater */
  257. case 3: if (XR & 1) IR = 1; break; /* Unordered or Less */
  258. case 4: if (XR == 1) IR = 1; break; /* Less */
  259. case 5: if (XR & 2) IR = 1; break; /* Unordered or Greater */
  260. case 6: if (XR == 2) IR = 1; break; /* Greater */
  261. case 7: if (XR == 3) IR = 1; break; /* Unordered */
  262. }
  263. if ((insn >> 14) & 8)
  264. IR ^= 1;
  265. break;
  266. case FMOVQI:
  267. case FMOVQX:
  268. /* fmovq %[ix]cc, %fY, %fZ */
  269. XR = regs->tstate >> 32;
  270. if ((insn >> 5) & 0x80)
  271. XR >>= 4;
  272. XR &= 0xf;
  273. IR = 0;
  274. freg = ((XR >> 2) ^ XR) & 2;
  275. switch ((insn >> 14) & 0x7) {
  276. /* case 0: IR = 0; break; */ /* Never */
  277. case 1: if (XR & 4) IR = 1; break; /* Equal */
  278. case 2: if ((XR & 4) || freg) IR = 1; break; /* Less or Equal */
  279. case 3: if (freg) IR = 1; break; /* Less */
  280. case 4: if (XR & 5) IR = 1; break; /* Less or Equal Unsigned */
  281. case 5: if (XR & 1) IR = 1; break; /* Carry Set */
  282. case 6: if (XR & 8) IR = 1; break; /* Negative */
  283. case 7: if (XR & 2) IR = 1; break; /* Overflow Set */
  284. }
  285. if ((insn >> 14) & 8)
  286. IR ^= 1;
  287. break;
  288. case FMOVQZ:
  289. case FMOVQLE:
  290. case FMOVQLZ:
  291. case FMOVQNZ:
  292. case FMOVQGZ:
  293. case FMOVQGE:
  294. freg = (insn >> 14) & 0x1f;
  295. if (!freg)
  296. XR = 0;
  297. else if (freg < 16)
  298. XR = regs->u_regs[freg];
  299. else if (test_thread_flag(TIF_32BIT)) {
  300. struct reg_window32 __user *win32;
  301. flushw_user ();
  302. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  303. get_user(XR, &win32->locals[freg - 16]);
  304. } else {
  305. struct reg_window __user *win;
  306. flushw_user ();
  307. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  308. get_user(XR, &win->locals[freg - 16]);
  309. }
  310. IR = 0;
  311. switch ((insn >> 10) & 3) {
  312. case 1: if (!XR) IR = 1; break; /* Register Zero */
  313. case 2: if (XR <= 0) IR = 1; break; /* Register Less Than or Equal to Zero */
  314. case 3: if (XR < 0) IR = 1; break; /* Register Less Than Zero */
  315. }
  316. if ((insn >> 10) & 4)
  317. IR ^= 1;
  318. break;
  319. }
  320. if (IR == 0) {
  321. /* The fmov test was false. Do a nop instead */
  322. current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
  323. regs->tpc = regs->tnpc;
  324. regs->tnpc += 4;
  325. return 1;
  326. } else if (IR == 1) {
  327. /* Change the instruction into plain fmovq */
  328. insn = (insn & 0x3e00001f) | 0x81a00060;
  329. TYPE(3,3,0,3,0,0,0);
  330. }
  331. }
  332. }
  333. if (type) {
  334. argp rs1 = NULL, rs2 = NULL, rd = NULL;
  335. freg = (current_thread_info()->xfsr[0] >> 14) & 0xf;
  336. if (freg != (type >> 9))
  337. goto err;
  338. current_thread_info()->xfsr[0] &= ~0x1c000;
  339. freg = ((insn >> 14) & 0x1f);
  340. switch (type & 0x3) {
  341. case 3: if (freg & 2) {
  342. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  343. goto err;
  344. }
  345. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  346. case 1: rs1 = (argp)&f->regs[freg];
  347. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  348. if (!(current_thread_info()->fpsaved[0] & flags))
  349. rs1 = (argp)&zero;
  350. break;
  351. }
  352. switch (type & 0x7) {
  353. case 7: FP_UNPACK_QP (QA, rs1); break;
  354. case 6: FP_UNPACK_DP (DA, rs1); break;
  355. case 5: FP_UNPACK_SP (SA, rs1); break;
  356. }
  357. freg = (insn & 0x1f);
  358. switch ((type >> 3) & 0x3) {
  359. case 3: if (freg & 2) {
  360. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  361. goto err;
  362. }
  363. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  364. case 1: rs2 = (argp)&f->regs[freg];
  365. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  366. if (!(current_thread_info()->fpsaved[0] & flags))
  367. rs2 = (argp)&zero;
  368. break;
  369. }
  370. switch ((type >> 3) & 0x7) {
  371. case 7: FP_UNPACK_QP (QB, rs2); break;
  372. case 6: FP_UNPACK_DP (DB, rs2); break;
  373. case 5: FP_UNPACK_SP (SB, rs2); break;
  374. }
  375. freg = ((insn >> 25) & 0x1f);
  376. switch ((type >> 6) & 0x3) {
  377. case 3: if (freg & 2) {
  378. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  379. goto err;
  380. }
  381. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  382. case 1: rd = (argp)&f->regs[freg];
  383. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  384. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  385. current_thread_info()->fpsaved[0] = FPRS_FEF;
  386. current_thread_info()->gsr[0] = 0;
  387. }
  388. if (!(current_thread_info()->fpsaved[0] & flags)) {
  389. if (freg < 32)
  390. memset(f->regs, 0, 32*sizeof(u32));
  391. else
  392. memset(f->regs+32, 0, 32*sizeof(u32));
  393. }
  394. current_thread_info()->fpsaved[0] |= flags;
  395. break;
  396. }
  397. switch ((insn >> 5) & 0x1ff) {
  398. /* + */
  399. case FADDS: FP_ADD_S (SR, SA, SB); break;
  400. case FADDD: FP_ADD_D (DR, DA, DB); break;
  401. case FADDQ: FP_ADD_Q (QR, QA, QB); break;
  402. /* - */
  403. case FSUBS: FP_SUB_S (SR, SA, SB); break;
  404. case FSUBD: FP_SUB_D (DR, DA, DB); break;
  405. case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
  406. /* * */
  407. case FMULS: FP_MUL_S (SR, SA, SB); break;
  408. case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
  409. FP_CONV (D, S, 1, 1, DB, SB);
  410. case FMULD: FP_MUL_D (DR, DA, DB); break;
  411. case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
  412. FP_CONV (Q, D, 2, 1, QB, DB);
  413. case FMULQ: FP_MUL_Q (QR, QA, QB); break;
  414. /* / */
  415. case FDIVS: FP_DIV_S (SR, SA, SB); break;
  416. case FDIVD: FP_DIV_D (DR, DA, DB); break;
  417. case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
  418. /* sqrt */
  419. case FSQRTS: FP_SQRT_S (SR, SB); break;
  420. case FSQRTD: FP_SQRT_D (DR, DB); break;
  421. case FSQRTQ: FP_SQRT_Q (QR, QB); break;
  422. /* mov */
  423. case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
  424. case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
  425. case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
  426. /* float to int */
  427. case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
  428. case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
  429. case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
  430. case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
  431. case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
  432. case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
  433. /* int to float */
  434. case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
  435. case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
  436. /* Only Ultra-III generates these */
  437. case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
  438. case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
  439. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  440. case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
  441. #endif
  442. case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
  443. /* float to float */
  444. case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
  445. case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
  446. case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
  447. case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
  448. case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
  449. case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
  450. /* comparison */
  451. case FCMPQ:
  452. case FCMPEQ:
  453. FP_CMP_Q(XR, QB, QA, 3);
  454. if (XR == 3 &&
  455. (((insn >> 5) & 0x1ff) == FCMPEQ ||
  456. FP_ISSIGNAN_Q(QA) ||
  457. FP_ISSIGNAN_Q(QB)))
  458. FP_SET_EXCEPTION (FP_EX_INVALID);
  459. }
  460. if (!FP_INHIBIT_RESULTS) {
  461. switch ((type >> 6) & 0x7) {
  462. case 0: xfsr = current_thread_info()->xfsr[0];
  463. if (XR == -1) XR = 2;
  464. switch (freg & 3) {
  465. /* fcc0, 1, 2, 3 */
  466. case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
  467. case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
  468. case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
  469. case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
  470. }
  471. current_thread_info()->xfsr[0] = xfsr;
  472. break;
  473. case 1: rd->s = IR; break;
  474. case 2: rd->d = XR; break;
  475. case 5: FP_PACK_SP (rd, SR); break;
  476. case 6: FP_PACK_DP (rd, DR); break;
  477. case 7: FP_PACK_QP (rd, QR); break;
  478. }
  479. }
  480. if(_fex != 0)
  481. return record_exception(regs, _fex);
  482. /* Success and no exceptions detected. */
  483. current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
  484. regs->tpc = regs->tnpc;
  485. regs->tnpc += 4;
  486. return 1;
  487. }
  488. err: return 0;
  489. }