PageRenderTime 51ms CodeModel.GetById 13ms app.highlight 30ms RepoModel.GetById 0ms app.codeStats 1ms

/arch/parisc/kernel/perf.c

https://bitbucket.org/cresqo/cm7-p500-kernel
C | 855 lines | 525 code | 116 blank | 214 comment | 99 complexity | 1cc682c03ae586a363659f3536529dfd MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1/*
  2 *  Parisc performance counters
  3 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
  4 *
  5 *  This code is derived, with permission, from HP/UX sources.
  6 *
  7 *    This program is free software; you can redistribute it and/or modify
  8 *    it under the terms of the GNU General Public License as published by
  9 *    the Free Software Foundation; either version 2, or (at your option)
 10 *    any later version.
 11 *
 12 *    This program is distributed in the hope that it will be useful,
 13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *    GNU General Public License for more details.
 16 *
 17 *    You should have received a copy of the GNU General Public License
 18 *    along with this program; if not, write to the Free Software
 19 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 */
 21
 22/*
 23 *  Edited comment from original sources:
 24 *
 25 *  This driver programs the PCX-U/PCX-W performance counters
 26 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
 27 *  internally to the kernel to hopefully eliminate the possibility
 28 *  of a bad image halting the CPU.  Also, there are different
 29 *  images for the PCX-W and later chips vs the PCX-U chips.
 30 *
 31 *  Only 1 process is allowed to access the driver at any time,
 32 *  so the only protection that is needed is at open and close.
 33 *  A variable "perf_enabled" is used to hold the state of the
 34 *  driver.  The spinlock "perf_lock" is used to protect the
 35 *  modification of the state during open/close operations so
 36 *  multiple processes don't get into the driver simultaneously.
 37 *
 38 *  This driver accesses the processor directly vs going through
 39 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
 40 *  in various PDC revisions.  The code is much more maintainable
 41 *  and reliable this way vs having to debug on every version of PDC
 42 *  on every box. 
 43 */
 44
 45#include <linux/capability.h>
 46#include <linux/init.h>
 47#include <linux/proc_fs.h>
 48#include <linux/miscdevice.h>
 49#include <linux/smp_lock.h>
 50#include <linux/spinlock.h>
 51
 52#include <asm/uaccess.h>
 53#include <asm/perf.h>
 54#include <asm/parisc-device.h>
 55#include <asm/processor.h>
 56#include <asm/runway.h>
 57#include <asm/io.h>		/* for __raw_read() */
 58
 59#include "perf_images.h"
 60
 61#define MAX_RDR_WORDS	24
 62#define PERF_VERSION	2	/* derived from hpux's PI v2 interface */
 63
 64/* definition of RDR regs */
 65struct rdr_tbl_ent {
 66	uint16_t	width;
 67	uint8_t		num_words;
 68	uint8_t		write_control;
 69};
 70
 71static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
 72static int perf_enabled __read_mostly;
 73static spinlock_t perf_lock;
 74struct parisc_device *cpu_device __read_mostly;
 75
 76/* RDRs to write for PCX-W */
 77static const int perf_rdrs_W[] =
 78	{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 79
 80/* RDRs to write for PCX-U */
 81static const int perf_rdrs_U[] =
 82	{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 83
 84/* RDR register descriptions for PCX-W */
 85static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
 86	{ 19,	1,	8 },   /* RDR 0 */
 87	{ 16,	1,	16 },  /* RDR 1 */
 88	{ 72,	2,	0 },   /* RDR 2 */
 89	{ 81,	2,	0 },   /* RDR 3 */
 90	{ 328,	6,	0 },   /* RDR 4 */
 91	{ 160,	3,	0 },   /* RDR 5 */
 92	{ 336,	6,	0 },   /* RDR 6 */
 93	{ 164,	3,	0 },   /* RDR 7 */
 94	{ 0,	0,	0 },   /* RDR 8 */
 95	{ 35,	1,	0 },   /* RDR 9 */
 96	{ 6,	1,	0 },   /* RDR 10 */
 97	{ 18,	1,	0 },   /* RDR 11 */
 98	{ 13,	1,	0 },   /* RDR 12 */
 99	{ 8,	1,	0 },   /* RDR 13 */
100	{ 8,	1,	0 },   /* RDR 14 */
101	{ 8,	1,	0 },   /* RDR 15 */
102	{ 1530,	24,	0 },   /* RDR 16 */
103	{ 16,	1,	0 },   /* RDR 17 */
104	{ 4,	1,	0 },   /* RDR 18 */
105	{ 0,	0,	0 },   /* RDR 19 */
106	{ 152,	3,	24 },  /* RDR 20 */
107	{ 152,	3,	24 },  /* RDR 21 */
108	{ 233,	4,	48 },  /* RDR 22 */
109	{ 233,	4,	48 },  /* RDR 23 */
110	{ 71,	2,	0 },   /* RDR 24 */
111	{ 71,	2,	0 },   /* RDR 25 */
112	{ 11,	1,	0 },   /* RDR 26 */
113	{ 18,	1,	0 },   /* RDR 27 */
114	{ 128,	2,	0 },   /* RDR 28 */
115	{ 0,	0,	0 },   /* RDR 29 */
116	{ 16,	1,	0 },   /* RDR 30 */
117	{ 16,	1,	0 },   /* RDR 31 */
118};
119
120/* RDR register descriptions for PCX-U */
121static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
122	{ 19,	1,	8 },              /* RDR 0 */
123	{ 32,	1,	16 },             /* RDR 1 */
124	{ 20,	1,	0 },              /* RDR 2 */
125	{ 0,	0,	0 },              /* RDR 3 */
126	{ 344,	6,	0 },              /* RDR 4 */
127	{ 176,	3,	0 },              /* RDR 5 */
128	{ 336,	6,	0 },              /* RDR 6 */
129	{ 0,	0,	0 },              /* RDR 7 */
130	{ 0,	0,	0 },              /* RDR 8 */
131	{ 0,	0,	0 },              /* RDR 9 */
132	{ 28,	1,	0 },              /* RDR 10 */
133	{ 33,	1,	0 },              /* RDR 11 */
134	{ 0,	0,	0 },              /* RDR 12 */
135	{ 230,	4,	0 },              /* RDR 13 */
136	{ 32,	1,	0 },              /* RDR 14 */
137	{ 128,	2,	0 },              /* RDR 15 */
138	{ 1494,	24,	0 },              /* RDR 16 */
139	{ 18,	1,	0 },              /* RDR 17 */
140	{ 4,	1,	0 },              /* RDR 18 */
141	{ 0,	0,	0 },              /* RDR 19 */
142	{ 158,	3,	24 },             /* RDR 20 */
143	{ 158,	3,	24 },             /* RDR 21 */
144	{ 194,	4,	48 },             /* RDR 22 */
145	{ 194,	4,	48 },             /* RDR 23 */
146	{ 71,	2,	0 },              /* RDR 24 */
147	{ 71,	2,	0 },              /* RDR 25 */
148	{ 28,	1,	0 },              /* RDR 26 */
149	{ 33,	1,	0 },              /* RDR 27 */
150	{ 88,	2,	0 },              /* RDR 28 */
151	{ 32,	1,	0 },              /* RDR 29 */
152	{ 24,	1,	0 },              /* RDR 30 */
153	{ 16,	1,	0 },              /* RDR 31 */
154};
155
156/*
157 * A non-zero write_control in the above tables is a byte offset into
158 * this array.
159 */
160static const uint64_t perf_bitmasks[] = {
161	0x0000000000000000ul,     /* first dbl word must be zero */
162	0xfdffe00000000000ul,     /* RDR0 bitmask */
163	0x003f000000000000ul,     /* RDR1 bitmask */
164	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
165	0xfffffffffffffffful,
166	0xfffffffc00000000ul,
167	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
168	0xfffffffffffffffful,
169	0xfffffffffffffffcul,
170	0xff00000000000000ul
171};
172
173/*
174 * Write control bitmasks for Pa-8700 processor given
175 * some things have changed slightly.
176 */
177static const uint64_t perf_bitmasks_piranha[] = {
178	0x0000000000000000ul,     /* first dbl word must be zero */
179	0xfdffe00000000000ul,     /* RDR0 bitmask */
180	0x003f000000000000ul,     /* RDR1 bitmask */
181	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
182	0xfffffffffffffffful,
183	0xfffffffc00000000ul,
184	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
185	0xfffffffffffffffful,
186	0xfffffffffffffffful,
187	0xfffc000000000000ul
188};
189
190static const uint64_t *bitmask_array;   /* array of bitmasks to use */
191
192/******************************************************************************
193 * Function Prototypes
194 *****************************************************************************/
195static int perf_config(uint32_t *image_ptr);
196static int perf_release(struct inode *inode, struct file *file);
197static int perf_open(struct inode *inode, struct file *file);
198static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
199static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 
200	loff_t *ppos);
201static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
202static void perf_start_counters(void);
203static int perf_stop_counters(uint32_t *raddr);
204static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
205static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer);
206static int perf_rdr_clear(uint32_t rdr_num);
207static int perf_write_image(uint64_t *memaddr);
208static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
209
210/* External Assembly Routines */
211extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
212extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
213extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
214extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
215extern void perf_intrigue_enable_perf_counters (void);
216extern void perf_intrigue_disable_perf_counters (void);
217
218/******************************************************************************
219 * Function Definitions
220 *****************************************************************************/
221
222
223/*
224 * configure:
225 *
226 * Configure the cpu with a given data image.  First turn off the counters, 
227 * then download the image, then turn the counters back on.
228 */
229static int perf_config(uint32_t *image_ptr)
230{
231	long error;
232	uint32_t raddr[4];
233
234	/* Stop the counters*/
235	error = perf_stop_counters(raddr);
236	if (error != 0) {
237		printk("perf_config: perf_stop_counters = %ld\n", error);
238		return -EINVAL; 
239	}
240
241printk("Preparing to write image\n");
242	/* Write the image to the chip */
243	error = perf_write_image((uint64_t *)image_ptr);
244	if (error != 0) {
245		printk("perf_config: DOWNLOAD = %ld\n", error);
246		return -EINVAL; 
247	}
248
249printk("Preparing to start counters\n");
250
251	/* Start the counters */
252	perf_start_counters();
253
254	return sizeof(uint32_t);
255}
256
257/*
258 * Open the device and initialize all of its memory.  The device is only 
259 * opened once, but can be "queried" by multiple processes that know its
260 * file descriptor.
261 */
262static int perf_open(struct inode *inode, struct file *file)
263{
264	lock_kernel();
265	spin_lock(&perf_lock);
266	if (perf_enabled) {
267		spin_unlock(&perf_lock);
268		unlock_kernel();
269		return -EBUSY;
270	}
271	perf_enabled = 1;
272 	spin_unlock(&perf_lock);
273	unlock_kernel();
274
275	return 0;
276}
277
278/*
279 * Close the device.
280 */
281static int perf_release(struct inode *inode, struct file *file)
282{
283	spin_lock(&perf_lock);
284	perf_enabled = 0;
285	spin_unlock(&perf_lock);
286
287	return 0;
288}
289
290/*
291 * Read does nothing for this driver
292 */
293static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
294{
295	return 0;
296}
297
298/*
299 * write:
300 *
301 * This routine downloads the image to the chip.  It must be
302 * called on the processor that the download should happen
303 * on.
304 */
305static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 
306	loff_t *ppos)
307{
308	int err;
309	size_t image_size;
310	uint32_t image_type;
311	uint32_t interface_type;
312	uint32_t test;
313
314	if (perf_processor_interface == ONYX_INTF) 
315		image_size = PCXU_IMAGE_SIZE;
316	else if (perf_processor_interface == CUDA_INTF) 
317		image_size = PCXW_IMAGE_SIZE;
318	else 
319		return -EFAULT;
320
321	if (!capable(CAP_SYS_ADMIN))
322		return -EACCES;
323
324	if (count != sizeof(uint32_t))
325		return -EIO;
326
327	if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0) 
328		return err;
329
330	/* Get the interface type and test type */
331   	interface_type = (image_type >> 16) & 0xffff;
332	test           = (image_type & 0xffff);
333
334	/* Make sure everything makes sense */
335
336	/* First check the machine type is correct for
337	   the requested image */
338        if (((perf_processor_interface == CUDA_INTF) &&
339		       (interface_type != CUDA_INTF)) ||
340	    ((perf_processor_interface == ONYX_INTF) &&
341	               (interface_type != ONYX_INTF))) 
342		return -EINVAL;
343
344	/* Next check to make sure the requested image
345	   is valid */
346	if (((interface_type == CUDA_INTF) && 
347		       (test >= MAX_CUDA_IMAGES)) ||
348	    ((interface_type == ONYX_INTF) && 
349		       (test >= MAX_ONYX_IMAGES))) 
350		return -EINVAL;
351
352	/* Copy the image into the processor */
353	if (interface_type == CUDA_INTF) 
354		return perf_config(cuda_images[test]);
355	else
356		return perf_config(onyx_images[test]);
357
358	return count;
359}
360
361/*
362 * Patch the images that need to know the IVA addresses.
363 */
364static void perf_patch_images(void)
365{
366#if 0 /* FIXME!! */
367/* 
368 * NOTE:  this routine is VERY specific to the current TLB image.
369 * If the image is changed, this routine might also need to be changed.
370 */
371	extern void $i_itlb_miss_2_0();
372	extern void $i_dtlb_miss_2_0();
373	extern void PA2_0_iva();
374
375	/* 
376	 * We can only use the lower 32-bits, the upper 32-bits should be 0
377	 * anyway given this is in the kernel 
378	 */
379	uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
380	uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
381	uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
382
383	if (perf_processor_interface == ONYX_INTF) {
384		/* clear last 2 bytes */
385		onyx_images[TLBMISS][15] &= 0xffffff00;  
386		/* set 2 bytes */
387		onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
388		onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
389		onyx_images[TLBMISS][17] = itlb_addr;
390
391		/* clear last 2 bytes */
392		onyx_images[TLBHANDMISS][15] &= 0xffffff00;  
393		/* set 2 bytes */
394		onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
395		onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
396		onyx_images[TLBHANDMISS][17] = itlb_addr;
397
398		/* clear last 2 bytes */
399		onyx_images[BIG_CPI][15] &= 0xffffff00;  
400		/* set 2 bytes */
401		onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
402		onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
403		onyx_images[BIG_CPI][17] = itlb_addr;
404
405	    onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
406	 	onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
407		onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
408
409
410	} else if (perf_processor_interface == CUDA_INTF) {
411		/* Cuda interface */
412		cuda_images[TLBMISS][16] =  
413			(cuda_images[TLBMISS][16]&0xffff0000) |
414			((dtlb_addr >> 8)&0x0000ffff);
415		cuda_images[TLBMISS][17] = 
416			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
417		cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
418
419		cuda_images[TLBHANDMISS][16] = 
420			(cuda_images[TLBHANDMISS][16]&0xffff0000) |
421			((dtlb_addr >> 8)&0x0000ffff);
422		cuda_images[TLBHANDMISS][17] = 
423			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
424		cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
425
426		cuda_images[BIG_CPI][16] = 
427			(cuda_images[BIG_CPI][16]&0xffff0000) |
428			((dtlb_addr >> 8)&0x0000ffff);
429		cuda_images[BIG_CPI][17] = 
430			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
431		cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
432	} else {
433		/* Unknown type */
434	}
435#endif
436}
437
438
439/*
440 * ioctl routine
441 * All routines effect the processor that they are executed on.  Thus you 
442 * must be running on the processor that you wish to change.
443 */
444
445static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
446{
447	long error_start;
448	uint32_t raddr[4];
449	int error = 0;
450
451	switch (cmd) {
452
453	    case PA_PERF_ON:
454			/* Start the counters */
455			perf_start_counters();
456			break;
457
458	    case PA_PERF_OFF:
459			error_start = perf_stop_counters(raddr);
460			if (error_start != 0) {
461				printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
462				error = -EFAULT;
463				break;
464			}
465
466			/* copy out the Counters */
467			if (copy_to_user((void __user *)arg, raddr, 
468					sizeof (raddr)) != 0) {
469				error =  -EFAULT;
470				break;
471			}
472			break;
473
474	    case PA_PERF_VERSION:
475  	  		/* Return the version # */
476			error = put_user(PERF_VERSION, (int *)arg);
477			break;
478
479	    default:
480  	 		error = -ENOTTY;
481	}
482
483	return error;
484}
485
486static const struct file_operations perf_fops = {
487	.llseek = no_llseek,
488	.read = perf_read,
489	.write = perf_write,
490	.unlocked_ioctl = perf_ioctl,
491	.compat_ioctl = perf_ioctl,
492	.open = perf_open,
493	.release = perf_release
494};
495	
496static struct miscdevice perf_dev = {
497	MISC_DYNAMIC_MINOR,
498	PA_PERF_DEV,
499	&perf_fops
500};
501
502/*
503 * Initialize the module
504 */
505static int __init perf_init(void)
506{
507	int ret;
508
509	/* Determine correct processor interface to use */
510	bitmask_array = perf_bitmasks;
511
512	if (boot_cpu_data.cpu_type == pcxu ||
513	    boot_cpu_data.cpu_type == pcxu_) {
514		perf_processor_interface = ONYX_INTF;
515	} else if (boot_cpu_data.cpu_type == pcxw ||
516		 boot_cpu_data.cpu_type == pcxw_ ||
517		 boot_cpu_data.cpu_type == pcxw2 ||
518		 boot_cpu_data.cpu_type == mako ||
519		 boot_cpu_data.cpu_type == mako2) {
520		perf_processor_interface = CUDA_INTF;
521		if (boot_cpu_data.cpu_type == pcxw2 ||
522		    boot_cpu_data.cpu_type == mako ||
523		    boot_cpu_data.cpu_type == mako2)
524			bitmask_array = perf_bitmasks_piranha;
525	} else {
526		perf_processor_interface = UNKNOWN_INTF;
527		printk("Performance monitoring counters not supported on this processor\n");
528		return -ENODEV;
529	}
530
531	ret = misc_register(&perf_dev);
532	if (ret) {
533		printk(KERN_ERR "Performance monitoring counters: "
534			"cannot register misc device.\n");
535		return ret;
536	}
537
538	/* Patch the images to match the system */
539    	perf_patch_images();
540
541	spin_lock_init(&perf_lock);
542
543	/* TODO: this only lets us access the first cpu.. what to do for SMP? */
544	cpu_device = per_cpu(cpu_data, 0).dev;
545	printk("Performance monitoring counters enabled for %s\n",
546		per_cpu(cpu_data, 0).dev->name);
547
548	return 0;
549}
550
551/*
552 * perf_start_counters(void)
553 *
554 * Start the counters.
555 */
556static void perf_start_counters(void)
557{
558	/* Enable performance monitor counters */
559	perf_intrigue_enable_perf_counters();
560}
561
562/*
563 * perf_stop_counters
564 *
565 * Stop the performance counters and save counts
566 * in a per_processor array.
567 */
568static int perf_stop_counters(uint32_t *raddr)
569{
570	uint64_t userbuf[MAX_RDR_WORDS];
571
572	/* Disable performance counters */
573	perf_intrigue_disable_perf_counters();
574
575	if (perf_processor_interface == ONYX_INTF) {
576		uint64_t tmp64;
577		/*
578		 * Read the counters
579		 */
580		if (!perf_rdr_read_ubuf(16, userbuf))
581			return -13;
582
583		/* Counter0 is bits 1398 to 1429 */
584		tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
585		tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
586		/* OR sticky0 (bit 1430) to counter0 bit 32 */
587		tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
588		raddr[0] = (uint32_t)tmp64;
589
590		/* Counter1 is bits 1431 to 1462 */
591		tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
592		/* OR sticky1 (bit 1463) to counter1 bit 32 */
593		tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
594		raddr[1] = (uint32_t)tmp64;
595
596		/* Counter2 is bits 1464 to 1495 */
597		tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
598		tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
599		/* OR sticky2 (bit 1496) to counter2 bit 32 */
600		tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
601		raddr[2] = (uint32_t)tmp64;
602		
603		/* Counter3 is bits 1497 to 1528 */
604		tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
605		/* OR sticky3 (bit 1529) to counter3 bit 32 */
606		tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
607		raddr[3] = (uint32_t)tmp64;
608
609		/*
610		 * Zero out the counters
611		 */
612
613		/*
614		 * The counters and sticky-bits comprise the last 132 bits
615		 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
616		 * out the easy way: zero out last 10 bits of dword 21,
617		 * all of dword 22 and 58 bits (plus 6 don't care bits) of
618		 * dword 23.
619		 */
620		userbuf[21] &= 0xfffffffffffffc00ul;	/* 0 to last 10 bits */
621		userbuf[22] = 0;
622		userbuf[23] = 0;
623
624		/* 
625		 * Write back the zeroed bytes + the image given
626		 * the read was destructive.
627		 */
628		perf_rdr_write(16, userbuf);
629	} else {
630
631		/*
632		 * Read RDR-15 which contains the counters and sticky bits 
633		 */
634		if (!perf_rdr_read_ubuf(15, userbuf)) {
635			return -13;
636		}
637
638		/* 
639		 * Clear out the counters
640		 */
641		perf_rdr_clear(15);
642
643		/*
644		 * Copy the counters 
645		 */
646		raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
647		raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
648		raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
649		raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
650	}
651 
652	return 0;
653}
654
655/*
656 * perf_rdr_get_entry
657 *
658 * Retrieve a pointer to the description of what this
659 * RDR contains.
660 */
661static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
662{
663	if (perf_processor_interface == ONYX_INTF) {
664		return &perf_rdr_tbl_U[rdr_num];
665	} else {
666		return &perf_rdr_tbl_W[rdr_num];
667	}
668}
669
670/*
671 * perf_rdr_read_ubuf
672 *
673 * Read the RDR value into the buffer specified.
674 */
675static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer)
676{
677	uint64_t	data, data_mask = 0;
678	uint32_t	width, xbits, i;
679	const struct rdr_tbl_ent *tentry;
680
681	tentry = perf_rdr_get_entry(rdr_num);
682	if ((width = tentry->width) == 0)
683		return 0;
684
685	/* Clear out buffer */
686	i = tentry->num_words;
687	while (i--) {
688		buffer[i] = 0;
689	}	
690
691	/* Check for bits an even number of 64 */
692	if ((xbits = width & 0x03f) != 0) {
693		data_mask = 1;
694		data_mask <<= (64 - xbits);
695		data_mask--;
696	}
697
698	/* Grab all of the data */
699	i = tentry->num_words;
700	while (i--) {
701
702		if (perf_processor_interface == ONYX_INTF) {
703			data = perf_rdr_shift_in_U(rdr_num, width);
704		} else {
705			data = perf_rdr_shift_in_W(rdr_num, width);
706		}
707		if (xbits) {
708			buffer[i] |= (data << (64 - xbits));
709			if (i) {
710				buffer[i-1] |= ((data >> xbits) & data_mask);
711			}
712		} else {
713			buffer[i] = data;
714		}
715	}
716
717	return 1;
718}
719
720/*
721 * perf_rdr_clear
722 *
723 * Zero out the given RDR register
724 */
725static int perf_rdr_clear(uint32_t	rdr_num)
726{
727	const struct rdr_tbl_ent *tentry;
728	int32_t		i;
729
730	tentry = perf_rdr_get_entry(rdr_num);
731
732	if (tentry->width == 0) {
733		return -1;
734	}
735
736	i = tentry->num_words;
737	while (i--) {
738		if (perf_processor_interface == ONYX_INTF) {
739			perf_rdr_shift_out_U(rdr_num, 0UL);
740		} else {
741			perf_rdr_shift_out_W(rdr_num, 0UL);
742		}
743	}
744
745	return 0;
746}
747
748
749/*
750 * perf_write_image
751 *
752 * Write the given image out to the processor
753 */
754static int perf_write_image(uint64_t *memaddr)
755{
756	uint64_t buffer[MAX_RDR_WORDS];
757	uint64_t *bptr;
758	uint32_t dwords;
759	const uint32_t *intrigue_rdr;
760	const uint64_t *intrigue_bitmask;
761	uint64_t tmp64;
762	void __iomem *runway;
763	const struct rdr_tbl_ent *tentry;
764	int i;
765
766	/* Clear out counters */
767	if (perf_processor_interface == ONYX_INTF) {
768
769		perf_rdr_clear(16);
770
771		/* Toggle performance monitor */
772		perf_intrigue_enable_perf_counters();
773		perf_intrigue_disable_perf_counters();
774
775		intrigue_rdr = perf_rdrs_U;
776	} else {
777		perf_rdr_clear(15);
778		intrigue_rdr = perf_rdrs_W;
779	}
780
781	/* Write all RDRs */
782	while (*intrigue_rdr != -1) {
783		tentry = perf_rdr_get_entry(*intrigue_rdr);
784		perf_rdr_read_ubuf(*intrigue_rdr, buffer);
785		bptr   = &buffer[0];
786		dwords = tentry->num_words;
787		if (tentry->write_control) {
788			intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
789			while (dwords--) {
790				tmp64 = *intrigue_bitmask & *memaddr++;
791				tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
792				*bptr++ = tmp64;
793			}
794		} else {
795			while (dwords--) {
796				*bptr++ = *memaddr++;
797			}
798		}
799
800		perf_rdr_write(*intrigue_rdr, buffer);
801		intrigue_rdr++;
802	}
803
804	/*
805	 * Now copy out the Runway stuff which is not in RDRs
806	 */
807
808	if (cpu_device == NULL)
809	{
810		printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
811		return -1;
812	}
813
814	runway = ioremap_nocache(cpu_device->hpa.start, 4096);
815
816	/* Merge intrigue bits into Runway STATUS 0 */
817	tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
818	__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), 
819		     runway + RUNWAY_STATUS);
820	
821	/* Write RUNWAY DEBUG registers */
822	for (i = 0; i < 8; i++) {
823		__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
824	}
825
826	return 0; 
827}
828
829/*
830 * perf_rdr_write
831 *
832 * Write the given RDR register with the contents
833 * of the given buffer.
834 */
835static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
836{
837	const struct rdr_tbl_ent *tentry;
838	int32_t		i;
839
840printk("perf_rdr_write\n");
841	tentry = perf_rdr_get_entry(rdr_num);
842	if (tentry->width == 0) { return; }
843
844	i = tentry->num_words;
845	while (i--) {
846		if (perf_processor_interface == ONYX_INTF) {
847			perf_rdr_shift_out_U(rdr_num, buffer[i]);
848		} else {
849			perf_rdr_shift_out_W(rdr_num, buffer[i]);
850		}	
851	}
852printk("perf_rdr_write done\n");
853}
854
855module_init(perf_init);