/Prototypes/Cotton/munge-experiment-data/scripts/narrabri_rose/narrabri_rose_plants.r
https://github.com/APSIMInitiative/ApsimX · R · 74 lines · 31 code · 31 blank · 12 comment · 0 complexity · d3d6a9a87fca11641f5c8751e3576969 MD5 · raw file
- #! /bin/bash
- library(tidyverse)
- library(readxl)
- library(writexl)
- library(lubridate)
- # nb. years are refered to as the sowing year eg. 2009/2010 year is refered to as 2009.
- dir_sourcedata <- file.path("C:","Users","ver078","Dropbox","CottonModel","OldData","Narrabri(Rose)","Dynamic Deficit studies","trial data")
- # 2009 Biomass
- # ------------
- path <- file.path(dir_sourcedata, "0910 A2 DD Biomass Means.xlsx")
- biomass <- read_xlsx(path = path, sheet = "Sheet1", range = "A1:J93")
- biomass_longer <- biomass %>% pivot_longer(cols = 3:10, names_to = "treatment", values_to = "values")
- biomass_wider <- biomass_longer %>% pivot_wider(names_from = Variate, values_from = values)
- biomass_2009 <- biomass_wider %>% mutate(year = "2009") %>% select(year, DAS, everything())
- # 2010 Biomass
- # ------------
- path <- file.path(dir_sourcedata, "1011 A2 DD Biomass Means.xlsx")
- biomass <- read_xlsx(path = path, sheet = "Sheet1", range = "A1:J73")
- biomass_longer <- biomass %>% pivot_longer(cols = 3:10, names_to = "treatment", values_to = "values")
- biomass_wider <- biomass_longer %>% pivot_wider(names_from = Variate, values_from = values)
- biomass_2010 <- biomass_wider %>% mutate(year = "2010") %>% select(year, DAS, everything())
- # 2009 First Square & First Flower
- # --------------------------------
- path <- file.path(dir_sourcedata, "0910 A2 DD First Square & First Flower Means.xlsx")
- firstsquare <- read_xlsx(path = path, sheet = "First Square", range = "A1:I2") %>% mutate(year = 2009) %>% mutate(variable = "firstsquare_DAS_50pc")
- firstflower <- read_xlsx(path = path, sheet = "First Flower", range = "A1:I2") %>% mutate(year = 2009) %>% mutate(variable = "firstflower_DAS_50pc")
- phenology <- bind_rows(firstsquare, firstflower) %>% select(-Variate) %>% select(year, variable, everything())
- phenology_longer <- phenology %>% pivot_longer(c(3:10), names_to = "treatment", values_to = "values")
- phenology_wider <- phenology_longer %>% pivot_wider(names_from = variable, values_from = values)
- phenology_2009 <- phenology_wider
- # 2010 First Square & First Flower
- # --------------------------------
- path <- file.path(dir_sourcedata, "1011 A2 DD First Square & First Flower Means.xlsx")
- firstsquare <- read_xlsx(path = path, sheet = "1st Square", range = "A1:I2") %>% mutate(year = 2010) %>% mutate(variable = "firstsquare_DAS_50pc")
- firstflower <- read_xlsx(path = path, sheet = "1st Flower", range = "A1:I2") %>% mutate(year = 2010) %>% mutate(variable = "firstflower_DAS_50pc")
- phenology <- bind_rows(firstsquare, firstflower) %>% select(-Variate) %>% select(year, variable, everything())
- phenology_longer <- phenology %>% pivot_longer(c(3:10), names_to = "treatment", values_to = "values")
- phenology_wider <- phenology_longer %>% pivot_wider(names_from = variable, values_from = values)
- phenology_2010 <- phenology_wider
- # COMBINE YEARS
- # -------------
- biomass <- bind_rows(biomass_2009, biomass_2010)
- phenology <- bind_rows(phenology_2009, phenology_2010)