/Prototypes/Cotton/munge-experiment-data/scripts/narrabri_rose/narrabri_rose_plants.r

https://github.com/APSIMInitiative/ApsimX · R · 74 lines · 31 code · 31 blank · 12 comment · 0 complexity · d3d6a9a87fca11641f5c8751e3576969 MD5 · raw file

  1. #! /bin/bash
  2. library(tidyverse)
  3. library(readxl)
  4. library(writexl)
  5. library(lubridate)
  6. # nb. years are refered to as the sowing year eg. 2009/2010 year is refered to as 2009.
  7. dir_sourcedata <- file.path("C:","Users","ver078","Dropbox","CottonModel","OldData","Narrabri(Rose)","Dynamic Deficit studies","trial data")
  8. # 2009 Biomass
  9. # ------------
  10. path <- file.path(dir_sourcedata, "0910 A2 DD Biomass Means.xlsx")
  11. biomass <- read_xlsx(path = path, sheet = "Sheet1", range = "A1:J93")
  12. biomass_longer <- biomass %>% pivot_longer(cols = 3:10, names_to = "treatment", values_to = "values")
  13. biomass_wider <- biomass_longer %>% pivot_wider(names_from = Variate, values_from = values)
  14. biomass_2009 <- biomass_wider %>% mutate(year = "2009") %>% select(year, DAS, everything())
  15. # 2010 Biomass
  16. # ------------
  17. path <- file.path(dir_sourcedata, "1011 A2 DD Biomass Means.xlsx")
  18. biomass <- read_xlsx(path = path, sheet = "Sheet1", range = "A1:J73")
  19. biomass_longer <- biomass %>% pivot_longer(cols = 3:10, names_to = "treatment", values_to = "values")
  20. biomass_wider <- biomass_longer %>% pivot_wider(names_from = Variate, values_from = values)
  21. biomass_2010 <- biomass_wider %>% mutate(year = "2010") %>% select(year, DAS, everything())
  22. # 2009 First Square & First Flower
  23. # --------------------------------
  24. path <- file.path(dir_sourcedata, "0910 A2 DD First Square & First Flower Means.xlsx")
  25. firstsquare <- read_xlsx(path = path, sheet = "First Square", range = "A1:I2") %>% mutate(year = 2009) %>% mutate(variable = "firstsquare_DAS_50pc")
  26. firstflower <- read_xlsx(path = path, sheet = "First Flower", range = "A1:I2") %>% mutate(year = 2009) %>% mutate(variable = "firstflower_DAS_50pc")
  27. phenology <- bind_rows(firstsquare, firstflower) %>% select(-Variate) %>% select(year, variable, everything())
  28. phenology_longer <- phenology %>% pivot_longer(c(3:10), names_to = "treatment", values_to = "values")
  29. phenology_wider <- phenology_longer %>% pivot_wider(names_from = variable, values_from = values)
  30. phenology_2009 <- phenology_wider
  31. # 2010 First Square & First Flower
  32. # --------------------------------
  33. path <- file.path(dir_sourcedata, "1011 A2 DD First Square & First Flower Means.xlsx")
  34. firstsquare <- read_xlsx(path = path, sheet = "1st Square", range = "A1:I2") %>% mutate(year = 2010) %>% mutate(variable = "firstsquare_DAS_50pc")
  35. firstflower <- read_xlsx(path = path, sheet = "1st Flower", range = "A1:I2") %>% mutate(year = 2010) %>% mutate(variable = "firstflower_DAS_50pc")
  36. phenology <- bind_rows(firstsquare, firstflower) %>% select(-Variate) %>% select(year, variable, everything())
  37. phenology_longer <- phenology %>% pivot_longer(c(3:10), names_to = "treatment", values_to = "values")
  38. phenology_wider <- phenology_longer %>% pivot_wider(names_from = variable, values_from = values)
  39. phenology_2010 <- phenology_wider
  40. # COMBINE YEARS
  41. # -------------
  42. biomass <- bind_rows(biomass_2009, biomass_2010)
  43. phenology <- bind_rows(phenology_2009, phenology_2010)