/0011.rkt
http://github.com/samdphillips/euler · Racket · 95 lines · 28 code · 4 blank · 63 comment · 0 complexity · b7913ca6291a22e780fc7c94bff17173 MD5 · raw file
- #lang racket/base
- #|
- In the 20×20 grid below, four numbers along a diagonal
- line have been marked in red.
- 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
- 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
- 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
- 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
- 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
- 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
- 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
- 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
- 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
- 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
- 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
- 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
- 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
- 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
- 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
- 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
- 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
- 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
- 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
- 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
- The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
- What is the greatest product of four adjacent numbers in any
- direction (up, down, left, right, or diagonally) in the
- 20×20 grid?
- |#
- (define the-grid
- (vector 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
- 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
- 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
- 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
- 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
- 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
- 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
- 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
- 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
- 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
- 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
- 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
- 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
- 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
- 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
- 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
- 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
- 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
- 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
- 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48))
- (define (pos->index x y)
- (and (< y 20)
- (< x 20)
- (+ y (* 20 x))))
- (define (cell x y)
- (vector-ref the-grid (pos->index x y)))
- (define (row x y)
- (for/fold ([n 1]) ([y (in-range y (+ y 4))])
- (* n (cell x y))))
- (define (col x y)
- (for/fold ([n 1]) ([x (in-range x (+ x 4))])
- (* n (cell x y))))
- (define (diag-down x y)
- (for/fold ([n 1]) ([x (in-range x (+ x 4))]
- [y (in-range y (+ y 4))])
- (* n (cell x y))))
- (define (diag-up x y)
- (for/fold ([n 1]) ([x (in-range x (- x 4) -1)]
- [y (in-range y (+ y 4))])
- (* n (cell x y))))
- (define (max-range f xmin xmax ymin ymax)
- (for*/fold ([v 0]) ([x (in-range xmin xmax)]
- [y (in-range ymin ymax)])
- (max v (f x y))))
- (define (solve)
- (max (max-range row 0 20 0 17)
- (max-range col 0 17 0 20)
- (max-range diag-down 0 17 0 17)
- (max-range diag-up 3 20 0 17)))