/src/gui/painting/qbezier.cpp
https://bitbucket.org/ultra_iter/qt-vtl · C++ · 702 lines · 511 code · 112 blank · 79 comment · 137 complexity · 2a6642bacff368a79f3ce389e85bc85e MD5 · raw file
- /****************************************************************************
- **
- ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
- ** All rights reserved.
- ** Contact: Nokia Corporation (qt-info@nokia.com)
- **
- ** This file is part of the QtGui module of the Qt Toolkit.
- **
- ** $QT_BEGIN_LICENSE:LGPL$
- ** GNU Lesser General Public License Usage
- ** This file may be used under the terms of the GNU Lesser General Public
- ** License version 2.1 as published by the Free Software Foundation and
- ** appearing in the file LICENSE.LGPL included in the packaging of this
- ** file. Please review the following information to ensure the GNU Lesser
- ** General Public License version 2.1 requirements will be met:
- ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
- **
- ** In addition, as a special exception, Nokia gives you certain additional
- ** rights. These rights are described in the Nokia Qt LGPL Exception
- ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
- **
- ** GNU General Public License Usage
- ** Alternatively, this file may be used under the terms of the GNU General
- ** Public License version 3.0 as published by the Free Software Foundation
- ** and appearing in the file LICENSE.GPL included in the packaging of this
- ** file. Please review the following information to ensure the GNU General
- ** Public License version 3.0 requirements will be met:
- ** http://www.gnu.org/copyleft/gpl.html.
- **
- ** Other Usage
- ** Alternatively, this file may be used in accordance with the terms and
- ** conditions contained in a signed written agreement between you and Nokia.
- **
- **
- **
- **
- **
- ** $QT_END_LICENSE$
- **
- ****************************************************************************/
- #include "qbezier_p.h"
- #include <qdebug.h>
- #include <qline.h>
- #include <qpolygon.h>
- #include <qvector.h>
- #include <qlist.h>
- #include <qmath.h>
- #include <private/qnumeric_p.h>
- #include <private/qmath_p.h>
- QT_BEGIN_NAMESPACE
- //#define QDEBUG_BEZIER
- #ifdef FLOAT_ACCURACY
- #define INV_EPS (1L<<23)
- #else
- /* The value of 1.0 / (1L<<14) is enough for most applications */
- #define INV_EPS (1L<<14)
- #endif
- #ifndef M_SQRT2
- #define M_SQRT2 1.41421356237309504880
- #endif
- /*!
- \internal
- */
- QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
- const QPointF &p3, const QPointF &p4)
- {
- QBezier b;
- b.x1 = p1.x();
- b.y1 = p1.y();
- b.x2 = p2.x();
- b.y2 = p2.y();
- b.x3 = p3.x();
- b.y3 = p3.y();
- b.x4 = p4.x();
- b.y4 = p4.y();
- return b;
- }
- /*!
- \internal
- */
- QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const
- {
- // flattening is done by splitting the bezier until we can replace the segment by a straight
- // line. We split further until the control points are close enough to the line connecting the
- // boundary points.
- //
- // the Distance of a point p from a line given by the points (a,b) is given by:
- //
- // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
- //
- // We can stop splitting if both control points are close enough to the line.
- // To make the algorithm faster we use the manhattan length of the line.
- QPolygonF polygon;
- polygon.append(QPointF(x1, y1));
- addToPolygon(&polygon, bezier_flattening_threshold);
- return polygon;
- }
- QBezier QBezier::mapBy(const QTransform &transform) const
- {
- return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4()));
- }
- QBezier QBezier::getSubRange(qreal t0, qreal t1) const
- {
- QBezier result;
- QBezier temp;
- // cut at t1
- if (qFuzzyIsNull(t1 - qreal(1.))) {
- result = *this;
- } else {
- temp = *this;
- temp.parameterSplitLeft(t1, &result);
- }
- // cut at t0
- if (!qFuzzyIsNull(t0))
- result.parameterSplitLeft(t0 / t1, &temp);
- return result;
- }
- static inline int quadraticRoots(qreal a, qreal b, qreal c,
- qreal *x1, qreal *x2)
- {
- if (qFuzzyIsNull(a)) {
- if (qFuzzyIsNull(b))
- return 0;
- *x1 = *x2 = (-c / b);
- return 1;
- } else {
- const qreal det = b * b - 4 * a * c;
- if (qFuzzyIsNull(det)) {
- *x1 = *x2 = -b / (2 * a);
- return 1;
- }
- if (det > 0) {
- if (qFuzzyIsNull(b)) {
- *x2 = qSqrt(-c / a);
- *x1 = -(*x2);
- return 2;
- }
- const qreal stableA = b / (2 * a);
- const qreal stableB = c / (a * stableA * stableA);
- const qreal stableC = -1 - qSqrt(1 - stableB);
- *x2 = stableA * stableC;
- *x1 = (stableA * stableB) / stableC;
- return 2;
- } else
- return 0;
- }
- }
- static inline bool findInflections(qreal a, qreal b, qreal c,
- qreal *t1 , qreal *t2, qreal *tCups)
- {
- qreal r1 = 0, r2 = 0;
- short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
- if (rootsCount >= 1) {
- if (r1 < r2) {
- *t1 = r1;
- *t2 = r2;
- } else {
- *t1 = r2;
- *t2 = r1;
- }
- if (!qFuzzyIsNull(a))
- *tCups = qreal(0.5) * (-b / a);
- else
- *tCups = 2;
- return true;
- }
- return false;
- }
- void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const
- {
- QBezier beziers[32];
- beziers[0] = *this;
- QBezier *b = beziers;
- while (b >= beziers) {
- // check if we can pop the top bezier curve from the stack
- qreal y4y1 = b->y4 - b->y1;
- qreal x4x1 = b->x4 - b->x1;
- qreal l = qAbs(x4x1) + qAbs(y4y1);
- qreal d;
- if (l > 1.) {
- d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
- + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
- } else {
- d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
- qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
- l = 1.;
- }
- if (d < bezier_flattening_threshold*l || b == beziers + 31) {
- // good enough, we pop it off and add the endpoint
- polygon->append(QPointF(b->x4, b->y4));
- --b;
- } else {
- // split, second half of the polygon goes lower into the stack
- b->split(b+1, b);
- ++b;
- }
- }
- }
- QRectF QBezier::bounds() const
- {
- qreal xmin = x1;
- qreal xmax = x1;
- if (x2 < xmin)
- xmin = x2;
- else if (x2 > xmax)
- xmax = x2;
- if (x3 < xmin)
- xmin = x3;
- else if (x3 > xmax)
- xmax = x3;
- if (x4 < xmin)
- xmin = x4;
- else if (x4 > xmax)
- xmax = x4;
- qreal ymin = y1;
- qreal ymax = y1;
- if (y2 < ymin)
- ymin = y2;
- else if (y2 > ymax)
- ymax = y2;
- if (y3 < ymin)
- ymin = y3;
- else if (y3 > ymax)
- ymax = y3;
- if (y4 < ymin)
- ymin = y4;
- else if (y4 > ymax)
- ymax = y4;
- return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
- }
- enum ShiftResult {
- Ok,
- Discard,
- Split,
- Circle
- };
- static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
- {
- const qreal o2 = offset*offset;
- const qreal max_dist_line = threshold*offset*offset;
- const qreal max_dist_normal = threshold*offset;
- const qreal spacing = qreal(0.25);
- for (qreal i = spacing; i < qreal(0.99); i += spacing) {
- QPointF p1 = b1->pointAt(i);
- QPointF p2 = b2->pointAt(i);
- qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
- if (qAbs(d - o2) > max_dist_line)
- return Split;
- QPointF normalPoint = b1->normalVector(i);
- qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
- if (l != qreal(0.0)) {
- d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
- if (d > max_dist_normal)
- return Split;
- }
- }
- return Ok;
- }
- static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
- {
- int map[4];
- bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
- bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
- bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
- QPointF points[4];
- int np = 0;
- points[np] = QPointF(orig->x1, orig->y1);
- map[0] = 0;
- ++np;
- if (!p1_p2_equal) {
- points[np] = QPointF(orig->x2, orig->y2);
- ++np;
- }
- map[1] = np - 1;
- if (!p2_p3_equal) {
- points[np] = QPointF(orig->x3, orig->y3);
- ++np;
- }
- map[2] = np - 1;
- if (!p3_p4_equal) {
- points[np] = QPointF(orig->x4, orig->y4);
- ++np;
- }
- map[3] = np - 1;
- if (np == 1)
- return Discard;
- QRectF b = orig->bounds();
- if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
- qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
- (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
- (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
- (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
- qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
- (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
- if (dot < 0 && dot*dot < 0.8*l)
- // the points are close and reverse dirction. Approximate the whole
- // thing by a semi circle
- return Circle;
- }
- QPointF points_shifted[4];
- QLineF prev = QLineF(QPointF(), points[1] - points[0]);
- QPointF prev_normal = prev.normalVector().unitVector().p2();
- points_shifted[0] = points[0] + offset * prev_normal;
- for (int i = 1; i < np - 1; ++i) {
- QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
- QPointF next_normal = next.normalVector().unitVector().p2();
- QPointF normal_sum = prev_normal + next_normal;
- qreal r = qreal(1.0) + prev_normal.x() * next_normal.x()
- + prev_normal.y() * next_normal.y();
- if (qFuzzyIsNull(r)) {
- points_shifted[i] = points[i] + offset * prev_normal;
- } else {
- qreal k = offset / r;
- points_shifted[i] = points[i] + k * normal_sum;
- }
- prev_normal = next_normal;
- }
- points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
- *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
- points_shifted[map[2]], points_shifted[map[3]]);
- return good_offset(orig, shifted, offset, threshold);
- }
- // This value is used to determine the length of control point vectors
- // when approximating arc segments as curves. The factor is multiplied
- // with the radius of the circle.
- #define KAPPA qreal(0.5522847498)
- static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
- {
- QPointF normals[3];
- normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
- qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
- if (qFuzzyIsNull(dist))
- return false;
- normals[0] /= dist;
- normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
- dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
- if (qFuzzyIsNull(dist))
- return false;
- normals[2] /= dist;
- normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
- normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
- qreal angles[2];
- qreal sign = 1.;
- for (int i = 0; i < 2; ++i) {
- qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
- if (cos_a > 1.)
- cos_a = 1.;
- if (cos_a < -1.)
- cos_a = -1;
- angles[i] = qAcos(cos_a)/Q_PI;
- }
- if (angles[0] + angles[1] > 1.) {
- // more than 180 degrees
- normals[1] = -normals[1];
- angles[0] = 1. - angles[0];
- angles[1] = 1. - angles[1];
- sign = -1.;
- }
- QPointF circle[3];
- circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
- circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset;
- circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
- for (int i = 0; i < 2; ++i) {
- qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i];
- o->x1 = circle[i].x();
- o->y1 = circle[i].y();
- o->x2 = circle[i].x() - normals[i].y()*kappa;
- o->y2 = circle[i].y() + normals[i].x()*kappa;
- o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
- o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
- o->x4 = circle[i+1].x();
- o->y4 = circle[i+1].y();
- ++o;
- }
- return true;
- }
- int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
- {
- Q_ASSERT(curveSegments);
- Q_ASSERT(maxSegments > 0);
- if (x1 == x2 && x1 == x3 && x1 == x4 &&
- y1 == y2 && y1 == y3 && y1 == y4)
- return 0;
- --maxSegments;
- QBezier beziers[10];
- redo:
- beziers[0] = *this;
- QBezier *b = beziers;
- QBezier *o = curveSegments;
- while (b >= beziers) {
- int stack_segments = b - beziers + 1;
- if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
- threshold *= qreal(1.5);
- if (threshold > qreal(2.0))
- goto give_up;
- goto redo;
- }
- ShiftResult res = shift(b, o, offset, threshold);
- if (res == Discard) {
- --b;
- } else if (res == Ok) {
- ++o;
- --b;
- continue;
- } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
- // add semi circle
- if (addCircle(b, offset, o))
- o += 2;
- --b;
- } else {
- b->split(b+1, b);
- ++b;
- }
- }
- give_up:
- while (b >= beziers) {
- ShiftResult res = shift(b, o, offset, threshold);
- // if res isn't Ok or Split then *o is undefined
- if (res == Ok || res == Split)
- ++o;
- --b;
- }
- Q_ASSERT(o - curveSegments <= maxSegments);
- return o - curveSegments;
- }
- #ifdef QDEBUG_BEZIER
- static QDebug operator<<(QDebug dbg, const QBezier &bz)
- {
- dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
- << '[' << bz.x2 <<", " << bz.y2 << "], "
- << '[' << bz.x3 <<", " << bz.y3 << "], "
- << '[' << bz.x4 <<", " << bz.y4 << ']';
- return dbg;
- }
- #endif
- static inline void splitBezierAt(const QBezier &bez, qreal t,
- QBezier *left, QBezier *right)
- {
- left->x1 = bez.x1;
- left->y1 = bez.y1;
- left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
- left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
- left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
- left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
- right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
- right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
- right->x2 = left->x3 + t * ( right->x3 - left->x3);
- right->y2 = left->y3 + t * ( right->y3 - left->y3);
- left->x3 = left->x2 + t * ( left->x3 - left->x2 );
- left->y3 = left->y2 + t * ( left->y3 - left->y2 );
- left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
- left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
- right->x4 = bez.x4;
- right->y4 = bez.y4;
- }
- qreal QBezier::length(qreal error) const
- {
- qreal length = qreal(0.0);
- addIfClose(&length, error);
- return length;
- }
- void QBezier::addIfClose(qreal *length, qreal error) const
- {
- QBezier left, right; /* bez poly splits */
- qreal len = qreal(0.0); /* arc length */
- qreal chord; /* chord length */
- len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
- len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
- len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
- chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
- if((len-chord) > error) {
- split(&left, &right); /* split in two */
- left.addIfClose(length, error); /* try left side */
- right.addIfClose(length, error); /* try right side */
- return;
- }
- *length = *length + len;
- return;
- }
- qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
- {
- qreal py0 = pointAt(t0).y();
- qreal py1 = pointAt(t1).y();
- if (py0 > py1) {
- qSwap(py0, py1);
- qSwap(t0, t1);
- }
- Q_ASSERT(py0 <= py1);
- if (py0 >= y)
- return t0;
- else if (py1 <= y)
- return t1;
- Q_ASSERT(py0 < y && y < py1);
- qreal lt = t0;
- qreal dt;
- do {
- qreal t = qreal(0.5) * (t0 + t1);
- qreal a, b, c, d;
- QBezier::coefficients(t, a, b, c, d);
- qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
- if (yt < y) {
- t0 = t;
- py0 = yt;
- } else {
- t1 = t;
- py1 = yt;
- }
- dt = lt - t;
- lt = t;
- } while (qAbs(dt) > qreal(1e-7));
- return t0;
- }
- int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
- {
- // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
- // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
- // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
- const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
- const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
- const qreal c = -y1 + y2;
- if (qFuzzyIsNull(a)) {
- if (qFuzzyIsNull(b))
- return 0;
- t0 = -c / b;
- return t0 > 0 && t0 < 1;
- }
- qreal reciprocal = b * b - 4 * a * c;
- if (qFuzzyIsNull(reciprocal)) {
- t0 = -b / (2 * a);
- return t0 > 0 && t0 < 1;
- } else if (reciprocal > 0) {
- qreal temp = qSqrt(reciprocal);
- t0 = (-b - temp)/(2*a);
- t1 = (-b + temp)/(2*a);
- if (t1 < t0)
- qSwap(t0, t1);
- int count = 0;
- qreal t[2] = { 0, 1 };
- if (t0 > 0 && t0 < 1)
- t[count++] = t0;
- if (t1 > 0 && t1 < 1)
- t[count++] = t1;
- t0 = t[0];
- t1 = t[1];
- return count;
- }
- return 0;
- }
- qreal QBezier::tAtLength(qreal l) const
- {
- qreal len = length();
- qreal t = qreal(1.0);
- const qreal error = qreal(0.01);
- if (l > len || qFuzzyCompare(l, len))
- return t;
- t *= qreal(0.5);
- //int iters = 0;
- //qDebug()<<"LEN is "<<l<<len;
- qreal lastBigger = qreal(1.0);
- while (1) {
- //qDebug()<<"\tt is "<<t;
- QBezier right = *this;
- QBezier left;
- right.parameterSplitLeft(t, &left);
- qreal lLen = left.length();
- if (qAbs(lLen - l) < error)
- break;
- if (lLen < l) {
- t += (lastBigger - t) * qreal(0.5);
- } else {
- lastBigger = t;
- t -= t * qreal(0.5);
- }
- //++iters;
- }
- //qDebug()<<"number of iters is "<<iters;
- return t;
- }
- QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
- {
- if (t0 == 0 && t1 == 1)
- return *this;
- QBezier bezier = *this;
- QBezier result;
- bezier.parameterSplitLeft(t0, &result);
- qreal trueT = (t1-t0)/(1-t0);
- bezier.parameterSplitLeft(trueT, &result);
- return result;
- }
- QT_END_NAMESPACE