ghc /compiler/utils/GraphOps.hs

Language Haskell Lines 666
MD5 Hash f66935e43aafd5e8485b321e02724664 Estimated Cost $10,866 (why?)
Repository https://bitbucket.org/carter/ghc.git View Raw File View Project SPDX
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
-- | Basic operations on graphs.
--

module GraphOps (
        addNode,        delNode,        getNode,       lookupNode,     modNode,
        size,
        union,
        addConflict,    delConflict,    addConflicts,
        addCoalesce,    delCoalesce,
        addExclusion,   addExclusions,
        addPreference,
        coalesceNodes,  coalesceGraph,
        freezeNode,     freezeOneInGraph, freezeAllInGraph,
        scanGraph,
        setColor,
        validateGraph,
        slurpNodeConflictCount
)
where

import GraphBase

import Outputable
import Unique
import UniqSet
import UniqFM

import Data.List        hiding (union)
import Data.Maybe

-- | Lookup a node from the graph.
lookupNode
        :: Uniquable k
        => Graph k cls color
        -> k -> Maybe (Node  k cls color)

lookupNode graph k
        = lookupUFM (graphMap graph) k


-- | Get a node from the graph, throwing an error if it's not there
getNode
        :: Uniquable k
        => Graph k cls color
        -> k -> Node k cls color

getNode graph k
 = case lookupUFM (graphMap graph) k of
        Just node       -> node
        Nothing         -> panic "ColorOps.getNode: not found"


-- | Add a node to the graph, linking up its edges
addNode :: Uniquable k
        => k -> Node k cls color
        -> Graph k cls color -> Graph k cls color

addNode k node graph
 = let
        -- add back conflict edges from other nodes to this one
        map_conflict
                = foldUniqSet
                        (adjustUFM_C (\n -> n { nodeConflicts = addOneToUniqSet (nodeConflicts n) k}))
                        (graphMap graph)
                        (nodeConflicts node)

        -- add back coalesce edges from other nodes to this one
        map_coalesce
                = foldUniqSet
                        (adjustUFM_C (\n -> n { nodeCoalesce = addOneToUniqSet (nodeCoalesce n) k}))
                        map_conflict
                        (nodeCoalesce node)

  in    graph
        { graphMap      = addToUFM map_coalesce k node}


-- | Delete a node and all its edges from the graph.
delNode :: (Uniquable k, Outputable k)
        => k -> Graph k cls color -> Maybe (Graph k cls color)

delNode k graph
        | Just node     <- lookupNode graph k
        = let   -- delete conflict edges from other nodes to this one.
                graph1  = foldl' (\g k1 -> let Just g' = delConflict k1 k g in g') graph
                        $ uniqSetToList (nodeConflicts node)

                -- delete coalesce edge from other nodes to this one.
                graph2  = foldl' (\g k1 -> let Just g' = delCoalesce k1 k g in g') graph1
                        $ uniqSetToList (nodeCoalesce node)

                -- delete the node
                graph3  = graphMapModify (\fm -> delFromUFM fm k) graph2

          in    Just graph3

        | otherwise
        = Nothing


-- | Modify a node in the graph.
--      returns Nothing if the node isn't present.
--
modNode :: Uniquable k
        => (Node k cls color -> Node k cls color)
        -> k -> Graph k cls color -> Maybe (Graph k cls color)

modNode f k graph
 = case lookupNode graph k of
        Just Node{}
         -> Just
         $  graphMapModify
                 (\fm   -> let  Just node       = lookupUFM fm k
                                node'           = f node
                           in   addToUFM fm k node')
                graph

        Nothing -> Nothing


-- | Get the size of the graph, O(n)
size    :: Uniquable k
        => Graph k cls color -> Int

size graph
        = sizeUFM $ graphMap graph


-- | Union two graphs together.
union   :: Uniquable k
        => Graph k cls color -> Graph k cls color -> Graph k cls color

union   graph1 graph2
        = Graph
        { graphMap              = plusUFM (graphMap graph1) (graphMap graph2) }


-- | Add a conflict between nodes to the graph, creating the nodes required.
--      Conflicts are virtual regs which need to be colored differently.
addConflict
        :: Uniquable k
        => (k, cls) -> (k, cls)
        -> Graph k cls color -> Graph k cls color

addConflict (u1, c1) (u2, c2)
 = let  addNeighbor u c u'
                = adjustWithDefaultUFM
                        (\node -> node { nodeConflicts = addOneToUniqSet (nodeConflicts node) u' })
                        (newNode u c)  { nodeConflicts = unitUniqSet u' }
                        u

   in   graphMapModify
        ( addNeighbor u1 c1 u2
        . addNeighbor u2 c2 u1)


-- | Delete a conflict edge. k1 -> k2
--      returns Nothing if the node isn't in the graph
delConflict
        :: Uniquable k
        => k -> k
        -> Graph k cls color -> Maybe (Graph k cls color)

delConflict k1 k2
        = modNode
                (\node -> node { nodeConflicts = delOneFromUniqSet (nodeConflicts node) k2 })
                k1


-- | Add some conflicts to the graph, creating nodes if required.
--      All the nodes in the set are taken to conflict with each other.
addConflicts
        :: Uniquable k
        => UniqSet k -> (k -> cls)
        -> Graph k cls color -> Graph k cls color

addConflicts conflicts getClass

        -- just a single node, but no conflicts, create the node anyway.
        | (u : [])      <- uniqSetToList conflicts
        = graphMapModify
        $ adjustWithDefaultUFM
                id
                (newNode u (getClass u))
                u

        | otherwise
        = graphMapModify
        $ (\fm -> foldl' (\g u  -> addConflictSet1 u getClass conflicts g) fm
                $ uniqSetToList conflicts)


addConflictSet1 :: Uniquable k
                => k -> (k -> cls) -> UniqSet k
                -> UniqFM (Node k cls color)
                -> UniqFM (Node k cls color)
addConflictSet1 u getClass set
 = case delOneFromUniqSet set u of
    set' -> adjustWithDefaultUFM
                (\node -> node                  { nodeConflicts = unionUniqSets set' (nodeConflicts node) } )
                (newNode u (getClass u))        { nodeConflicts = set' }
                u


-- | Add an exclusion to the graph, creating nodes if required.
--      These are extra colors that the node cannot use.
addExclusion
        :: (Uniquable k, Uniquable color)
        => k -> (k -> cls) -> color
        -> Graph k cls color -> Graph k cls color

addExclusion u getClass color
        = graphMapModify
        $ adjustWithDefaultUFM
                (\node -> node                  { nodeExclusions = addOneToUniqSet (nodeExclusions node) color })
                (newNode u (getClass u))        { nodeExclusions = unitUniqSet color }
                u

addExclusions
        :: (Uniquable k, Uniquable color)
        => k -> (k -> cls) -> [color]
        -> Graph k cls color -> Graph k cls color

addExclusions u getClass colors graph
        = foldr (addExclusion u getClass) graph colors


-- | Add a coalescence edge to the graph, creating nodes if requried.
--      It is considered adventageous to assign the same color to nodes in a coalesence.
addCoalesce
        :: Uniquable k
        => (k, cls) -> (k, cls)
        -> Graph k cls color -> Graph k cls color

addCoalesce (u1, c1) (u2, c2)
 = let  addCoalesce u c u'
         =      adjustWithDefaultUFM
                        (\node -> node { nodeCoalesce = addOneToUniqSet (nodeCoalesce node) u' })
                        (newNode u c)  { nodeCoalesce = unitUniqSet u' }
                        u

   in   graphMapModify
        ( addCoalesce u1 c1 u2
        . addCoalesce u2 c2 u1)


-- | Delete a coalescence edge (k1 -> k2) from the graph.
delCoalesce
        :: Uniquable k
        => k -> k
        -> Graph k cls color    -> Maybe (Graph k cls color)

delCoalesce k1 k2
        = modNode (\node -> node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k2 })
                k1


-- | Add a color preference to the graph, creating nodes if required.
--      The most recently added preference is the most prefered.
--      The algorithm tries to assign a node it's prefered color if possible.
--
addPreference
        :: Uniquable k
        => (k, cls) -> color
        -> Graph k cls color -> Graph k cls color

addPreference (u, c) color
        = graphMapModify
        $ adjustWithDefaultUFM
                (\node -> node { nodePreference = color : (nodePreference node) })
                (newNode u c)  { nodePreference = [color] }
                u


-- | Do agressive coalescing on this graph.
--      returns the new graph and the list of pairs of nodes that got coaleced together.
--      for each pair, the resulting node will have the least key and be second in the pair.
--
coalesceGraph
        :: (Uniquable k, Ord k, Eq cls, Outputable k)
        => Bool                 -- ^ If True, coalesce nodes even if this might make the graph
                                --      less colorable (aggressive coalescing)
        -> Triv k cls color
        -> Graph k cls color
        -> ( Graph k cls color
           , [(k, k)])          -- pairs of nodes that were coalesced, in the order that the
                                --      coalescing was applied.

coalesceGraph aggressive triv graph
        = coalesceGraph' aggressive triv graph []

coalesceGraph'
        :: (Uniquable k, Ord k, Eq cls, Outputable k)
        => Bool
        -> Triv k cls color
        -> Graph k cls color
        -> [(k, k)]
        -> ( Graph k cls color
           , [(k, k)])
coalesceGraph' aggressive triv graph kkPairsAcc
 = let
        -- find all the nodes that have coalescence edges
        cNodes  = filter (\node -> not $ isEmptyUniqSet (nodeCoalesce node))
                $ eltsUFM $ graphMap graph

        -- build a list of pairs of keys for node's we'll try and coalesce
        --      every pair of nodes will appear twice in this list
        --      ie [(k1, k2), (k2, k1) ... ]
        --      This is ok, GrapOps.coalesceNodes handles this and it's convenient for
        --      build a list of what nodes get coalesced together for later on.
        --
        cList   = [ (nodeId node1, k2)
                        | node1 <- cNodes
                        , k2    <- uniqSetToList $ nodeCoalesce node1 ]

        -- do the coalescing, returning the new graph and a list of pairs of keys
        --      that got coalesced together.
        (graph', mPairs)
                = mapAccumL (coalesceNodes aggressive triv) graph cList

        -- keep running until there are no more coalesces can be found
   in   case catMaybes mPairs of
         []     -> (graph', reverse kkPairsAcc)
         pairs  -> coalesceGraph' aggressive triv graph' (reverse pairs ++ kkPairsAcc)


-- | Coalesce this pair of nodes unconditionally \/ agressively.
--      The resulting node is the one with the least key.
--
--      returns: Just    the pair of keys if the nodes were coalesced
--                       the second element of the pair being the least one
--
--               Nothing if either of the nodes weren't in the graph

coalesceNodes
        :: (Uniquable k, Ord k, Eq cls, Outputable k)
        => Bool                 -- ^ If True, coalesce nodes even if this might make the graph
                                --      less colorable (aggressive coalescing)
        -> Triv  k cls color
        -> Graph k cls color
        -> (k, k)               -- ^ keys of the nodes to be coalesced
        -> (Graph k cls color, Maybe (k, k))

coalesceNodes aggressive triv graph (k1, k2)
        | (kMin, kMax)  <- if k1 < k2
                                then (k1, k2)
                                else (k2, k1)

        -- the nodes being coalesced must be in the graph
        , Just nMin     <- lookupNode graph kMin
        , Just nMax     <- lookupNode graph kMax

        -- can't coalesce conflicting modes
        , not $ elementOfUniqSet kMin (nodeConflicts nMax)
        , not $ elementOfUniqSet kMax (nodeConflicts nMin)

        -- can't coalesce the same node
        , nodeId nMin /= nodeId nMax

        = coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax

        -- don't do the coalescing after all
        | otherwise
        = (graph, Nothing)

coalesceNodes_merge
        :: (Uniquable k, Ord k, Eq cls, Outputable k)
        => Bool
        -> Triv  k cls color
        -> Graph k cls color
        -> k -> k
        -> Node k cls color
        -> Node k cls color
        -> (Graph k cls color, Maybe (k, k))

coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax

        -- sanity checks
        | nodeClass nMin /= nodeClass nMax
        = error "GraphOps.coalesceNodes: can't coalesce nodes of different classes."

        | not (isNothing (nodeColor nMin) && isNothing (nodeColor nMax))
        = error "GraphOps.coalesceNodes: can't coalesce colored nodes."

        ---
        | otherwise
        = let
                -- the new node gets all the edges from its two components
                node    =
                 Node   { nodeId                = kMin
                        , nodeClass             = nodeClass nMin
                        , nodeColor             = Nothing

                        -- nodes don't conflict with themselves..
                        , nodeConflicts
                                = (unionUniqSets (nodeConflicts nMin) (nodeConflicts nMax))
                                        `delOneFromUniqSet` kMin
                                        `delOneFromUniqSet` kMax

                        , nodeExclusions        = unionUniqSets (nodeExclusions nMin) (nodeExclusions nMax)
                        , nodePreference        = nodePreference nMin ++ nodePreference nMax

                        -- nodes don't coalesce with themselves..
                        , nodeCoalesce
                                = (unionUniqSets (nodeCoalesce nMin) (nodeCoalesce nMax))
                                        `delOneFromUniqSet` kMin
                                        `delOneFromUniqSet` kMax
                        }

          in    coalesceNodes_check aggressive triv graph kMin kMax node

coalesceNodes_check
        :: (Uniquable k, Ord k, Eq cls, Outputable k)
        => Bool
        -> Triv  k cls color
        -> Graph k cls color
        -> k -> k
        -> Node k cls color
        -> (Graph k cls color, Maybe (k, k))

coalesceNodes_check aggressive triv graph kMin kMax node

        -- Unless we're coalescing aggressively, if the result node is not trivially
        --      colorable then don't do the coalescing.
        | not aggressive
        , not $ triv (nodeClass node) (nodeConflicts node) (nodeExclusions node)
        = (graph, Nothing)

        | otherwise
        = let -- delete the old nodes from the graph and add the new one
                Just graph1     = delNode kMax graph
                Just graph2     = delNode kMin graph1
                graph3          = addNode kMin node graph2

          in    (graph3, Just (kMax, kMin))


-- | Freeze a node
--      This is for the iterative coalescer.
--      By freezing a node we give up on ever coalescing it.
--      Move all its coalesce edges into the frozen set - and update
--      back edges from other nodes.
--
freezeNode
        :: Uniquable k
        => k                    -- ^ key of the node to freeze
        -> Graph k cls color    -- ^ the graph
        -> Graph k cls color    -- ^ graph with that node frozen

freezeNode k
  = graphMapModify
  $ \fm ->
    let -- freeze all the edges in the node to be frozen
        Just node = lookupUFM fm k
        node'   = node
                { nodeCoalesce          = emptyUniqSet }

        fm1     = addToUFM fm k node'

        -- update back edges pointing to this node
        freezeEdge k node
         = if elementOfUniqSet k (nodeCoalesce node)
                then node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k }
                else node       -- panic "GraphOps.freezeNode: edge to freeze wasn't in the coalesce set"
                                -- If the edge isn't actually in the coelesce set then just ignore it.

        fm2     = foldUniqSet (adjustUFM_C (freezeEdge k)) fm1
                        $ nodeCoalesce node

    in  fm2


-- | Freeze one node in the graph
--      This if for the iterative coalescer.
--      Look for a move related node of low degree and freeze it.
--
--      We probably don't need to scan the whole graph looking for the node of absolute
--      lowest degree. Just sample the first few and choose the one with the lowest
--      degree out of those. Also, we don't make any distinction between conflicts of different
--      classes.. this is just a heuristic, after all.
--
--      IDEA:   freezing a node might free it up for Simplify.. would be good to check for triv
--              right here, and add it to a worklist if known triv\/non-move nodes.
--
freezeOneInGraph
        :: (Uniquable k, Outputable k)
        => Graph k cls color
        -> ( Graph k cls color          -- the new graph
           , Bool )                     -- whether we found a node to freeze

freezeOneInGraph graph
 = let  compareNodeDegree n1 n2
                = compare (sizeUniqSet $ nodeConflicts n1) (sizeUniqSet $ nodeConflicts n2)

        candidates
                = sortBy compareNodeDegree
                $ take 5        -- 5 isn't special, it's just a small number.
                $ scanGraph (\node -> not $ isEmptyUniqSet (nodeCoalesce node)) graph

   in   case candidates of

         -- there wasn't anything available to freeze
         []     -> (graph, False)

         -- we found something to freeze
         (n : _)
          -> ( freezeNode (nodeId n) graph
             , True)


-- | Freeze all the nodes in the graph
--      for debugging the iterative allocator.
--
freezeAllInGraph
        :: (Uniquable k, Outputable k)
        => Graph k cls color
        -> Graph k cls color

freezeAllInGraph graph
        = foldr freezeNode graph
                $ map nodeId
                $ eltsUFM $ graphMap graph


-- | Find all the nodes in the graph that meet some criteria
--
scanGraph
        :: Uniquable k
        => (Node k cls color -> Bool)
        -> Graph k cls color
        -> [Node k cls color]

scanGraph match graph
        = filter match $ eltsUFM $ graphMap graph


-- | validate the internal structure of a graph
--      all its edges should point to valid nodes
--      If they don't then throw an error
--
validateGraph
        :: (Uniquable k, Outputable k, Eq color)
        => SDoc                         -- ^ extra debugging info to display on error
        -> Bool                         -- ^ whether this graph is supposed to be colored.
        -> Graph k cls color            -- ^ graph to validate
        -> Graph k cls color            -- ^ validated graph

validateGraph doc isColored graph

        -- Check that all edges point to valid nodes.
        | edges         <- unionManyUniqSets
                                (  (map nodeConflicts       $ eltsUFM $ graphMap graph)
                                ++ (map nodeCoalesce        $ eltsUFM $ graphMap graph))

        , nodes         <- mkUniqSet $ map nodeId $ eltsUFM $ graphMap graph
        , badEdges      <- minusUniqSet edges nodes
        , not $ isEmptyUniqSet badEdges
        = pprPanic "GraphOps.validateGraph"
                (  text "Graph has edges that point to non-existant nodes"
                $$ text "  bad edges: " <> vcat (map ppr $ uniqSetToList badEdges)
                $$ doc )

        -- Check that no conflicting nodes have the same color
        | badNodes      <- filter (not . (checkNode graph))
                        $ eltsUFM $ graphMap graph
        , not $ null badNodes
        = pprPanic "GraphOps.validateGraph"
                (  text "Node has same color as one of it's conflicts"
                $$ text "  bad nodes: " <> hcat (map (ppr . nodeId) badNodes)
                $$ doc)

        -- If this is supposed to be a colored graph,
        --      check that all nodes have a color.
        | isColored
        , badNodes      <- filter (\n -> isNothing $ nodeColor n)
                        $  eltsUFM $ graphMap graph
        , not $ null badNodes
        = pprPanic "GraphOps.validateGraph"
                (  text "Supposably colored graph has uncolored nodes."
                $$ text "  uncolored nodes: " <> hcat (map (ppr . nodeId) badNodes)
                $$ doc )


        -- graph looks ok
        | otherwise
        = graph


-- | If this node is colored, check that all the nodes which
--      conflict with it have different colors.
checkNode
        :: (Uniquable k, Eq color)
        => Graph k cls color
        -> Node  k cls color
        -> Bool                 -- ^ True if this node is ok

checkNode graph node
        | Just color            <- nodeColor node
        , Just neighbors        <- sequence $ map (lookupNode graph)
                                $  uniqSetToList $ nodeConflicts node

        , neighbourColors       <- catMaybes $ map nodeColor neighbors
        , elem color neighbourColors
        = False

        | otherwise
        = True



-- | Slurp out a map of how many nodes had a certain number of conflict neighbours

slurpNodeConflictCount
        :: Uniquable k
        => Graph k cls color
        -> UniqFM (Int, Int)    -- ^ (conflict neighbours, num nodes with that many conflicts)

slurpNodeConflictCount graph
        = addListToUFM_C
                (\(c1, n1) (_, n2) -> (c1, n1 + n2))
                emptyUFM
        $ map   (\node
                  -> let count  = sizeUniqSet $ nodeConflicts node
                     in  (count, (count, 1)))
        $ eltsUFM
        $ graphMap graph


-- | Set the color of a certain node
setColor
        :: Uniquable k
        => k -> color
        -> Graph k cls color -> Graph k cls color

setColor u color
        = graphMapModify
        $ adjustUFM_C
                (\n -> n { nodeColor = Just color })
                u


{-# INLINE adjustWithDefaultUFM #-}
adjustWithDefaultUFM
        :: Uniquable k
        => (a -> a) -> a -> k
        -> UniqFM a -> UniqFM a

adjustWithDefaultUFM f def k map
        = addToUFM_C
                (\old _ -> f old)
                map
                k def

-- Argument order different from UniqFM's adjustUFM
{-# INLINE adjustUFM_C #-}
adjustUFM_C
        :: Uniquable k
        => (a -> a)
        -> k -> UniqFM a -> UniqFM a

adjustUFM_C f k map
 = case lookupUFM map k of
        Nothing -> map
        Just a  -> addToUFM map k (f a)
Back to Top