ghc /compiler/typecheck/TcSMonad.lhs

Language Haskell Lines 1722
MD5 Hash e1602cf276c896434f53f3c54a465da7 Estimated Cost $26,337 (why?)
Repository https://bitbucket.org/carter/ghc.git View Raw File View Project SPDX
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
\begin{code}
{-# OPTIONS -fno-warn-tabs -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

-- Type definitions for the constraint solver
module TcSMonad ( 

       -- Canonical constraints, definition is now in TcRnTypes

    WorkList(..), isEmptyWorkList, emptyWorkList,
    workListFromEq, workListFromNonEq, workListFromCt, 
    extendWorkListEq, extendWorkListFunEq, 
    extendWorkListNonEq, extendWorkListCt, 
    extendWorkListCts, extendWorkListEqs, appendWorkList, selectWorkItem,
    withWorkList, workListSize,

    updWorkListTcS, updWorkListTcS_return,
    
    updTcSImplics, 

    Ct(..), Xi, tyVarsOfCt, tyVarsOfCts, 
    emitInsoluble,

    isWanted, isDerived, 
    isGivenCt, isWantedCt, isDerivedCt, 

    canRewrite, canSolve,
    mkGivenLoc, 

    TcS, runTcS, runTcSWithEvBinds, failTcS, panicTcS, traceTcS, -- Basic functionality 
    traceFireTcS, bumpStepCountTcS, 
    tryTcS, nestTcS, nestImplicTcS, recoverTcS,
    wrapErrTcS, wrapWarnTcS,

    -- Getting and setting the flattening cache
    addSolvedDict, addSolvedFunEq, getFlattenSkols,
    
    deferTcSForAllEq, 
    
    setEvBind,
    XEvTerm(..),
    MaybeNew (..), isFresh, freshGoals, getEvTerms,

    xCtFlavor,        -- Transform a CtEvidence during a step 
    rewriteCtFlavor,  -- Specialized version of xCtFlavor for coercions
    newWantedEvVar, newWantedEvVarNC, instDFunConstraints,
    newDerived,
    
       -- Creation of evidence variables
    setWantedTyBind,

    getInstEnvs, getFamInstEnvs,                -- Getting the environments
    getTopEnv, getGblEnv, getTcEvBinds, getUntouchables,
    getTcEvBindsMap, getTcSTyBinds, getTcSTyBindsMap,


    lookupFlatEqn, newFlattenSkolem,            -- Flatten skolems 

        -- Deque
    Deque(..), insertDeque, emptyDeque,

        -- Inerts 
    InertSet(..), InertCans(..), 
    getInertEqs, 
    emptyInert, getTcSInerts, lookupInInerts, 
    getInertUnsolved, checkAllSolved, 
    prepareInertsForImplications,
    modifyInertTcS,
    insertInertItemTcS, partitionCCanMap, partitionEqMap,
    getRelevantCts, extractRelevantInerts,
    CCanMap(..), CtTypeMap, CtFamHeadMap, CtPredMap,
    PredMap, FamHeadMap,
    partCtFamHeadMap, lookupFamHead, lookupSolvedDict,
    filterSolved,

    instDFunType,                              -- Instantiation
    newFlexiTcSTy, instFlexiTcS, instFlexiTcSHelperTcS,
    cloneMetaTyVar,

    compatKind, mkKindErrorCtxtTcS,

    Untouchables, isTouchableMetaTyVarTcS, isFilledMetaTyVar_maybe,

    getDefaultInfo, getDynFlags,

    matchClass, matchFam, MatchInstResult (..), 
    checkWellStagedDFun, 
    pprEq                                    -- Smaller utils, re-exported from TcM
                                             -- TODO (DV): these are only really used in the 
                                             -- instance matcher in TcSimplify. I am wondering
                                             -- if the whole instance matcher simply belongs
                                             -- here 
) where 

#include "HsVersions.h"

import HscTypes

import Inst
import InstEnv 
import FamInst 
import FamInstEnv

import qualified TcRnMonad as TcM
import qualified TcMType as TcM
import qualified TcEnv as TcM 
       ( checkWellStaged, topIdLvl, tcGetDefaultTys )
import {-# SOURCE #-} qualified TcUnify as TcM ( mkKindErrorCtxt )
import Kind
import TcType
import DynFlags
import Type

import TcEvidence
import Class
import TyCon

import Name
import Var
import VarEnv
import Outputable
import Bag
import MonadUtils

import FastString
import Util
import Id 
import TcRnTypes

import Unique 
import UniqFM
import Maybes ( orElse, catMaybes, firstJust )
import StaticFlags( opt_NoFlatCache )

import Control.Monad( unless, when, zipWithM )
import Data.IORef
import TrieMap

#ifdef DEBUG
import StaticFlags( opt_PprStyle_Debug )
import VarSet
import Digraph
#endif
\end{code}


\begin{code}
compatKind :: Kind -> Kind -> Bool
compatKind k1 k2 = k1 `tcIsSubKind` k2 || k2 `tcIsSubKind` k1 

mkKindErrorCtxtTcS :: Type -> Kind 
                   -> Type -> Kind 
                   -> ErrCtxt
mkKindErrorCtxtTcS ty1 ki1 ty2 ki2
  = (False,TcM.mkKindErrorCtxt ty1 ty2 ki1 ki2)

\end{code}

%************************************************************************
%*									*
%*                            Worklists                                *
%*  Canonical and non-canonical constraints that the simplifier has to  *
%*  work on. Including their simplification depths.                     *
%*                                                                      *
%*									*
%************************************************************************

Note [WorkList priorities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A WorkList contains canonical and non-canonical items (of all flavors). 
Notice that each Ct now has a simplification depth. We may 
consider using this depth for prioritization as well in the future. 

As a simple form of priority queue, our worklist separates out
equalities (wl_eqs) from the rest of the canonical constraints, 
so that it's easier to deal with them first, but the separation 
is not strictly necessary. Notice that non-canonical constraints 
are also parts of the worklist. 


Note [NonCanonical Semantics]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that canonical constraints involve a CNonCanonical constructor. In the worklist
we use this constructor for constraints that have not yet been canonicalized such as 
   [Int] ~ [a] 
In other words, all constraints start life as NonCanonicals. 

On the other hand, in the Inert Set (see below) the presence of a NonCanonical somewhere
means that we have a ``frozen error''. 

NonCanonical constraints never interact directly with other constraints -- but they can
be rewritten by equalities (for instance if a non canonical exists in the inert, we'd 
better rewrite it as much as possible before reporting it as an error to the user)

\begin{code}
data Deque a = DQ [a] [a]   -- Insert in RH field, remove from LH field
                            -- First to remove is at head of LH field

instance Outputable a => Outputable (Deque a) where
  ppr (DQ as bs) = ppr (as ++ reverse bs)   -- Show first one to come out at the start

emptyDeque :: Deque a
emptyDeque = DQ [] []

isEmptyDeque :: Deque a -> Bool
isEmptyDeque (DQ as bs) = null as && null bs

dequeSize :: Deque a -> Int
dequeSize (DQ as bs) = length as + length bs

insertDeque :: a -> Deque a -> Deque a
insertDeque b (DQ as bs) = DQ as (b:bs)

appendDeque :: Deque a -> Deque a -> Deque a
appendDeque (DQ as1 bs1) (DQ as2 bs2) = DQ (as1 ++ reverse bs1 ++ as2) bs2

extractDeque :: Deque a -> Maybe (Deque a, a)
extractDeque (DQ [] [])     = Nothing
extractDeque (DQ (a:as) bs) = Just (DQ as bs, a)
extractDeque (DQ [] bs)     = case reverse bs of
                                (a:as) -> Just (DQ as [], a)
                                [] -> panic "extractDeque"

-- See Note [WorkList priorities]
data WorkList = WorkList { wl_eqs    :: [Ct]
                         , wl_funeqs :: Deque Ct
                         , wl_rest   :: [Ct] 
                         }


appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList new_wl orig_wl 
   = WorkList { wl_eqs    = wl_eqs new_wl    ++            wl_eqs orig_wl
              , wl_funeqs = wl_funeqs new_wl `appendDeque` wl_funeqs orig_wl
              , wl_rest   = wl_rest new_wl   ++            wl_rest orig_wl }


workListSize :: WorkList -> Int
workListSize (WorkList { wl_eqs = eqs, wl_funeqs = funeqs, wl_rest = rest })
  = length eqs + dequeSize funeqs + length rest

extendWorkListEq :: Ct -> WorkList -> WorkList
-- Extension by equality
extendWorkListEq ct wl 
  | Just {} <- isCFunEqCan_Maybe ct
  = extendWorkListFunEq ct wl
  | otherwise
  = wl { wl_eqs = ct : wl_eqs wl }

extendWorkListFunEq :: Ct -> WorkList -> WorkList
extendWorkListFunEq ct wl 
  = wl { wl_funeqs = insertDeque ct (wl_funeqs wl) }

extendWorkListEqs :: [Ct] -> WorkList -> WorkList
-- Append a list of equalities
extendWorkListEqs cts wl = foldr extendWorkListEq wl cts

extendWorkListNonEq :: Ct -> WorkList -> WorkList
-- Extension by non equality
extendWorkListNonEq ct wl 
  = wl { wl_rest = ct : wl_rest wl }

extendWorkListCt :: Ct -> WorkList -> WorkList
-- Agnostic
extendWorkListCt ct wl
 | isEqPred (ctPred ct) = extendWorkListEq ct wl
 | otherwise = extendWorkListNonEq ct wl

extendWorkListCts :: [Ct] -> WorkList -> WorkList
-- Agnostic
extendWorkListCts cts wl = foldr extendWorkListCt wl cts

isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList wl 
  = null (wl_eqs wl) &&  null (wl_rest wl) && isEmptyDeque (wl_funeqs wl)

emptyWorkList :: WorkList
emptyWorkList = WorkList { wl_eqs  = [], wl_rest = [], wl_funeqs = emptyDeque }

workListFromEq :: Ct -> WorkList
workListFromEq ct = extendWorkListEq ct emptyWorkList

workListFromNonEq :: Ct -> WorkList
workListFromNonEq ct = extendWorkListNonEq ct emptyWorkList

workListFromCt :: Ct -> WorkList
-- Agnostic 
workListFromCt ct | isEqPred (ctPred ct) = workListFromEq ct 
                  | otherwise            = workListFromNonEq ct


selectWorkItem :: WorkList -> (Maybe Ct, WorkList)
selectWorkItem wl@(WorkList { wl_eqs = eqs, wl_funeqs = feqs, wl_rest = rest })
  = case (eqs,feqs,rest) of
      (ct:cts,_,_)     -> (Just ct, wl { wl_eqs    = cts })
      (_,fun_eqs,_)    | Just (fun_eqs', ct) <- extractDeque fun_eqs
                       -> (Just ct, wl { wl_funeqs = fun_eqs' })
      (_,_,(ct:cts))   -> (Just ct, wl { wl_rest   = cts })
      (_,_,_)          -> (Nothing,wl)

-- Pretty printing 
instance Outputable WorkList where 
  ppr wl = vcat [ text "WorkList (eqs)   = " <+> ppr (wl_eqs wl)
                , text "WorkList (funeqs)= " <+> ppr (wl_funeqs wl)
                , text "WorkList (rest)  = " <+> ppr (wl_rest wl)
                ]


-- Canonical constraint maps
data CCanMap a 
  = CCanMap { cts_given   :: UniqFM Cts   -- All Given
            , cts_derived :: UniqFM Cts   -- All Derived
            , cts_wanted  :: UniqFM Cts } -- All Wanted

keepGivenCMap :: CCanMap a -> CCanMap a
keepGivenCMap cc = emptyCCanMap { cts_given = cts_given cc }

instance Outputable (CCanMap a) where
  ppr (CCanMap given derived wanted) = ptext (sLit "CCanMap") <+> (ppr given) <+> (ppr derived) <+> (ppr wanted)

cCanMapToBag :: CCanMap a -> Cts 
cCanMapToBag cmap = foldUFM unionBags rest_wder (cts_given cmap)
  where rest_wder = foldUFM unionBags rest_der  (cts_wanted cmap) 
        rest_der  = foldUFM unionBags emptyCts  (cts_derived cmap)

emptyCCanMap :: CCanMap a 
emptyCCanMap = CCanMap { cts_given = emptyUFM, cts_derived = emptyUFM, cts_wanted = emptyUFM } 

updCCanMap:: Uniquable a => (a,Ct) -> CCanMap a -> CCanMap a 
updCCanMap (a,ct) cmap 
  = case cc_ev ct of 
      CtWanted {}  -> cmap { cts_wanted  = insert_into (cts_wanted cmap)  } 
      CtGiven {}   -> cmap { cts_given   = insert_into (cts_given cmap)   }
      CtDerived {} -> cmap { cts_derived = insert_into (cts_derived cmap) }
  where 
    insert_into m = addToUFM_C unionBags m a (singleCt ct)

getRelevantCts :: Uniquable a => a -> CCanMap a -> (Cts, CCanMap a) 
-- Gets the relevant constraints and returns the rest of the CCanMap
getRelevantCts a cmap 
    = let relevant = lookup (cts_wanted cmap) `unionBags`
                     lookup (cts_given cmap)  `unionBags`
                     lookup (cts_derived cmap) 
          residual_map = cmap { cts_wanted  = delFromUFM (cts_wanted cmap) a
                              , cts_given   = delFromUFM (cts_given cmap) a
                              , cts_derived = delFromUFM (cts_derived cmap) a }
      in (relevant, residual_map) 
  where
    lookup map = lookupUFM map a `orElse` emptyCts

lookupCCanMap :: Uniquable a => a -> (CtEvidence -> Bool) -> CCanMap a -> Maybe CtEvidence
lookupCCanMap a pick_me map
  = findEvidence pick_me possible_cts
  where
     possible_cts = lookupUFM (cts_given map)   a `plus` (
                    lookupUFM (cts_wanted map)  a `plus` (
                    lookupUFM (cts_derived map) a `plus` emptyCts))

     plus Nothing     cts2 = cts2
     plus (Just cts1) cts2 = cts1 `unionBags` cts2

findEvidence :: (CtEvidence -> Bool) -> Cts -> Maybe CtEvidence
findEvidence pick_me cts
  = foldrBag pick Nothing cts
  where
     pick :: Ct -> Maybe CtEvidence -> Maybe CtEvidence
     pick ct deflt | let ctev = cc_ev ct, pick_me ctev = Just ctev
                   | otherwise                             = deflt

partitionCCanMap :: (Ct -> Bool) -> CCanMap a -> (Cts,CCanMap a) 
-- All constraints that /match/ the predicate go in the bag, the rest remain in the map
partitionCCanMap pred cmap
  = let (ws_map,ws) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_wanted cmap) 
        (ds_map,ds) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_derived cmap)
        (gs_map,gs) = foldUFM_Directly aux (emptyUFM,emptyCts) (cts_given cmap) 
    in (ws `andCts` ds `andCts` gs, cmap { cts_wanted  = ws_map
                                         , cts_given   = gs_map
                                         , cts_derived = ds_map }) 
  where aux k this_cts (mp,acc_cts) = (new_mp, new_acc_cts)
                                    where new_mp      = addToUFM mp k cts_keep
                                          new_acc_cts = acc_cts `andCts` cts_out
                                          (cts_out, cts_keep) = partitionBag pred this_cts

partitionEqMap :: (Ct -> Bool) -> TyVarEnv (Ct,TcCoercion) -> ([Ct], TyVarEnv (Ct,TcCoercion))
partitionEqMap pred isubst 
  = let eqs_out = foldVarEnv extend_if_pred [] isubst
        eqs_in  = filterVarEnv_Directly (\_ (ct,_) -> not (pred ct)) isubst
    in (eqs_out, eqs_in)
  where extend_if_pred (ct,_) cts = if pred ct then ct : cts else cts

extractUnsolvedCMap :: CCanMap a -> Cts
-- Gets the wanted or derived constraints
extractUnsolvedCMap cmap = foldUFM unionBags emptyCts (cts_wanted cmap)
              `unionBags`  foldUFM unionBags emptyCts (cts_derived cmap)

-- Maps from PredTypes to Constraints
type CtTypeMap    = TypeMap    Ct
type CtPredMap    = PredMap    Ct
type CtFamHeadMap = FamHeadMap Ct

newtype PredMap    a = PredMap    { unPredMap    :: TypeMap a } -- Indexed by TcPredType
newtype FamHeadMap a = FamHeadMap { unFamHeadMap :: TypeMap a } -- Indexed by family head

instance Outputable a => Outputable (PredMap a) where
   ppr (PredMap m) = ppr (foldTM (:) m [])

instance Outputable a => Outputable (FamHeadMap a) where
   ppr (FamHeadMap m) = ppr (foldTM (:) m [])

sizePredMap :: PredMap a -> Int
sizePredMap (PredMap m) = foldTypeMap (\_ x -> x+1) 0 m

emptyFamHeadMap :: FamHeadMap a
emptyFamHeadMap = FamHeadMap emptyTM

sizeFamHeadMap :: FamHeadMap a -> Int
sizeFamHeadMap (FamHeadMap m) = foldTypeMap (\_ x -> x+1) 0 m

ctTypeMapCts :: TypeMap Ct -> Cts
ctTypeMapCts ctmap = foldTM (\ct cts -> extendCts cts ct) ctmap emptyCts

lookupFamHead :: FamHeadMap a -> TcType -> Maybe a
lookupFamHead (FamHeadMap m) key = lookupTM key m

insertFamHead :: FamHeadMap a -> TcType -> a -> FamHeadMap a
insertFamHead (FamHeadMap m) key value = FamHeadMap (alterTM key (const (Just value)) m)

delFamHead :: FamHeadMap a -> TcType -> FamHeadMap a
delFamHead (FamHeadMap m) key = FamHeadMap (alterTM key (const Nothing) m)

anyFamHeadMap :: (Ct -> Bool) -> CtFamHeadMap -> Bool
anyFamHeadMap f ctmap = foldTM ((||) . f) (unFamHeadMap ctmap) False

partCtFamHeadMap :: (Ct -> Bool) 
                 -> CtFamHeadMap 
                 -> (Cts, CtFamHeadMap)
partCtFamHeadMap f ctmap
  = let (cts,tymap_final) = foldTM upd_acc tymap_inside (emptyBag, tymap_inside)
    in (cts, FamHeadMap tymap_final)
  where
    tymap_inside = unFamHeadMap ctmap 
    upd_acc ct (cts,acc_map)
         | f ct      = (extendCts cts ct, alterTM ct_key (\_ -> Nothing) acc_map)
         | otherwise = (cts,acc_map)
         where ct_key | EqPred ty1 _ <- classifyPredType (ctPred ct)
                      = ty1 
                      | otherwise 
                      = panic "partCtFamHeadMap, encountered non equality!"

filterSolved :: (CtEvidence -> Bool) -> PredMap CtEvidence -> PredMap CtEvidence
filterSolved p (PredMap mp) = PredMap (foldTM upd mp emptyTM)
  where upd a m = if p a then alterTM (ctEvPred a) (\_ -> Just a) m
                         else m
\end{code}

%************************************************************************
%*									*
%*                            Inert Sets                                *
%*                                                                      *
%*									*
%************************************************************************

Note [Detailed InertCans Invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The InertCans represents a collection of constraints with the following properties:
  1 All canonical
  2 All Given or Wanted or Derived. No (partially) Solved
  3 No two dictionaries with the same head
  4 No two family equations with the same head 
      NB: This is enforced by construction since we use a CtFamHeadMap for inert_funeqs
  5 Family equations inert wrt top-level family axioms
  6 Dictionaries have no matching top-level instance 
  
  7 Non-equality constraints are fully rewritten with respect to the equalities (CTyEqCan)

  8 Equalities _do_not_ form an idempotent substitution but they are guarranteed to not have
    any occurs errors. Additional notes: 

       - The lack of idempotence of the inert substitution implies that we must make sure 
         that when we rewrite a constraint we apply the substitution /recursively/ to the 
         types involved. Currently the one AND ONLY way in the whole constraint solver 
         that we rewrite types and constraints wrt to the inert substitution is 
         TcCanonical/flattenTyVar.

       - In the past we did try to have the inert substituion as idempotent as possible but
         this would only be true for constraints of the same flavor, so in total the inert 
         substitution could not be idempotent, due to flavor-related issued. 
         Note [Non-idempotent inert substitution] explains what is going on. 

       - Whenever a constraint ends up in the worklist we do recursively apply exhaustively
         the inert substitution to it to check for occurs errors but if an equality is already
         in the inert set and we can guarantee that adding a new equality will not cause the
         first equality to have an occurs check then we do not rewrite the inert equality. 
         This happens in TcInteract, rewriteInertEqsFromInertEq. 
         
         See Note [Delicate equality kick-out] to see which inert equalities can safely stay
         in the inert set and which must be kicked out to be rewritten and re-checked for 
         occurs errors. 

  9 Given family or dictionary constraints don't mention touchable unification variables

Note [Solved constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~
When we take a step to simplify a constraint 'c', we call the original constraint "solved".
For example:   Wanted:    ev  :: [s] ~ [t]
               New goal:  ev1 :: s ~ t
               Then 'ev' is now "solved".

The reason for all this is simply to avoid re-solving goals we have solved already.

* A solved Wanted may depend on as-yet-unsolved goals, so (for example) we should not
  use it to rewrite a Given; in that sense the solved goal is still a Wanted

* A solved Given is just given

* A solved Derived in inert_solved is possible; purpose is to avoid
  creating tons of identical Derived goals.

  But there are no solved Deriveds in inert_solved_funeqs

Note [Type family equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type-family equations, of form (ev : F tys ~ ty), live in four places

  * The work-list, of course

  * The inert_flat_cache.  This is used when flattening, to get maximal
    sharing.  It contains lots of things that are still in the work-list.
    E.g Suppose we have (w1: F (G a) ~ Int), and (w2: H (G a) ~ Int) in the
        work list.  Then we flatten w1, dumping (w3: G a ~ f1) in the work
        list.  Now if we flatten w2 before we get to w3, we still want to 
        share that (G a).

    Because it contains work-list things, DO NOT use the flat cache to solve
    a top-level goal.  Eg in the above example we don't want to solve w3 
    using w3 itself!  

  * The inert_solved_funeqs.  These are all "solved" goals (see Note [Solved constraints]),
    the result of using a top-level type-family instance.

  * THe inert_funeqs are un-solved but fully processed and in the InertCans.


\begin{code}
-- All Given (fully known) or Wanted or Derived
-- See Note [Detailed InertCans Invariants] for more
data InertCans 
  = IC { inert_eqs :: TyVarEnv Ct
              -- Must all be CTyEqCans! If an entry exists of the form: 
              --   a |-> ct,co
              -- Then ct = CTyEqCan { cc_tyvar = a, cc_rhs = xi } 
              -- And  co : a ~ xi
       , inert_dicts :: CCanMap Class
              -- Dictionaries only, index is the class
              -- NB: index is /not/ the whole type because FD reactions 
              -- need to match the class but not necessarily the whole type.
       , inert_funeqs :: CtFamHeadMap
              -- Family equations, index is the whole family head type.
       , inert_irreds :: Cts       
              -- Irreducible predicates

       , inert_insols :: Cts       
              -- Frozen errors (as non-canonicals)
       }
    
                     
-- The Inert Set
data InertSet
  = IS { inert_cans :: InertCans
              -- Canonical Given, Wanted, Derived (no Solved)
	      -- Sometimes called "the inert set"

       , inert_flat_cache :: FamHeadMap (CtEvidence, TcType)
              -- See Note [Type family equations]
              -- Just a hash-cons cache for use when flattening only
              -- These include entirely un-processed goals, so don't use
              -- them to solve a top-level goal, else you may end up solving
              -- (w:F ty ~ a) by setting w:=w!  We just use the flat-cache
              -- when allocating a new flatten-skolem.
              -- Not necessarily inert wrt top-level equations (or inert_cans)
 
       , inert_fsks :: [TcTyVar]  -- Rigid flatten-skolems (arising from givens)
                                  -- allocated in this local scope

       , inert_solved_funeqs :: FamHeadMap (CtEvidence, TcType)
              -- See Note [Type family equations]
              -- Of form co :: F xis ~ xi 
              -- Always the result of using a top-level family axiom F xis ~ tau
              -- No Deriveds 
              -- Not necessarily fully rewritten (by type substitutions)

       , inert_solved_dicts   :: PredMap CtEvidence 
       	      -- Of form ev :: C t1 .. tn
              -- Always the result of using a top-level instance declaration
              -- See Note [Solved constraints]
       	      -- - Used to avoid creating a new EvVar when we have a new goal 
       	      --   that we have solved in the past
       	      -- - Stored not necessarily as fully rewritten 
       	      --   (ToDo: rewrite lazily when we lookup)
       }


instance Outputable InertCans where 
  ppr ics = vcat [ ptext (sLit "Equalities:") 
                   <+> vcat (map ppr (varEnvElts (inert_eqs ics)))
                 , ptext (sLit "Type-function equalities:")
                   <+> vcat (map ppr (Bag.bagToList $ 
                                  ctTypeMapCts (unFamHeadMap $ inert_funeqs ics)))
                 , ptext (sLit "Dictionaries:")
                   <+> vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts ics)))
                 , ptext (sLit "Irreds:")
                   <+> vcat (map ppr (Bag.bagToList $ inert_irreds ics))
                 , text "Insolubles =" <+> -- Clearly print frozen errors
                    braces (vcat (map ppr (Bag.bagToList $ inert_insols ics)))
                 ]
            
instance Outputable InertSet where 
  ppr is = vcat [ ppr $ inert_cans is
                , text "Solved dicts"  <+> int (sizePredMap (inert_solved_dicts is))
                , text "Solved funeqs" <+> int (sizeFamHeadMap (inert_solved_funeqs is))]

emptyInert :: InertSet
emptyInert
  = IS { inert_cans = IC { inert_eqs    = emptyVarEnv
                         , inert_dicts  = emptyCCanMap
                         , inert_funeqs = emptyFamHeadMap
                         , inert_irreds = emptyCts
                         , inert_insols = emptyCts }
       , inert_fsks          = []
       , inert_flat_cache    = emptyFamHeadMap
       , inert_solved_dicts  = PredMap emptyTM 
       , inert_solved_funeqs = emptyFamHeadMap }

insertInertItem :: Ct -> InertSet -> InertSet 
-- Add a new inert element to the inert set. 
insertInertItem item is
  = -- A canonical Given, Wanted, or Derived
    is { inert_cans = upd_inert_cans (inert_cans is) item }
  
  where upd_inert_cans :: InertCans -> Ct -> InertCans
        -- Precondition: item /is/ canonical
        upd_inert_cans ics item
          | isCTyEqCan item                     
          = let upd_err a b = pprPanic "insertInertItem" $
                              vcat [ text "Multiple inert equalities:"
                                   , text "Old (already inert):" <+> ppr a
                                   , text "Trying to insert   :" <+> ppr b ]
        
                eqs'     = extendVarEnv_C upd_err (inert_eqs ics) 
                                                  (cc_tyvar item) item        

            in ics { inert_eqs = eqs' }

          | isCIrredEvCan item                  -- Presently-irreducible evidence
          = ics { inert_irreds = inert_irreds ics `Bag.snocBag` item }

          | Just cls <- isCDictCan_Maybe item   -- Dictionary 
          = ics { inert_dicts = updCCanMap (cls,item) (inert_dicts ics) }

          | Just _tc <- isCFunEqCan_Maybe item  -- Function equality
          = let fam_head = mkTyConApp (cc_fun item) (cc_tyargs item)
                upd_funeqs Nothing = Just item
                upd_funeqs (Just _already_there) 
                  = panic "insertInertItem: item already there!"
            in ics { inert_funeqs = FamHeadMap 
                                      (alterTM fam_head upd_funeqs $ 
                                         (unFamHeadMap $ inert_funeqs ics)) }
          | otherwise
          = pprPanic "upd_inert set: can't happen! Inserting " $ 
            ppr item   -- Can't be CNonCanonical, CHoleCan, 
                       -- because they only land in inert_insols


insertInertItemTcS :: Ct -> TcS ()
-- Add a new item in the inerts of the monad
insertInertItemTcS item
  = do { traceTcS "insertInertItemTcS {" $ 
         text "Trying to insert new inert item:" <+> ppr item

       ; updInertTcS (insertInertItem item) 
                        
       ; traceTcS "insertInertItemTcS }" $ empty }

addSolvedDict :: CtEvidence -> TcS ()
-- Add a new item in the solved set of the monad
addSolvedDict item
  | isIPPred (ctEvPred item)    -- Never cache "solved" implicit parameters (not sure why!)
  = return () 
  | otherwise
  = do { traceTcS "updSolvedSetTcs:" $ ppr item
       ; updInertTcS upd_solved_dicts }
  where
    upd_solved_dicts is 
      = is { inert_solved_dicts = PredMap $ alterTM pred upd_solved $ 
                                  unPredMap $ inert_solved_dicts is }
    pred = ctEvPred item
    upd_solved _ = Just item

addSolvedFunEq :: TcType -> CtEvidence -> TcType -> TcS ()
addSolvedFunEq fam_ty ev rhs_ty
  = updInertTcS $ \ inert -> 
    inert { inert_solved_funeqs = insertFamHead (inert_solved_funeqs inert) 
                                                fam_ty (ev, rhs_ty) }

modifyInertTcS :: (InertSet -> (a,InertSet)) -> TcS a 
-- Modify the inert set with the supplied function
modifyInertTcS upd 
  = do { is_var <- getTcSInertsRef
       ; curr_inert <- wrapTcS (TcM.readTcRef is_var)
       ; let (a, new_inert) = upd curr_inert
       ; wrapTcS (TcM.writeTcRef is_var new_inert)
       ; return a }

updInertTcS :: (InertSet -> InertSet) -> TcS () 
-- Modify the inert set with the supplied function
updInertTcS upd 
  = do { is_var <- getTcSInertsRef
       ; curr_inert <- wrapTcS (TcM.readTcRef is_var)
       ; let new_inert = upd curr_inert
       ; wrapTcS (TcM.writeTcRef is_var new_inert) }

prepareInertsForImplications :: InertSet -> InertSet
-- See Note [Preparing inert set for implications]
prepareInertsForImplications is
  = is { inert_cans   = getGivens (inert_cans is)
       , inert_fsks   = []
       , inert_flat_cache = emptyFamHeadMap }
  where
    getGivens (IC { inert_eqs    = eqs
                  , inert_irreds = irreds
                  , inert_funeqs = FamHeadMap funeqs
                  , inert_dicts  = dicts })
      = IC { inert_eqs    = filterVarEnv_Directly (\_ ct -> isGivenCt ct) eqs 
           , inert_funeqs = FamHeadMap (mapTM given_from_wanted funeqs)
           , inert_irreds = Bag.filterBag isGivenCt irreds
           , inert_dicts  = keepGivenCMap dicts
           , inert_insols = emptyCts }

    given_from_wanted funeq   -- This is where the magic processing happens 
      | isGiven ev = funeq    -- for type-function equalities
                              -- See Note [Preparing inert set for implications]
      | otherwise  = funeq { cc_ev = given_ev }
      where
        ev = ctEvidence funeq
        given_ev = CtGiven { ctev_evtm = EvId (ctev_evar ev)
                           , ctev_pred = ctev_pred ev }
\end{code}

Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we trim the inert set,
retaining only Givens.  These givens can be used when solving 
the inner implications.

With one wrinkle!  We take all *wanted* *funeqs*, and turn them into givens.
Consider (Trac #4935)
   type instance F True a b = a 
   type instance F False a b = b

   [w] F c a b ~ gamma 
   (c ~ True) => a ~ gamma 
   (c ~ False) => b ~ gamma

Obviously this is soluble with gamma := F c a b.  But
Since solveCTyFunEqs happens at the very end of solving, the only way
to solve the two implications is temporarily consider (F c a b ~ gamma)
as Given and push it inside the implications. Now, when we come
out again at the end, having solved the implications solveCTyFunEqs
will solve this equality.  

Turning type-function equalities into Givens is easy becase they 
*stay inert*.  No need to re-process them.

We don't try to turn any *other* Wanteds into Givens:

  * For example, we should not push given dictionaries in because
    of example LongWayOverlapping.hs, where we might get strange
    overlap errors between far-away constraints in the program.

There might be cases where interactions between wanteds can help
to solve a constraint. For example

  	class C a b | a -> b
  	(C Int alpha), (forall d. C d blah => C Int a)

If we push the (C Int alpha) inwards, as a given, it can produce a
fundep (alpha~a) and this can float out again and be used to fix
alpha.  (In general we can't float class constraints out just in case
(C d blah) might help to solve (C Int a).)  But we ignore this possiblity.


\begin{code}
getInertEqs :: TcS (TyVarEnv Ct)
getInertEqs = do { inert <- getTcSInerts
                 ; return (inert_eqs (inert_cans inert)) }

getInertUnsolved :: TcS (Cts, Cts)
-- Return (unsolved-wanteds, insolubles)
-- Both consist of a mixture of Wanted and Derived
getInertUnsolved
 = do { is <- getTcSInerts

      ; let icans = inert_cans is
            unsolved_irreds = Bag.filterBag is_unsolved (inert_irreds icans)
            unsolved_dicts  = extractUnsolvedCMap (inert_dicts icans)
            (unsolved_funeqs,_) = partCtFamHeadMap is_unsolved (inert_funeqs icans)
            unsolved_eqs = foldVarEnv add_if_unsolved emptyCts (inert_eqs icans)

            unsolved_flats = unsolved_eqs `unionBags` unsolved_irreds `unionBags` 
                             unsolved_dicts `unionBags` unsolved_funeqs

      ; return (unsolved_flats, inert_insols icans) }
  where
    add_if_unsolved ct cts
      | is_unsolved ct = cts `extendCts` ct
      | otherwise      = cts

    is_unsolved ct = not (isGivenCt ct)   -- Wanted or Derived

checkAllSolved :: TcS Bool
-- True if there are no unsolved wanteds
-- Ignore Derived for this purpose, unless in insolubles
checkAllSolved
 = do { is <- getTcSInerts

      ; let icans = inert_cans is
            unsolved_irreds = Bag.anyBag isWantedCt (inert_irreds icans)
            unsolved_dicts  = not (isNullUFM (cts_wanted (inert_dicts icans)))
            unsolved_funeqs = anyFamHeadMap isWantedCt (inert_funeqs icans)
            unsolved_eqs    = foldVarEnv ((||) . isWantedCt) False (inert_eqs icans)

      ; return (not (unsolved_eqs || unsolved_irreds
                     || unsolved_dicts || unsolved_funeqs
                     || not (isEmptyBag (inert_insols icans)))) }

extractRelevantInerts :: Ct -> TcS Cts
-- Returns the constraints from the inert set that are 'relevant' to react with 
-- this constraint. The monad is left with the 'thinner' inerts. 
-- NB: This function contains logic specific to the constraint solver, maybe move there?
extractRelevantInerts wi 
  = modifyInertTcS (extract_relevants wi)
  where extract_relevants wi is 
          = let (cts,ics') = extract_ics_relevants wi (inert_cans is)
            in (cts, is { inert_cans = ics' }) 
            
        extract_ics_relevants (CDictCan {cc_class = cl}) ics = 
            let (cts,dict_map) = getRelevantCts cl (inert_dicts ics) 
            in (cts, ics { inert_dicts = dict_map })

        extract_ics_relevants ct@(CFunEqCan {}) ics@(IC { inert_funeqs = funeq_map })
            | Just ct <- lookupFamHead funeq_map fam_head
            = (singleCt ct, ics { inert_funeqs = delFamHead funeq_map fam_head })
            | otherwise
            = (emptyCts, ics)
            where
              fam_head = mkTyConApp (cc_fun ct) (cc_tyargs ct)

        extract_ics_relevants (CHoleCan {}) ics
            = pprPanic "extractRelevantInerts" (ppr wi)
              -- Holes are put straight into inert_frozen, so never get here

        extract_ics_relevants (CIrredEvCan { }) ics = 
            let cts = inert_irreds ics 
            in (cts, ics { inert_irreds = emptyCts })

        extract_ics_relevants _ ics = (emptyCts,ics)
        

lookupFlatEqn :: TcType -> TcS (Maybe (CtEvidence, TcType))
lookupFlatEqn fam_ty 
  = do { IS { inert_solved_funeqs = solved_funeqs
            , inert_flat_cache = flat_cache
            , inert_cans = IC { inert_funeqs = inert_funeqs } } <- getTcSInerts
       ; return (lookupFamHead solved_funeqs fam_ty `firstJust` 
                 lookupFamHead flat_cache fam_ty    `firstJust`
                 lookup_in_inerts inert_funeqs) }
  where
    lookup_in_inerts inert_funeqs 
        = case lookupFamHead inert_funeqs fam_ty of
            Nothing -> Nothing
            Just ct -> Just (ctEvidence ct, cc_rhs ct)

lookupInInerts :: TcPredType -> TcS (Maybe CtEvidence)
-- Is this exact predicate type cached in the solved or canonicals of the InertSet
lookupInInerts pty
  = do { IS { inert_solved_dicts = solved, inert_cans = ics } <- getTcSInerts
       ; case lookupSolvedDict solved pty of
           Just ctev -> return (Just ctev)
           Nothing   -> return (lookupInInertCans ics pty) }

lookupSolvedDict :: PredMap CtEvidence -> TcPredType -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupSolvedDict tm pty = lookupTM pty $ unPredMap tm

lookupInInertCans :: InertCans -> TcPredType -> Maybe CtEvidence
-- Returns Just if exactly this pred type exists in the inert canonicals
lookupInInertCans ics pty
  = case (classifyPredType pty) of
      ClassPred cls _ 
         -> lookupCCanMap cls (\ct -> ctEvPred ct `eqType` pty) (inert_dicts ics)

      EqPred ty1 _ty2 
         | Just tv <- getTyVar_maybe ty1      -- Tyvar equation
         , Just ct <- lookupVarEnv (inert_eqs ics) tv
      	 , let ctev = ctEvidence ct
      	 , ctEvPred ctev `eqType` pty
      	 -> Just ctev

      	 | Just _ <- splitTyConApp_maybe ty1  -- Family equation
      	 , Just ct <- lookupTM ty1 (unFamHeadMap $ inert_funeqs ics)
      	 , let ctev = ctEvidence ct
      	 , ctEvPred ctev `eqType` pty
      	 -> Just ctev

      IrredPred {} -> findEvidence (\ct -> ctEvPred ct `eqType` pty) (inert_irreds ics)
    
      _other -> Nothing -- NB: No caching for IPs or holes
\end{code}




%************************************************************************
%*									*
%*		The TcS solver monad                                    *
%*									*
%************************************************************************

Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad

All you can do is
    * fail
    * allocate new variables
    * fill in evidence variables

Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added.  This is initialised from the innermost implication constraint.

\begin{code}
data TcSEnv
  = TcSEnv { 
      tcs_ev_binds    :: EvBindsVar,
      
      tcs_ty_binds :: IORef (TyVarEnv (TcTyVar, TcType)),
          -- Global type bindings
                     
      tcs_count      :: IORef Int, -- Global step count

      tcs_inerts   :: IORef InertSet, -- Current inert set
      tcs_worklist :: IORef WorkList, -- Current worklist
      
      -- Residual implication constraints that are generated 
      -- while solving or canonicalising the current worklist.
      -- Specifically, when canonicalising (forall a. t1 ~ forall a. t2)
      -- from which we get the implication (forall a. t1 ~ t2)
      tcs_implics  :: IORef (Bag Implication)
    }
\end{code}

\begin{code}

---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a } 

instance Functor TcS where
  fmap f m = TcS $ fmap f . unTcS m

instance Monad TcS where 
  return x  = TcS (\_ -> return x) 
  fail err  = TcS (\_ -> fail err) 
  m >>= k   = TcS (\ebs -> unTcS m ebs >>= \r -> unTcS (k r) ebs)

-- Basic functionality 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a 
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS = TcS . const -- a TcM action will not use the TcEvBinds

wrapErrTcS :: TcM a -> TcS a 
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS

wrapWarnTcS :: TcM a -> TcS a 
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS

failTcS, panicTcS :: SDoc -> TcS a
failTcS      = wrapTcS . TcM.failWith
panicTcS doc = pprPanic "TcCanonical" doc

traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)

instance HasDynFlags TcS where
    getDynFlags = wrapTcS getDynFlags

bumpStepCountTcS :: TcS ()
bumpStepCountTcS = TcS $ \env -> do { let ref = tcs_count env
                                    ; n <- TcM.readTcRef ref
                                    ; TcM.writeTcRef ref (n+1) }

traceFireTcS :: Ct -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS ct doc 
  = TcS $ \env -> 
    TcM.ifDOptM Opt_D_dump_cs_trace $ 
    do { n <- TcM.readTcRef (tcs_count env)
       ; let msg = int n <> brackets (int (ctLocDepth (cc_loc ct))) <+> doc
       ; TcM.dumpTcRn msg }

runTcS :: TcS a		       -- What to run
       -> TcM (a, Bag EvBind)
runTcS tcs
  = do { ev_binds_var <- TcM.newTcEvBinds
       ; res <- runTcSWithEvBinds ev_binds_var tcs
       ; ev_binds <- TcM.getTcEvBinds ev_binds_var
       ; return (res, ev_binds) }

runTcSWithEvBinds :: EvBindsVar
                  -> TcS a 
                  -> TcM a
runTcSWithEvBinds ev_binds_var tcs
  = do { ty_binds_var <- TcM.newTcRef emptyVarEnv
       ; step_count <- TcM.newTcRef 0
       ; inert_var <- TcM.newTcRef is 

       ; let env = TcSEnv { tcs_ev_binds = ev_binds_var
                          , tcs_ty_binds = ty_binds_var
			  , tcs_count    = step_count
                          , tcs_inerts   = inert_var
                          , tcs_worklist    = panic "runTcS: worklist"
                          , tcs_implics     = panic "runTcS: implics" }
                               -- NB: Both these are initialised by withWorkList

	     -- Run the computation
       ; res <- unTcS tcs env
	     -- Perform the type unifications required
       ; ty_binds <- TcM.readTcRef ty_binds_var
       ; mapM_ do_unification (varEnvElts ty_binds)

#ifdef DEBUG
       ; count <- TcM.readTcRef step_count
       ; when (opt_PprStyle_Debug && count > 0) $
         TcM.debugDumpTcRn (ptext (sLit "Constraint solver steps =") <+> int count )

       ; ev_binds <- TcM.getTcEvBinds ev_binds_var
       ; checkForCyclicBinds ev_binds
#endif

       ; return res }
  where
    do_unification (tv,ty) = TcM.writeMetaTyVar tv ty
    is = emptyInert
    
#ifdef DEBUG
checkForCyclicBinds :: Bag EvBind -> TcM ()
checkForCyclicBinds ev_binds
  | null cycles 
  = return ()
  | null coercion_cycles
  = TcM.traceTc "Cycle in evidence binds" $ ppr cycles
  | otherwise
  = pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
  where
    cycles :: [[EvBind]]
    cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVertices edges]

    coercion_cycles = [c | c <- cycles, any is_co_bind c]
    is_co_bind (EvBind b _) = isEqVar b

    edges :: [(EvBind, EvVar, [EvVar])]
    edges = [(bind, bndr, varSetElems (evVarsOfTerm rhs)) | bind@(EvBind bndr rhs) <- bagToList ev_binds]
#endif       

nestImplicTcS :: EvBindsVar -> Untouchables -> InertSet -> TcS a -> TcS a 
nestImplicTcS ref inner_untch inerts (TcS thing_inside) 
  = TcS $ \ TcSEnv { tcs_ty_binds = ty_binds
                   , tcs_count = count } -> 
    do { new_inert_var <- TcM.newTcRef inerts
       ; let nest_env = TcSEnv { tcs_ev_binds    = ref
                               , tcs_ty_binds    = ty_binds
                               , tcs_count       = count
                               , tcs_inerts      = new_inert_var
                               , tcs_worklist    = panic "nextImplicTcS: worklist"
                               , tcs_implics     = panic "nextImplicTcS: implics"
                               -- NB: Both these are initialised by withWorkList
                               }
       ; res <- TcM.setUntouchables inner_untch $
                thing_inside nest_env
                
#ifdef DEBUG
       -- Perform a check that the thing_inside did not cause cycles
       ; ev_binds <- TcM.getTcEvBinds ref
       ; checkForCyclicBinds ev_binds
#endif
         
       ; return res }

recoverTcS :: TcS a -> TcS a -> TcS a
recoverTcS (TcS recovery_code) (TcS thing_inside)
  = TcS $ \ env ->
    TcM.recoverM (recovery_code env) (thing_inside env)

nestTcS ::  TcS a -> TcS a 
-- Use the current untouchables, augmenting the current
-- evidence bindings, ty_binds, and solved caches
-- But have no effect on the InertCans or insolubles
nestTcS (TcS thing_inside) 
  = TcS $ \ env@(TcSEnv { tcs_inerts = inerts_var }) ->
    do { inerts <- TcM.readTcRef inerts_var
       ; new_inert_var <- TcM.newTcRef inerts
       ; let nest_env = env { tcs_inerts   = new_inert_var
                            , tcs_worklist = panic "nextImplicTcS: worklist"
                            , tcs_implics  = panic "nextImplicTcS: implics" }
       ; thing_inside nest_env }

tryTcS :: TcS a -> TcS a
-- Like runTcS, but from within the TcS monad 
-- Completely afresh inerts and worklist, be careful! 
-- Moreover, we will simply throw away all the evidence generated. 
tryTcS (TcS thing_inside)
  = TcS $ \env -> 
    do { is_var <- TcM.newTcRef emptyInert
       ; ty_binds_var <- TcM.newTcRef emptyVarEnv
       ; ev_binds_var <- TcM.newTcEvBinds

       ; let nest_env = env { tcs_ev_binds = ev_binds_var
                            , tcs_ty_binds = ty_binds_var
                            , tcs_inerts   = is_var
                            , tcs_worklist = panic "nextImplicTcS: worklist"
                            , tcs_implics  = panic "nextImplicTcS: implics" }
       ; thing_inside nest_env }

-- Getters and setters of TcEnv fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)

getTcSWorkListRef :: TcS (IORef WorkList) 
getTcSWorkListRef = TcS (return . tcs_worklist) 
getTcSInerts :: TcS InertSet 
getTcSInerts = getTcSInertsRef >>= wrapTcS . (TcM.readTcRef) 

updWorkListTcS :: (WorkList -> WorkList) -> TcS () 
updWorkListTcS f 
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; let new_work = f wl_curr
       ; wrapTcS (TcM.writeTcRef wl_var new_work) }

updWorkListTcS_return :: (WorkList -> (a,WorkList)) -> TcS a
-- Process the work list, returning a depleted work list,
-- plus a value extracted from it (typically a work item removed from it)
updWorkListTcS_return f
  = do { wl_var <- getTcSWorkListRef
       ; wl_curr <- wrapTcS (TcM.readTcRef wl_var)
       ; let (res,new_work) = f wl_curr
       ; wrapTcS (TcM.writeTcRef wl_var new_work)
       ; return res }

withWorkList :: Cts -> TcS () -> TcS (Bag Implication)
-- Use 'thing_inside' to solve 'work_items', extending the
-- ambient InertSet, and returning any residual implications
-- (arising from polytype equalities)
-- We do this with fresh work list and residual-implications variables
withWorkList work_items (TcS thing_inside)
  = TcS $ \ tcs_env ->
    do { let init_work_list = foldrBag extendWorkListCt emptyWorkList work_items
       ; new_wl_var <- TcM.newTcRef init_work_list
       ; new_implics_var <- TcM.newTcRef emptyBag
       ; thing_inside (tcs_env { tcs_worklist = new_wl_var
                               , tcs_implics = new_implics_var })
       ; final_wl <- TcM.readTcRef new_wl_var
       ; implics  <- TcM.readTcRef new_implics_var
       ; ASSERT( isEmptyWorkList final_wl )
         return implics }

updTcSImplics :: (Bag Implication -> Bag Implication) -> TcS ()
updTcSImplics f 
 = do { impl_ref <- getTcSImplicsRef
      ; wrapTcS $ do { implics <- TcM.readTcRef impl_ref
                     ; TcM.writeTcRef impl_ref (f implics) } }

emitInsoluble :: Ct -> TcS ()
-- Emits a non-canonical constraint that will stand for a frozen error in the inerts. 
emitInsoluble ct
  = do { traceTcS "Emit insoluble" (ppr ct)
       ; updInertTcS add_insol }
  where
    add_insol is@(IS { inert_cans = ics@(IC { inert_insols = old_insols }) })
      | already_there = is
      | otherwise     = is { inert_cans = ics { inert_insols = extendCts old_insols ct } }
      where
        already_there = not (isWantedCt ct) && anyBag (eqType this_pred . ctPred) old_insols
	     -- See Note [Do not add duplicate derived insolubles]

    this_pred = ctPred ct

getTcSImplicsRef :: TcS (IORef (Bag Implication))
getTcSImplicsRef = TcS (return . tcs_implics) 

getTcEvBinds :: TcS EvBindsVar
getTcEvBinds = TcS (return . tcs_ev_binds) 

getUntouchables :: TcS Untouchables
getUntouchables = wrapTcS TcM.getUntouchables

getFlattenSkols :: TcS [TcTyVar]
getFlattenSkols = do { is <- getTcSInerts; return (inert_fsks is) }

getTcSTyBinds :: TcS (IORef (TyVarEnv (TcTyVar, TcType)))
getTcSTyBinds = TcS (return . tcs_ty_binds)

getTcSTyBindsMap :: TcS (TyVarEnv (TcTyVar, TcType))
getTcSTyBindsMap = getTcSTyBinds >>= wrapTcS . (TcM.readTcRef) 

getTcEvBindsMap :: TcS EvBindMap
getTcEvBindsMap
  = do { EvBindsVar ev_ref _ <- getTcEvBinds 
       ; wrapTcS $ TcM.readTcRef ev_ref }

setWantedTyBind :: TcTyVar -> TcType -> TcS () 
-- Add a type binding
-- We never do this twice!
setWantedTyBind tv ty 
  = ASSERT2( isMetaTyVar tv, ppr tv )
    do { ref <- getTcSTyBinds
       ; wrapTcS $ 
         do { ty_binds <- TcM.readTcRef ref
            ; when debugIsOn $
                  TcM.checkErr (not (tv `elemVarEnv` ty_binds)) $
                  vcat [ text "TERRIBLE ERROR: double set of meta type variable"
                       , ppr tv <+> text ":=" <+> ppr ty
                       , text "Old value =" <+> ppr (lookupVarEnv_NF ty_binds tv)]
            ; TcM.traceTc "setWantedTyBind" (ppr tv <+> text ":=" <+> ppr ty)
            ; TcM.writeTcRef ref (extendVarEnv ty_binds tv (tv,ty)) } }
\end{code}

\begin{code}
getDefaultInfo ::  TcS ([Type], (Bool, Bool))
getDefaultInfo = wrapTcS TcM.tcGetDefaultTys

-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

getInstEnvs :: TcS (InstEnv, InstEnv) 
getInstEnvs = wrapTcS $ Inst.tcGetInstEnvs 

getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv) 
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs

getTopEnv :: TcS HscEnv 
getTopEnv = wrapTcS $ TcM.getTopEnv 

getGblEnv :: TcS TcGblEnv 
getGblEnv = wrapTcS $ TcM.getGblEnv 

-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

checkWellStagedDFun :: PredType -> DFunId -> CtLoc -> TcS () 
checkWellStagedDFun pred dfun_id loc 
  = wrapTcS $ TcM.setCtLoc loc $ 
    do { use_stage <- TcM.getStage
       ; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
  where
    pp_thing = ptext (sLit "instance for") <+> quotes (ppr pred)
    bind_lvl = TcM.topIdLvl dfun_id

pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprType $ mkEqPred ty1 ty2

isTouchableMetaTyVarTcS :: TcTyVar -> TcS Bool
isTouchableMetaTyVarTcS tv 
  = do { untch <- getUntouchables
       ; return $ isTouchableMetaTyVar untch tv } 

isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe tv
 = ASSERT2( isTcTyVar tv, ppr tv )
   case tcTyVarDetails tv of
     MetaTv { mtv_ref = ref } 
        -> do { cts <- wrapTcS (TcM.readTcRef ref)
              ; case cts of 
                  Indirect ty -> return (Just ty)
                  Flexi       -> return Nothing }
     _ -> return Nothing 
\end{code}

Note [Do not add duplicate derived insolubles]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we *do* want to add an insoluble (Int ~ Bool) even if there is one
such there already, because they may come from distinct call sites.  But for
*derived* insolubles, we only want to report each one once.  Why?

(a) A constraint (C r s t) where r -> s, say, may generate the same fundep
    equality many times, as the original constraint is sucessively rewritten.

(b) Ditto the successive iterations of the main solver itself, as it traverses
    the constraint tree. See example below.

Also for *given* insolubles we may get repeated errors, as we
repeatedly traverse the constraint tree.  These are relatively rare
anyway, so removing duplicates seems ok.  (Alternatively we could take
the SrcLoc into account.)

Note that the test does not need to be particularly efficient because
it is only used if the program has a type error anyway.

Example of (b): assume a top-level class and instance declaration:

  class D a b | a -> b 
  instance D [a] [a] 

Assume we have started with an implication:

  forall c. Eq c => { wc_flat = D [c] c [W] }

which we have simplified to:

  forall c. Eq c => { wc_flat = D [c] c [W]
                    , wc_insols = (c ~ [c]) [D] }

For some reason, e.g. because we floated an equality somewhere else,
we might try to re-solve this implication. If we do not do a
dropDerivedWC, then we will end up trying to solve the following
constraints the second time:

  (D [c] c) [W]
  (c ~ [c]) [D]

which will result in two Deriveds to end up in the insoluble set:

  wc_flat   = D [c] c [W]
  wc_insols = (c ~ [c]) [D], (c ~ [c]) [D]



\begin{code}
-- Flatten skolems
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
newFlattenSkolem :: CtFlavour 
                 -> TcType                      -- F xis
                 -> TcS (CtEvidence, TcType)    -- co :: F xis ~ ty
-- We have already looked up in the cache; no need to so so again
newFlattenSkolem Given fam_ty
  = do { tv <- wrapTcS $ 
               do { uniq <- TcM.newUnique
                  ; let name = TcM.mkTcTyVarName uniq (fsLit "f")
                  ; return $ mkTcTyVar name (typeKind fam_ty) (FlatSkol fam_ty) } 
       ; traceTcS "New Flatten Skolem Born" $
         ppr tv <+> text "[:= " <+> ppr fam_ty <+> text "]"

       ; let rhs_ty = mkTyVarTy tv
             ctev = CtGiven { ctev_pred = mkTcEqPred fam_ty rhs_ty
                            , ctev_evtm = EvCoercion (mkTcReflCo fam_ty) }
       ; updInertTcS $ \ is@(IS { inert_fsks = fsks }) -> 
            extendFlatCache fam_ty ctev rhs_ty
            is { inert_fsks       = tv : fsks }

       ; return (ctev, rhs_ty) }

newFlattenSkolem _ fam_ty  -- Wanted or Derived: make new unification variable
  = do { rhs_ty <- newFlexiTcSTy (typeKind fam_ty)
       ; ctev <- newWantedEvVarNC (mkTcEqPred fam_ty rhs_ty)
                                   -- NC (no-cache) version because we've already
                                   -- looked in the solved goals an inerts (lookupFlatEqn)
       ; updInertTcS $ extendFlatCache fam_ty ctev rhs_ty
       ; return (ctev, rhs_ty) }

extendFlatCache :: TcType -> CtEvidence -> TcType -> InertSet -> InertSet
extendFlatCache 
  | opt_NoFlatCache
  = \ _ _ _ is -> is
  | otherwise
  = \ fam_ty ctev rhs_ty is@(IS { inert_flat_cache = fc }) -> 
      is { inert_flat_cache = insertFamHead fc fam_ty (ctev,rhs_ty) }

-- Instantiations 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcType)
instDFunType dfun_id mb_inst_tys 
  = wrapTcS $ go dfun_tvs mb_inst_tys (mkTopTvSubst [])
  where
    (dfun_tvs, dfun_phi) = tcSplitForAllTys (idType dfun_id)

    go :: [TyVar] -> [DFunInstType] -> TvSubst -> TcM ([TcType], TcType)
    go [] [] subst = return ([], substTy subst dfun_phi)
    go (tv:tvs) (Just ty : mb_tys) subst
      = do { (tys, phi) <- go tvs mb_tys (extendTvSubst subst tv ty)
           ; return (ty : tys, phi) }
    go (tv:tvs) (Nothing : mb_tys) subst
      = do { ty <- instFlexiTcSHelper (tyVarName tv) (substTy subst (tyVarKind tv))
                         -- Don't forget to instantiate the kind!
                         -- cf TcMType.tcInstTyVarX
           ; (tys, phi) <- go tvs mb_tys (extendTvSubst subst tv ty)
           ; return (ty : tys, phi) }
    go _ _ _ = pprPanic "instDFunTypes" (ppr dfun_id $$ ppr mb_inst_tys)

newFlexiTcSTy :: Kind -> TcS TcType  
newFlexiTcSTy knd = wrapTcS (TcM.newFlexiTyVarTy knd)

cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar tv = wrapTcS (TcM.cloneMetaTyVar tv)

instFlexiTcS :: [TKVar] -> TcS (TvSubst, [TcType])
instFlexiTcS tvs = wrapTcS (mapAccumLM inst_one emptyTvSubst tvs)
  where
     inst_one subst tv 
         = do { ty' <- instFlexiTcSHelper (tyVarName tv) 
                                          (substTy subst (tyVarKind tv))
              ; return (extendTvSubst subst tv ty', ty') }

instFlexiTcSHelper :: Name -> Kind -> TcM TcType
instFlexiTcSHelper tvname kind
  = do { uniq <- TcM.newUnique 
       ; details <- TcM.newMetaDetails TauTv
       ; let name = setNameUnique tvname uniq 
       ; return (mkTyVarTy (mkTcTyVar name kind details)) }

instFlexiTcSHelperTcS :: Name -> Kind -> TcS TcType
instFlexiTcSHelperTcS n k = wrapTcS (instFlexiTcSHelper n k)


-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data XEvTerm = 
  XEvTerm { ev_comp   :: [EvTerm] -> EvTerm
                         -- How to compose evidence 
          , ev_decomp :: EvTerm -> [EvTerm]
                         -- How to decompose evidence 
          }

data MaybeNew = Fresh CtEvidence | Cached EvTerm

isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = True
isFresh _ = False

getEvTerm :: MaybeNew -> EvTerm
getEvTerm (Fresh ctev) = ctEvTerm ctev
getEvTerm (Cached tm)  = tm

getEvTerms :: [MaybeNew] -> [EvTerm]
getEvTerms = map getEvTerm

freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]

setEvBind :: EvVar -> EvTerm -> TcS ()
setEvBind the_ev tm
  = do { traceTcS "setEvBind" $ vcat [ text "ev =" <+> ppr the_ev
                                     , text "tm  =" <+> ppr tm ]
       ; tc_evbinds <- getTcEvBinds
       ; wrapTcS $ TcM.addTcEvBind tc_evbinds the_ev tm }

newGivenEvVar :: TcPredType -> EvTerm -> TcS CtEvidence
-- Make a new variable of the given PredType, 
-- immediately bind it to the given term
-- and return its CtEvidence
newGivenEvVar pred rhs
  = do { new_ev <- wrapTcS $ TcM.newEvVar pred
       ; setEvBind new_ev rhs
       ; return (CtGiven { ctev_pred = pred, ctev_evtm = EvId new_ev }) }

newWantedEvVarNC :: TcPredType -> TcS CtEvidence
-- Don't look up in the solved/inerts; we know it's not there
newWantedEvVarNC pty
  = do { new_ev <- wrapTcS $ TcM.newEvVar pty
       ; return (CtWanted { ctev_pred = pty, ctev_evar = new_ev })}

newWantedEvVar :: TcPredType -> TcS MaybeNew
newWantedEvVar pty
  = do { mb_ct <- lookupInInerts pty
       ; case mb_ct of
            Just ctev | not (isDerived ctev) 
                      -> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
                            ; return (Cached (ctEvTerm ctev)) }
            _ -> do { ctev <- newWantedEvVarNC pty
                    ; traceTcS "newWantedEvVar/cache miss" $ ppr ctev
                    ; return (Fresh ctev) } }

newDerived :: TcPredType -> TcS (Maybe CtEvidence)
-- Returns Nothing    if cached, 
--         Just pred  if not cached
newDerived pty
  = do { mb_ct <- lookupInInerts pty
       ; return (case mb_ct of
                    Just {} -> Nothing
                    Nothing -> Just (CtDerived { ctev_pred = pty })) }

instDFunConstraints :: TcThetaType -> TcS [MaybeNew]
instDFunConstraints = mapM newWantedEvVar
\end{code}
                

Note [xCFlavor]
~~~~~~~~~~~~~~~
A call might look like this:

    xCtFlavor ev subgoal-preds evidence-transformer

  ev is Given   => use ev_decomp to create new Givens for subgoal-preds, 
                   and return them

  ev is Wanted  => create new wanteds for subgoal-preds, 
                   use ev_comp to bind ev, 
                   return fresh wanteds (ie ones not cached in inert_cans or solved)

  ev is Derived => create new deriveds for subgoal-preds 
                      (unless cached in inert_cans or solved)

Note: The [CtEvidence] returned is a subset of the subgoal-preds passed in
      Ones that are already cached are not returned

Example
    ev : Tree a b ~ Tree c d
    xCtFlavor ev [a~c, b~d] (XEvTerm { ev_comp = \[c1 c2]. <Tree> c1 c2
                                     , ev_decomp = \c. [nth 1 c, nth 2 c] })
              (\fresh-goals.  stuff)

Note [Bind new Givens immediately]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For Givens we make new EvVars and bind them immediately. We don't worry
about caching, but we don't expect complicated calculations among Givens.
It is important to bind each given:
      class (a~b) => C a b where ....
      f :: C a b => ....
Then in f's Givens we have g:(C a b) and the superclass sc(g,0):a~b.
But that superclass selector can't (yet) appear in a coercion
(see evTermCoercion), so the easy thing is to bind it to an Id.

See Note [Coercion evidence terms] in TcEvidence.


\begin{code}
xCtFlavor :: CtEvidence            -- Original flavor   
          -> [TcPredType]          -- New predicate types
          -> XEvTerm               -- Instructions about how to manipulate evidence
          -> TcS [CtEvidence]

xCtFlavor (CtGiven { ctev_evtm = tm }) ptys xev
  = ASSERT( equalLength ptys (ev_decomp xev tm) )
    zipWithM newGivenEvVar ptys (ev_decomp xev tm)
    -- See Note [Bind new Givens immediately]
  
xCtFlavor ctev@(CtWanted { ctev_evar = evar }) ptys xev
  = do { new_evars <- mapM newWantedEvVar ptys
       ; setEvBind evar (ev_comp xev (getEvTerms new_evars))
       ; return (freshGoals new_evars) }
    
xCtFlavor (CtDerived {}) ptys _xev
  = do { ders <- mapM newDerived ptys
       ; return (catMaybes ders) }

-----------------------------
rewriteCtFlavor :: CtEvidence
                -> TcPredType   -- new predicate
                -> TcCoercion   -- new ~ old     
                -> TcS (Maybe CtEvidence)
-- Returns Just new_fl iff either (i)  'co' is reflexivity
--                             or (ii) 'co' is not reflexivity, and 'new_pred' not cached
-- In either case, there is nothing new to do with new_fl
{- 
     rewriteCtFlavor old_fl new_pred co
Main purpose: create new evidence for new_pred;
              unless new_pred is cached already
* Returns a new_fl : new_pred, with same wanted/given/derived flag as old_fl
* If old_fl was wanted, create a binding for old_fl, in terms of new_fl
* If old_fl was given, AND not cached, create a binding for new_fl, in terms of old_fl
* Returns Nothing if new_fl is already cached


        Old evidence    New predicate is               Return new evidence
        flavour                                        of same flavor
        -------------------------------------------------------------------
        Wanted          Already solved or in inert     Nothing
        or Derived      Not                            Just new_evidence

        Given           Already in inert               Nothing
                        Not                            Just new_evidence
-}

-- If derived, don't even look at the coercion
-- NB: this allows us to sneak away with ``error'' thunks for 
-- coercions that come from derived ids (which don't exist!) 


rewriteCtFlavor old_ev new_pred co
  | isTcReflCo co -- If just reflexivity then you may re-use the same variable
  = return (Just (if ctEvPred old_ev `eqType` new_pred
                  then old_ev
                  else old_ev { ctev_pred = new_pred }))
       -- Even if the coercion is Refl, it might reflect the result of unification alpha := ty
       -- so old_pred and new_pred might not *look* the same, and it's vital to proceed from
       -- now on using new_pred.
       -- However, if they *do* look the same, we'd prefer to stick with old_pred
       -- then retain the old type, so that error messages come out mentioning synonyms

rewriteCtFlavor (CtDerived {}) new_pred _co
  = newDerived new_pred
        
rewriteCtFlavor (CtGiven { ctev_evtm = old_tm }) new_pred co
  = do { new_ev <- newGivenEvVar new_pred new_tm  -- See Note [Bind new Givens immediately]
       ; return (Just new_ev) }
  where
    new_tm = mkEvCast old_tm (mkTcSymCo co)  -- mkEvCast optimises ReflCo
  
rewriteCtFlavor (CtWanted { ctev_evar = evar, ctev_pred = old_pred }) new_pred co
  = do { new_evar <- newWantedEvVar new_pred
       ; setEvBind evar (mkEvCast (getEvTerm new_evar) co)
       ; case new_evar of
            Fresh ctev -> return (Just ctev) 
            _          -> return Nothing }



-- Matching and looking up classes and family instances
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

data MatchInstResult mi
  = MatchInstNo         -- No matching instance 
  | MatchInstSingle mi  -- Single matching instance
  | MatchInstMany       -- Multiple matching instances


matchClass :: Class -> [Type] -> TcS (MatchInstResult (DFunId, [Maybe TcType])) 
-- Look up a class constraint in the instance environment
matchClass clas tys
  = do	{ let pred = mkClassPred clas tys 
        ; instEnvs <- getInstEnvs
        ; case lookupInstEnv instEnvs clas tys of {
            ([], _unifs, _)               -- Nothing matches  
                -> do { traceTcS "matchClass not matching" $ 
                        vcat [ text "dict" <+> ppr pred
                             {- , ppr instEnvs -} ]
                        
                      ; return MatchInstNo  
                      } ;  
	    ([(ispec, inst_tys)], [], _) -- A single match 
		-> do	{ let dfun_id = is_dfun ispec
			; traceTcS "matchClass success" $
                          vcat [text "dict" <+> ppr pred, 
                                text "witness" <+> ppr dfun_id
                                               <+> ppr (idType dfun_id) ]
				  -- Record that this dfun is needed
                        ; return $ MatchInstSingle (dfun_id, inst_tys)
                        } ;
     	    (matches, _unifs, _)          -- More than one matches 
		-> do	{ traceTcS "matchClass multiple matches, deferring choice" $
                          vcat [text "dict" <+> ppr pred,
                                text "matches" <+> ppr matches]
                        ; return MatchInstMany 
		        }
	}
        }

matchFam :: TyCon -> [Type] -> TcS (Maybe (FamInst, [Type]))
matchFam tycon args = wrapTcS $ tcLookupFamInst tycon args
\end{code}

\begin{code}
-- Deferring forall equalities as implications
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

deferTcSForAllEq :: (CtLoc,EvVar)  -- Original wanted equality flavor
                 -> ([TyVar],TcType)   -- ForAll tvs1 body1
                 -> ([TyVar],TcType)   -- ForAll tvs2 body2
                 -> TcS ()
-- Some of this functionality is repeated from TcUnify, 
-- consider having a single place where we create fresh implications. 
deferTcSForAllEq (loc,orig_ev) (tvs1,body1) (tvs2,body2)
 = do { (subst1, skol_tvs) <- wrapTcS $ TcM.tcInstSkolTyVars tvs1
      ; let tys  = mkTyVarTys skol_tvs
            phi1 = Type.substTy subst1 body1
            phi2 = Type.substTy (zipTopTvSubst tvs2 tys) body2
            skol_info = UnifyForAllSkol skol_tvs phi1
        ; mev <- newWantedEvVar (mkTcEqPred phi1 phi2)
        ; coe_inside <- case mev of
            Cached ev_tm -> return (evTermCoercion ev_tm)
            Fresh ctev   -> do { ev_binds_var <- wrapTcS $ TcM.newTcEvBinds
                               ; env <- wrapTcS $ TcM.getLclEnv
                               ; let ev_binds = TcEvBinds ev_binds_var
                                     new_ct = mkNonCanonical loc ctev
              			     new_co = evTermCoercion (ctEvTerm ctev)
                                     new_untch = pushUntouchables (tcl_untch env)
                               ; let wc = WC { wc_flat  = singleCt new_ct 
                                             , wc_impl  = emptyBag
                                             , wc_insol = emptyCts }
                                     imp = Implic { ic_untch  = new_untch
                                                  , ic_skols  = skol_tvs
                                                  , ic_fsks   = []
                                                  , ic_given  = []
                                                  , ic_wanted = wc 
                                                  , ic_insol  = False
                                                  , ic_binds  = ev_binds_var
                                                  , ic_env    = env
                                                  , ic_info   = skol_info }
                               ; updTcSImplics (consBag imp) 
                               ; return (TcLetCo ev_binds new_co) }

        ; setEvBind orig_ev $
          EvCoercion (foldr mkTcForAllCo coe_inside skol_tvs)
        }
\end{code}
Back to Top