ghc /compiler/typecheck/TcRnTypes.lhs

Language Haskell Lines 1556
MD5 Hash d0833a99a85f9324c3ab6b0773972669 Estimated Cost $17,687 (why?)
Repository https://bitbucket.org/carter/ghc.git View Raw File View Project SPDX
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
% (c) The University of Glasgow 2006
% (c) The GRASP Project, Glasgow University, 1992-2002
%

Various types used during typechecking, please see TcRnMonad as well for
operations on these types. You probably want to import it, instead of this
module.

All the monads exported here are built on top of the same IOEnv monad. The
monad functions like a Reader monad in the way it passes the environment
around. This is done to allow the environment to be manipulated in a stack
like fashion when entering expressions... ect.

For state that is global and should be returned at the end (e.g not part
of the stack mechanism), you should use an TcRef (= IORef) to store them.

\begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module TcRnTypes(
	TcRnIf, TcRn, TcM, RnM,	IfM, IfL, IfG, -- The monad is opaque outside this module
	TcRef,

	-- The environment types
	Env(..), 
	TcGblEnv(..), TcLclEnv(..), 
	IfGblEnv(..), IfLclEnv(..), 

	-- Ranamer types
	ErrCtxt, RecFieldEnv(..),
	ImportAvails(..), emptyImportAvails, plusImportAvails, 
	WhereFrom(..), mkModDeps,

	-- Typechecker types
	TcTypeEnv, TcIdBinder(..), TcTyThing(..), PromotionErr(..), 
        pprTcTyThingCategory, pprPECategory,

	-- Template Haskell
	ThStage(..), topStage, topAnnStage, topSpliceStage,
	ThLevel, impLevel, outerLevel, thLevel,

	-- Arrows
	ArrowCtxt(NoArrowCtxt), newArrowScope, escapeArrowScope,

       -- Canonical constraints
        Xi, Ct(..), Cts, emptyCts, andCts, andManyCts, dropDerivedWC,
        singleCt, extendCts, isEmptyCts, isCTyEqCan, isCFunEqCan,
        isCDictCan_Maybe, isCFunEqCan_Maybe,
        isCIrredEvCan, isCNonCanonical, isWantedCt, isDerivedCt, 
        isGivenCt, isHoleCt,
        ctEvidence,
        SubGoalDepth, mkNonCanonical, mkNonCanonicalCt,
        ctPred, ctEvPred, ctEvTerm, ctEvId, 

        WantedConstraints(..), insolubleWC, emptyWC, isEmptyWC,
        andWC, unionsWC, addFlats, addImplics, mkFlatWC, addInsols,

        Implication(..),
        CtLoc(..), ctLocSpan, ctLocEnv, ctLocOrigin, 
        ctLocDepth, bumpCtLocDepth,
        setCtLocOrigin, setCtLocEnv,
	CtOrigin(..), 
        pushErrCtxt, pushErrCtxtSameOrigin,

	SkolemInfo(..),

        CtEvidence(..),
        mkGivenLoc,
        isWanted, isGiven,
        isDerived, canSolve, canRewrite,
        CtFlavour(..), ctEvFlavour, ctFlavour,

	-- Pretty printing
        pprEvVarTheta, pprWantedsWithLocs,
	pprEvVars, pprEvVarWithType, 
        pprArising, pprArisingAt,

	-- Misc other types
	TcId, TcIdSet, TcTyVarBind(..), TcTyVarBinds
	
  ) where

#include "HsVersions.h"

import HsSyn
import HscTypes
import TcEvidence
import Type
import Class    ( Class )
import TyCon    ( TyCon )
import DataCon  ( DataCon, dataConUserType )
import TcType
import Annotations
import InstEnv
import FamInstEnv
import IOEnv
import RdrName
import Name
import NameEnv
import NameSet
import Avail
import Var
import VarEnv
import Module
import SrcLoc
import VarSet
import ErrUtils
import UniqFM
import UniqSupply
import BasicTypes
import Bag
import DynFlags
import Outputable
import ListSetOps
import FastString

import Data.Set (Set)
\end{code}


%************************************************************************
%*									*
	       Standard monad definition for TcRn
    All the combinators for the monad can be found in TcRnMonad
%*									*
%************************************************************************

The monad itself has to be defined here, because it is mentioned by ErrCtxt

\begin{code}
type TcRef a 	 = IORef a
type TcId    	 = Id 			
type TcIdSet 	 = IdSet


type TcRnIf a b c = IOEnv (Env a b) c
type IfM lcl a  = TcRnIf IfGblEnv lcl a		-- Iface stuff

type IfG a  = IfM () a				-- Top level
type IfL a  = IfM IfLclEnv a			-- Nested
type TcRn a = TcRnIf TcGblEnv TcLclEnv a
type RnM  a = TcRn a		-- Historical
type TcM  a = TcRn a		-- Historical
\end{code}

Representation of type bindings to uninstantiated meta variables used during
constraint solving.

\begin{code}
data TcTyVarBind = TcTyVarBind TcTyVar TcType

type TcTyVarBinds = Bag TcTyVarBind

instance Outputable TcTyVarBind where
  ppr (TcTyVarBind tv ty) = ppr tv <+> text ":=" <+> ppr ty
\end{code}


%************************************************************************
%*                                                                      *
                The main environment types
%*                                                                      *
%************************************************************************

\begin{code}
-- We 'stack' these envs through the Reader like monad infastructure
-- as we move into an expression (although the change is focused in
-- the lcl type).
data Env gbl lcl
  = Env {
        env_top  :: HscEnv,  -- Top-level stuff that never changes
                             -- Includes all info about imported things

        env_us   :: {-# UNPACK #-} !(IORef UniqSupply),
                             -- Unique supply for local varibles

        env_gbl  :: gbl,     -- Info about things defined at the top level
                             -- of the module being compiled

        env_lcl  :: lcl      -- Nested stuff; changes as we go into 
    }

instance ContainsDynFlags (Env gbl lcl) where
    extractDynFlags env = hsc_dflags (env_top env)

-- TcGblEnv describes the top-level of the module at the 
-- point at which the typechecker is finished work.
-- It is this structure that is handed on to the desugarer
-- For state that needs to be updated during the typechecking
-- phase and returned at end, use a TcRef (= IORef).

data TcGblEnv
  = TcGblEnv {
	tcg_mod     :: Module,         -- ^ Module being compiled
	tcg_src     :: HscSource,
          -- ^ What kind of module (regular Haskell, hs-boot, ext-core)

	tcg_rdr_env :: GlobalRdrEnv,   -- ^ Top level envt; used during renaming
	tcg_default :: Maybe [Type],
          -- ^ Types used for defaulting. @Nothing@ => no @default@ decl

	tcg_fix_env   :: FixityEnv,	-- ^ Just for things in this module
	tcg_field_env :: RecFieldEnv,	-- ^ Just for things in this module

	tcg_type_env :: TypeEnv,
          -- ^ Global type env for the module we are compiling now.  All
	  -- TyCons and Classes (for this module) end up in here right away,
	  -- along with their derived constructors, selectors.
	  --
	  -- (Ids defined in this module start in the local envt, though they
	  --  move to the global envt during zonking)

	tcg_type_env_var :: TcRef TypeEnv,
		-- Used only to initialise the interface-file
		-- typechecker in initIfaceTcRn, so that it can see stuff
		-- bound in this module when dealing with hi-boot recursions
		-- Updated at intervals (e.g. after dealing with types and classes)
	
	tcg_inst_env     :: InstEnv,
          -- ^ Instance envt for all /home-package/ modules; 
          -- Includes the dfuns in tcg_insts
	tcg_fam_inst_env :: FamInstEnv,	-- ^ Ditto for family instances

		-- Now a bunch of things about this module that are simply 
		-- accumulated, but never consulted until the end.  
		-- Nevertheless, it's convenient to accumulate them along 
		-- with the rest of the info from this module.
	tcg_exports :: [AvailInfo],	-- ^ What is exported
	tcg_imports :: ImportAvails,
          -- ^ Information about what was imported from where, including
	  -- things bound in this module. Also store Safe Haskell info
          -- here about transative trusted packaage requirements.

	tcg_dus :: DefUses,
          -- ^ What is defined in this module and what is used.
          -- The latter is used to generate
          --
          --  (a) version tracking; no need to recompile if these things have
          --      not changed version stamp
          --
          --  (b) unused-import info

	tcg_keep :: TcRef NameSet,
          -- ^ Locally-defined top-level names to keep alive.
          --
          -- "Keep alive" means give them an Exported flag, so that the
          -- simplifier does not discard them as dead code, and so that they
          -- are exposed in the interface file (but not to export to the
          -- user).
          --
          -- Some things, like dict-fun Ids and default-method Ids are "born"
          -- with the Exported flag on, for exactly the above reason, but some
          -- we only discover as we go.  Specifically:
          --
          --   * The to/from functions for generic data types
          --
          --   * Top-level variables appearing free in the RHS of an orphan
          --     rule
          --
          --   * Top-level variables appearing free in a TH bracket

        tcg_th_used :: TcRef Bool,
          -- ^ @True@ <=> Template Haskell syntax used.
          --
          -- We need this so that we can generate a dependency on the
          -- Template Haskell package, becuase the desugarer is going
          -- to emit loads of references to TH symbols.  The reference
          -- is implicit rather than explicit, so we have to zap a
          -- mutable variable.

        tcg_th_splice_used :: TcRef Bool,
          -- ^ @True@ <=> A Template Haskell splice was used.
          --
          -- Splices disable recompilation avoidance (see #481)

	tcg_dfun_n  :: TcRef OccSet,
          -- ^ Allows us to choose unique DFun names.

	-- The next fields accumulate the payload of the module
	-- The binds, rules and foreign-decl fiels are collected
	-- initially in un-zonked form and are finally zonked in tcRnSrcDecls

        tcg_rn_exports :: Maybe [Located (IE Name)],
        tcg_rn_imports :: [LImportDecl Name],
		-- Keep the renamed imports regardless.  They are not 
		-- voluminous and are needed if you want to report unused imports

        tcg_used_rdrnames :: TcRef (Set RdrName),
		-- The set of used *imported* (not locally-defined) RdrNames
		-- Used only to report unused import declarations

	tcg_rn_decls :: Maybe (HsGroup Name),
          -- ^ Renamed decls, maybe.  @Nothing@ <=> Don't retain renamed
          -- decls.

        tcg_dependent_files :: TcRef [FilePath], -- ^ dependencies from addDependentFile

        tcg_ev_binds  :: Bag EvBind,	    -- Top-level evidence bindings
	tcg_binds     :: LHsBinds Id,	    -- Value bindings in this module
        tcg_sigs      :: NameSet, 	    -- ...Top-level names that *lack* a signature
        tcg_imp_specs :: [LTcSpecPrag],     -- ...SPECIALISE prags for imported Ids
	tcg_warns     :: Warnings,	    -- ...Warnings and deprecations
	tcg_anns      :: [Annotation],      -- ...Annotations
        tcg_tcs       :: [TyCon],           -- ...TyCons and Classes
	tcg_insts     :: [ClsInst],	    -- ...Instances
        tcg_fam_insts :: [FamInst],         -- ...Family instances
        tcg_rules     :: [LRuleDecl Id],    -- ...Rules
        tcg_fords     :: [LForeignDecl Id], -- ...Foreign import & exports
        tcg_vects     :: [LVectDecl Id],    -- ...Vectorisation declarations

	tcg_doc_hdr   :: Maybe LHsDocString, -- ^ Maybe Haddock header docs
        tcg_hpc       :: AnyHpcUsage,        -- ^ @True@ if any part of the
                                             --  prog uses hpc instrumentation.

        tcg_main      :: Maybe Name,         -- ^ The Name of the main
                                             -- function, if this module is
                                             -- the main module.
        tcg_safeInfer :: TcRef Bool          -- Has the typechecker
                                             -- inferred this module
                                             -- as -XSafe (Safe Haskell)
    }

data RecFieldEnv 
  = RecFields (NameEnv [Name])	-- Maps a constructor name *in this module*
				-- to the fields for that constructor
	      NameSet		-- Set of all fields declared *in this module*;
				-- used to suppress name-shadowing complaints
				-- when using record wild cards
				-- E.g.  let fld = e in C {..}
	-- This is used when dealing with ".." notation in record 
	-- construction and pattern matching.
	-- The FieldEnv deals *only* with constructors defined in *this*
	-- module.  For imported modules, we get the same info from the
	-- TypeEnv
\end{code}

%************************************************************************
%*									*
		The interface environments
  	      Used when dealing with IfaceDecls
%*									*
%************************************************************************

\begin{code}
data IfGblEnv 
  = IfGblEnv {
	-- The type environment for the module being compiled,
	-- in case the interface refers back to it via a reference that
	-- was originally a hi-boot file.
	-- We need the module name so we can test when it's appropriate
	-- to look in this env.
	if_rec_types :: Maybe (Module, IfG TypeEnv)
		-- Allows a read effect, so it can be in a mutable
		-- variable; c.f. handling the external package type env
		-- Nothing => interactive stuff, no loops possible
    }

data IfLclEnv
  = IfLclEnv {
	-- The module for the current IfaceDecl
	-- So if we see   f = \x -> x
	-- it means M.f = \x -> x, where M is the if_mod
	if_mod :: Module,

	-- The field is used only for error reporting
	-- if (say) there's a Lint error in it
	if_loc :: SDoc,
		-- Where the interface came from:
		--	.hi file, or GHCi state, or ext core
		-- plus which bit is currently being examined

	if_tv_env  :: UniqFM TyVar,	-- Nested tyvar bindings
		      	     		-- (and coercions)
	if_id_env  :: UniqFM Id		-- Nested id binding
    }
\end{code}


%************************************************************************
%*									*
		The local typechecker environment
%*									*
%************************************************************************

The Global-Env/Local-Env story
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During type checking, we keep in the tcg_type_env
	* All types and classes
	* All Ids derived from types and classes (constructors, selectors)

At the end of type checking, we zonk the local bindings,
and as we do so we add to the tcg_type_env
	* Locally defined top-level Ids

Why?  Because they are now Ids not TcIds.  This final GlobalEnv is
	a) fed back (via the knot) to typechecking the 
	   unfoldings of interface signatures
	b) used in the ModDetails of this module

\begin{code}
data TcLclEnv		-- Changes as we move inside an expression
			-- Discarded after typecheck/rename; not passed on to desugarer
  = TcLclEnv {
	tcl_loc        :: SrcSpan,	   -- Source span
	tcl_ctxt       :: [ErrCtxt],       -- Error context, innermost on top
	tcl_untch      :: Untouchables,    -- Birthplace for new unification variables
	tcl_th_ctxt    :: ThStage,	   -- Template Haskell context
	tcl_arrow_ctxt :: ArrowCtxt,	   -- Arrow-notation context

	tcl_rdr :: LocalRdrEnv,		-- Local name envt
		-- Maintained during renaming, of course, but also during
		-- type checking, solely so that when renaming a Template-Haskell
		-- splice we have the right environment for the renamer.
		-- 
		--   Does *not* include global name envt; may shadow it
		--   Includes both ordinary variables and type variables;
		--   they are kept distinct because tyvar have a different
		--   occurrence contructor (Name.TvOcc)
		-- We still need the unsullied global name env so that
    		--   we can look up record field names

	tcl_env  :: TcTypeEnv,    -- The local type environment:
			          -- Ids and TyVars defined in this module

        tcl_bndrs :: [TcIdBinder],   -- Stack of locally-bound Ids, innermost on top
                                     -- Used only for error reporting

        tcl_tidy :: TidyEnv,      -- Used for tidying types; contains all
                                  -- in-scope type variables (but not term variables)
					
	tcl_tyvars :: TcRef TcTyVarSet,	-- The "global tyvars"
			-- Namely, the in-scope TyVars bound in tcl_env, 
			-- plus the tyvars mentioned in the types of Ids bound
			-- in tcl_lenv. 
                        -- Why mutable? see notes with tcGetGlobalTyVars

	tcl_lie  :: TcRef WantedConstraints,    -- Place to accumulate type constraints
	tcl_errs :: TcRef Messages       	-- Place to accumulate errors
    }

type TcTypeEnv = NameEnv TcTyThing
data TcIdBinder = TcIdBndr TcId TopLevelFlag

{- Note [Given Insts]
   ~~~~~~~~~~~~~~~~~~
Because of GADTs, we have to pass inwards the Insts provided by type signatures 
and existential contexts. Consider
	data T a where { T1 :: b -> b -> T [b] }
	f :: Eq a => T a -> Bool
	f (T1 x y) = [x]==[y]

The constructor T1 binds an existential variable 'b', and we need Eq [b].
Well, we have it, because Eq a refines to Eq [b], but we can only spot that if we 
pass it inwards.

-}

---------------------------
-- Template Haskell stages and levels 
---------------------------

data ThStage	-- See Note [Template Haskell state diagram] in TcSplice
  = Splice	-- Top-level splicing
		-- This code will be run *at compile time*;
		--   the result replaces the splice
		-- Binding level = 0
 
  | Comp   	-- Ordinary Haskell code
		-- Binding level = 1

  | Brack  			-- Inside brackets 
      ThStage 			--   Binding level = level(stage) + 1
      (TcRef [PendingSplice])	--   Accumulate pending splices here
      (TcRef WantedConstraints)	--     and type constraints here

topStage, topAnnStage, topSpliceStage :: ThStage
topStage       = Comp
topAnnStage    = Splice
topSpliceStage = Splice

instance Outputable ThStage where
   ppr Splice        = text "Splice"
   ppr Comp	     = text "Comp"
   ppr (Brack s _ _) = text "Brack" <> parens (ppr s)

type ThLevel = Int	
        -- See Note [Template Haskell levels] in TcSplice
	-- Incremented when going inside a bracket,
	-- decremented when going inside a splice
	-- NB: ThLevel is one greater than the 'n' in Fig 2 of the
	--     original "Template meta-programming for Haskell" paper

impLevel, outerLevel :: ThLevel
impLevel = 0	-- Imported things; they can be used inside a top level splice
outerLevel = 1	-- Things defined outside brackets
-- NB: Things at level 0 are not *necessarily* imported.
--	eg  $( \b -> ... )   here b is bound at level 0
--
-- For example: 
--	f = ...
--	g1 = $(map ...)		is OK
--	g2 = $(f ...)		is not OK; because we havn't compiled f yet

thLevel :: ThStage -> ThLevel
thLevel Splice        = 0
thLevel Comp          = 1
thLevel (Brack s _ _) = thLevel s + 1

---------------------------
-- Arrow-notation context
---------------------------

{- Note [Escaping the arrow scope]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In arrow notation, a variable bound by a proc (or enclosed let/kappa)
is not in scope to the left of an arrow tail (-<) or the head of (|..|).
For example

	proc x -> (e1 -< e2)

Here, x is not in scope in e1, but it is in scope in e2.  This can get
a bit complicated:

	let x = 3 in
	proc y -> (proc z -> e1) -< e2

Here, x and z are in scope in e1, but y is not.  

We implement this by
recording the environment when passing a proc (using newArrowScope),
and returning to that (using escapeArrowScope) on the left of -< and the
head of (|..|).

All this can be dealt with by the *renamer*; by the time we get to 
the *type checker* we have sorted out the scopes
-}

data ArrowCtxt
  = NoArrowCtxt
  | ArrowCtxt (Env TcGblEnv TcLclEnv)

-- Record the current environment (outside a proc)
newArrowScope :: TcM a -> TcM a
newArrowScope
  = updEnv $ \env ->
	env { env_lcl = (env_lcl env) { tcl_arrow_ctxt = ArrowCtxt env } }

-- Return to the stored environment (from the enclosing proc)
escapeArrowScope :: TcM a -> TcM a
escapeArrowScope
  = updEnv $ \ env -> case tcl_arrow_ctxt (env_lcl env) of
	NoArrowCtxt -> env
	ArrowCtxt env' -> env'

---------------------------
-- TcTyThing
---------------------------

data TcTyThing
  = AGlobal TyThing		-- Used only in the return type of a lookup

  | ATcId   {		-- Ids defined in this module; may not be fully zonked
	tct_id     :: TcId,		
	tct_closed :: TopLevelFlag,   -- See Note [Bindings with closed types]
	tct_level  :: ThLevel }

  | ATyVar  Name TcTyVar	-- The type variable to which the lexically scoped type 
				-- variable is bound. We only need the Name
				-- for error-message purposes; it is the corresponding
				-- Name in the domain of the envt

  | AThing  TcKind   -- Used temporarily, during kind checking, for the
		     --	tycons and clases in this recursive group
                     -- Can be a mono-kind or a poly-kind; in TcTyClsDcls see
                     -- Note [Type checking recursive type and class declarations]

  | APromotionErr PromotionErr 

data PromotionErr 
  = TyConPE          -- TyCon used in a kind before we are ready
                     --     data T :: T -> * where ...
  | ClassPE          -- Ditto Class

  | FamDataConPE     -- Data constructor for a data family
                     -- See Note [AFamDataCon: not promoting data family constructors] in TcRnDriver

  | RecDataConPE     -- Data constructor in a reuursive loop
                     -- See Note [ARecDataCon: recusion and promoting data constructors] in TcTyClsDecls

instance Outputable TcTyThing where	-- Debugging only
   ppr (AGlobal g)      = pprTyThing g
   ppr elt@(ATcId {})   = text "Identifier" <> 
			  brackets (ppr (tct_id elt) <> dcolon 
                                 <> ppr (varType (tct_id elt)) <> comma
				 <+> ppr (tct_closed elt) <> comma
				 <+> ppr (tct_level elt))
   ppr (ATyVar n tv)    = text "Type variable" <+> quotes (ppr n) <+> equals <+> ppr tv
   ppr (AThing k)       = text "AThing" <+> ppr k
   ppr (APromotionErr err) = text "APromotionErr" <+> ppr err

instance Outputable PromotionErr where
  ppr ClassPE      = text "ClassPE"
  ppr TyConPE      = text "TyConPE"
  ppr FamDataConPE = text "FamDataConPE"
  ppr RecDataConPE = text "RecDataConPE"

pprTcTyThingCategory :: TcTyThing -> SDoc
pprTcTyThingCategory (AGlobal thing)    = pprTyThingCategory thing
pprTcTyThingCategory (ATyVar {})        = ptext (sLit "Type variable")
pprTcTyThingCategory (ATcId {})         = ptext (sLit "Local identifier")
pprTcTyThingCategory (AThing {})        = ptext (sLit "Kinded thing")
pprTcTyThingCategory (APromotionErr pe) = pprPECategory pe

pprPECategory :: PromotionErr -> SDoc
pprPECategory ClassPE      = ptext (sLit "Class")
pprPECategory TyConPE      = ptext (sLit "Type constructor")
pprPECategory FamDataConPE = ptext (sLit "Data constructor")
pprPECategory RecDataConPE = ptext (sLit "Data constructor")
\end{code}


Note [Bindings with closed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

  f x = let g ys = map not ys
        in ...

Can we generalise 'g' under the OutsideIn algorithm?  Yes, 
because all g's free variables are top-level; that is they themselves
have no free type variables, and it is the type variables in the
environment that makes things tricky for OutsideIn generalisation.

Definition:

   A variable is "closed", and has tct_closed set to TopLevel,
      iff 
   a) all its free variables are imported, or are themselves closed
   b) generalisation is not restricted by the monomorphism restriction

Under OutsideIn we are free to generalise a closed let-binding.
This is an extension compared to the JFP paper on OutsideIn, which
used "top-level" as a proxy for "closed".  (It's not a good proxy 
anyway -- the MR can make a top-level binding with a free type
variable.)

Note that:
  * A top-level binding may not be closed, if it suffer from the MR

  * A nested binding may be closed (eg 'g' in the example we started with)
    Indeed, that's the point; whether a function is defined at top level
    or nested is orthogonal to the question of whether or not it is closed 

  * A binding may be non-closed because it mentions a lexically scoped
    *type variable*  Eg
        f :: forall a. blah
        f x = let g y = ...(y::a)...


\begin{code}
type ErrCtxt = (Bool, TidyEnv -> TcM (TidyEnv, MsgDoc))
	-- Monadic so that we have a chance
	-- to deal with bound type variables just before error
	-- message construction

	-- Bool:  True <=> this is a landmark context; do not
	--		   discard it when trimming for display
\end{code}


%************************************************************************
%*									*
	Operations over ImportAvails
%*									*
%************************************************************************

\begin{code}
-- | 'ImportAvails' summarises what was imported from where, irrespective of
-- whether the imported things are actually used or not.  It is used:
--
--  * when processing the export list,
--
--  * when constructing usage info for the interface file,
--
--  * to identify the list of directly imported modules for initialisation
--    purposes and for optimised overlap checking of family instances,
--
--  * when figuring out what things are really unused
--
data ImportAvails 
   = ImportAvails {
	imp_mods :: ImportedMods,
	  --      = ModuleEnv [(ModuleName, Bool, SrcSpan, Bool)],
          -- ^ Domain is all directly-imported modules
          -- The 'ModuleName' is what the module was imported as, e.g. in
          -- @
          --     import Foo as Bar
          -- @
          -- it is @Bar@.
          --
          -- The 'Bool' means:
          --
          --  - @True@ => import was @import Foo ()@
          --
          --  - @False@ => import was some other form
          --
          -- Used
          --
          --   (a) to help construct the usage information in the interface
          --       file; if we import somethign we need to recompile if the
          --       export version changes
          --
          --   (b) to specify what child modules to initialise
          --
          -- We need a full ModuleEnv rather than a ModuleNameEnv here,
          -- because we might be importing modules of the same name from
          -- different packages. (currently not the case, but might be in the
          -- future).

        imp_dep_mods :: ModuleNameEnv (ModuleName, IsBootInterface),
          -- ^ Home-package modules needed by the module being compiled
          --
          -- It doesn't matter whether any of these dependencies
          -- are actually /used/ when compiling the module; they
          -- are listed if they are below it at all.  For
          -- example, suppose M imports A which imports X.  Then
          -- compiling M might not need to consult X.hi, but X
          -- is still listed in M's dependencies.

        imp_dep_pkgs :: [PackageId],
          -- ^ Packages needed by the module being compiled, whether directly,
          -- or via other modules in this package, or via modules imported
          -- from other packages.
        
        imp_trust_pkgs :: [PackageId],
          -- ^ This is strictly a subset of imp_dep_pkgs and records the
          -- packages the current module needs to trust for Safe Haskell
          -- compilation to succeed. A package is required to be trusted if
          -- we are dependent on a trustworthy module in that package.
          -- While perhaps making imp_dep_pkgs a tuple of (PackageId, Bool)
          -- where True for the bool indicates the package is required to be
          -- trusted is the more logical  design, doing so complicates a lot
          -- of code not concerned with Safe Haskell.
          -- See Note [RnNames . Tracking Trust Transitively]

        imp_trust_own_pkg :: Bool,
          -- ^ Do we require that our own package is trusted?
          -- This is to handle efficiently the case where a Safe module imports
          -- a Trustworthy module that resides in the same package as it.
          -- See Note [RnNames . Trust Own Package]

        imp_orphs :: [Module],
          -- ^ Orphan modules below us in the import tree (and maybe including
          -- us for imported modules)

        imp_finsts :: [Module]
          -- ^ Family instance modules below us in the import tree (and maybe
          -- including us for imported modules)
      }

mkModDeps :: [(ModuleName, IsBootInterface)]
	  -> ModuleNameEnv (ModuleName, IsBootInterface)
mkModDeps deps = foldl add emptyUFM deps
	       where
		 add env elt@(m,_) = addToUFM env m elt

emptyImportAvails :: ImportAvails
emptyImportAvails = ImportAvails { imp_mods          = emptyModuleEnv,
                                   imp_dep_mods      = emptyUFM,
                                   imp_dep_pkgs      = [],
                                   imp_trust_pkgs    = [],
                                   imp_trust_own_pkg = False,
                                   imp_orphs         = [],
                                   imp_finsts        = [] }

-- | Union two ImportAvails
--
-- This function is a key part of Import handling, basically
-- for each import we create a seperate ImportAvails structure
-- and then union them all together with this function.
plusImportAvails ::  ImportAvails ->  ImportAvails ->  ImportAvails
plusImportAvails
  (ImportAvails { imp_mods = mods1,
                  imp_dep_mods = dmods1, imp_dep_pkgs = dpkgs1,
                  imp_trust_pkgs = tpkgs1, imp_trust_own_pkg = tself1,
                  imp_orphs = orphs1, imp_finsts = finsts1 })
  (ImportAvails { imp_mods = mods2,
                  imp_dep_mods = dmods2, imp_dep_pkgs = dpkgs2,
                  imp_trust_pkgs = tpkgs2, imp_trust_own_pkg = tself2,
                  imp_orphs = orphs2, imp_finsts = finsts2 })
  = ImportAvails { imp_mods          = plusModuleEnv_C (++) mods1 mods2,
                   imp_dep_mods      = plusUFM_C plus_mod_dep dmods1 dmods2,
                   imp_dep_pkgs      = dpkgs1 `unionLists` dpkgs2,
                   imp_trust_pkgs    = tpkgs1 `unionLists` tpkgs2,
                   imp_trust_own_pkg = tself1 || tself2,
                   imp_orphs         = orphs1 `unionLists` orphs2,
                   imp_finsts        = finsts1 `unionLists` finsts2 }
  where
    plus_mod_dep (m1, boot1) (m2, boot2) 
        = WARN( not (m1 == m2), (ppr m1 <+> ppr m2) $$ (ppr boot1 <+> ppr boot2) )
                -- Check mod-names match
          (m1, boot1 && boot2) -- If either side can "see" a non-hi-boot interface, use that
\end{code}

%************************************************************************
%*									*
\subsection{Where from}
%*									*
%************************************************************************

The @WhereFrom@ type controls where the renamer looks for an interface file

\begin{code}
data WhereFrom 
  = ImportByUser IsBootInterface	-- Ordinary user import (perhaps {-# SOURCE #-})
  | ImportBySystem			-- Non user import.

instance Outputable WhereFrom where
  ppr (ImportByUser is_boot) | is_boot     = ptext (sLit "{- SOURCE -}")
			     | otherwise   = empty
  ppr ImportBySystem     		   = ptext (sLit "{- SYSTEM -}")
\end{code}

%************************************************************************
%*									*
%*                       Canonical constraints                          *
%*                                                                      *
%*   These are the constraints the low-level simplifier works with      *
%*									*
%************************************************************************


\begin{code}
-- The syntax of xi types:
-- xi ::= a | T xis | xis -> xis | ... | forall a. tau
-- Two important notes:
--      (i) No type families, unless we are under a ForAll
--      (ii) Note that xi types can contain unexpanded type synonyms; 
--           however, the (transitive) expansions of those type synonyms 
--           will not contain any type functions, unless we are under a ForAll.
-- We enforce the structure of Xi types when we flatten (TcCanonical)

type Xi = Type       -- In many comments, "xi" ranges over Xi

type Cts = Bag Ct

data Ct
  -- Atomic canonical constraints 
  = CDictCan {  -- e.g.  Num xi
      cc_ev :: CtEvidence,   -- See Note [Ct/evidence invariant]
      cc_class  :: Class,   
      cc_tyargs :: [Xi],

      cc_loc  :: CtLoc
    }

  | CIrredEvCan {  -- These stand for yet-unknown predicates
      cc_ev :: CtEvidence,   -- See Note [Ct/evidence invariant]
                   -- In CIrredEvCan, the ctev_pred of the evidence is flat 
                   -- and hence it may only be of the form (tv xi1 xi2 ... xin)
                   -- Since, if it were a type constructor application, that'd make the
                   -- whole constraint a CDictCan, or CTyEqCan. And it can't be
                   -- a type family application either because it's a Xi type.
      cc_loc :: CtLoc
    }

  | CTyEqCan {  -- tv ~ xi	(recall xi means function free)
       -- Invariant: 
       --   * tv not in tvs(xi)   (occurs check)
       --   * typeKind xi `compatKind` typeKind tv
       --       See Note [Spontaneous solving and kind compatibility]
       --   * We prefer unification variables on the left *JUST* for efficiency
      cc_ev :: CtEvidence,    -- See Note [Ct/evidence invariant]
      cc_tyvar  :: TcTyVar, 
      cc_rhs    :: Xi,
      cc_loc    :: CtLoc
    }

  | CFunEqCan {  -- F xis ~ xi  
                 -- Invariant: * isSynFamilyTyCon cc_fun 
                 --            * typeKind (F xis) `compatKind` typeKind xi
      cc_ev     :: CtEvidence,  -- See Note [Ct/evidence invariant]
      cc_fun    :: TyCon,	-- A type function
      cc_tyargs :: [Xi],	-- Either under-saturated or exactly saturated
      cc_rhs    :: Xi,      	--    *never* over-saturated (because if so
      		      		--    we should have decomposed)

      cc_loc  :: CtLoc
                   
    }

  | CNonCanonical { -- See Note [NonCanonical Semantics] 
      cc_ev  :: CtEvidence, 
      cc_loc :: CtLoc
    }

  | CHoleCan {
      cc_ev  :: CtEvidence,
      cc_loc :: CtLoc
    }
\end{code}

Note [Ct/evidence invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If  ct :: Ct, then extra fields of 'ct' cache precisely the ctev_pred field
of (cc_ev ct).   Eg for CDictCan, 
   ctev_pred (cc_ev ct) = (cc_class ct) (cc_tyargs ct)
This holds by construction; look at the unique place where CDictCan is
built (in TcCanonical)

\begin{code}
mkNonCanonical :: CtLoc -> CtEvidence -> Ct
mkNonCanonical loc ev = CNonCanonical { cc_ev = ev, cc_loc = loc }

mkNonCanonicalCt :: Ct -> Ct
mkNonCanonicalCt ct = CNonCanonical { cc_ev = cc_ev ct, cc_loc = cc_loc ct }

ctEvidence :: Ct -> CtEvidence
ctEvidence = cc_ev

ctPred :: Ct -> PredType 
-- See Note [Ct/evidence invariant]
ctPred ct = ctEvPred (cc_ev ct)

dropDerivedWC :: WantedConstraints -> WantedConstraints
dropDerivedWC wc@(WC { wc_flat = flats })
  = wc { wc_flat = filterBag isWantedCt flats }
    -- Don't filter the insolubles, because derived 
    -- insolubles should stay so that we report them.
    -- The implications are (recursively) already filtered
\end{code}


%************************************************************************
%*									*
                    CtEvidence
         The "flavor" of a canonical constraint
%*									*
%************************************************************************

\begin{code}
isWantedCt :: Ct -> Bool
isWantedCt = isWanted . cc_ev 

isGivenCt :: Ct -> Bool
isGivenCt = isGiven . cc_ev

isDerivedCt :: Ct -> Bool
isDerivedCt = isDerived . cc_ev

isCTyEqCan :: Ct -> Bool 
isCTyEqCan (CTyEqCan {})  = True 
isCTyEqCan (CFunEqCan {}) = False
isCTyEqCan _              = False 

isCDictCan_Maybe :: Ct -> Maybe Class
isCDictCan_Maybe (CDictCan {cc_class = cls })  = Just cls
isCDictCan_Maybe _              = Nothing

isCIrredEvCan :: Ct -> Bool
isCIrredEvCan (CIrredEvCan {}) = True
isCIrredEvCan _                = False

isCFunEqCan_Maybe :: Ct -> Maybe TyCon
isCFunEqCan_Maybe (CFunEqCan { cc_fun = tc }) = Just tc
isCFunEqCan_Maybe _ = Nothing

isCFunEqCan :: Ct -> Bool
isCFunEqCan (CFunEqCan {}) = True
isCFunEqCan _ = False

isCNonCanonical :: Ct -> Bool
isCNonCanonical (CNonCanonical {}) = True 
isCNonCanonical _ = False 

isHoleCt:: Ct -> Bool
isHoleCt (CHoleCan {}) = True
isHoleCt _ = False

\end{code}

\begin{code}
instance Outputable Ct where
  ppr ct = ppr (cc_ev ct) <+> parens (text ct_sort)
         where ct_sort = case ct of 
                           CTyEqCan {}      -> "CTyEqCan"
                           CFunEqCan {}     -> "CFunEqCan"
                           CNonCanonical {} -> "CNonCanonical"
                           CDictCan {}      -> "CDictCan"
                           CIrredEvCan {}   -> "CIrredEvCan"
                           CHoleCan {}      -> "CHoleCan"
\end{code}

\begin{code}
singleCt :: Ct -> Cts 
singleCt = unitBag 

andCts :: Cts -> Cts -> Cts 
andCts = unionBags

extendCts :: Cts -> Ct -> Cts 
extendCts = snocBag 

andManyCts :: [Cts] -> Cts 
andManyCts = unionManyBags

emptyCts :: Cts 
emptyCts = emptyBag

isEmptyCts :: Cts -> Bool
isEmptyCts = isEmptyBag
\end{code}

%************************************************************************
%*									*
		Wanted constraints
     These are forced to be in TcRnTypes because
     	   TcLclEnv mentions WantedConstraints
	   WantedConstraint mentions CtLoc
	   CtLoc mentions ErrCtxt
	   ErrCtxt mentions TcM
%*									*
v%************************************************************************

\begin{code}

data WantedConstraints
  = WC { wc_flat  :: Cts               -- Unsolved constraints, all wanted
       , wc_impl  :: Bag Implication
       , wc_insol :: Cts               -- Insoluble constraints, can be
                                       -- wanted, given, or derived
                                       -- See Note [Insoluble constraints]
    }

emptyWC :: WantedConstraints
emptyWC = WC { wc_flat = emptyBag, wc_impl = emptyBag, wc_insol = emptyBag }

mkFlatWC :: [Ct] -> WantedConstraints
mkFlatWC cts 
  = WC { wc_flat = listToBag cts, wc_impl = emptyBag, wc_insol = emptyBag }

isEmptyWC :: WantedConstraints -> Bool
isEmptyWC (WC { wc_flat = f, wc_impl = i, wc_insol = n })
  = isEmptyBag f && isEmptyBag i && isEmptyBag n

insolubleWC :: WantedConstraints -> Bool
-- True if there are any insoluble constraints in the wanted bag
insolubleWC wc = not (isEmptyBag (wc_insol wc))
               || anyBag ic_insol (wc_impl wc)

andWC :: WantedConstraints -> WantedConstraints -> WantedConstraints
andWC (WC { wc_flat = f1, wc_impl = i1, wc_insol = n1 })
      (WC { wc_flat = f2, wc_impl = i2, wc_insol = n2 })
  = WC { wc_flat  = f1 `unionBags` f2
       , wc_impl  = i1 `unionBags` i2
       , wc_insol = n1 `unionBags` n2 }

unionsWC :: [WantedConstraints] -> WantedConstraints
unionsWC = foldr andWC emptyWC

addFlats :: WantedConstraints -> Bag Ct -> WantedConstraints
addFlats wc cts
  = wc { wc_flat = wc_flat wc `unionBags` cts }

addImplics :: WantedConstraints -> Bag Implication -> WantedConstraints
addImplics wc implic = wc { wc_impl = wc_impl wc `unionBags` implic }

addInsols :: WantedConstraints -> Bag Ct -> WantedConstraints
addInsols wc cts
  = wc { wc_insol = wc_insol wc `unionBags` cts }

instance Outputable WantedConstraints where
  ppr (WC {wc_flat = f, wc_impl = i, wc_insol = n})
   = ptext (sLit "WC") <+> braces (vcat
        [ if isEmptyBag f then empty else
          ptext (sLit "wc_flat =")  <+> pprBag ppr f
        , if isEmptyBag i then empty else
          ptext (sLit "wc_impl =")  <+> pprBag ppr i
        , if isEmptyBag n then empty else
          ptext (sLit "wc_insol =") <+> pprBag ppr n ])

pprBag :: (a -> SDoc) -> Bag a -> SDoc
pprBag pp b = foldrBag (($$) . pp) empty b
\end{code}
 

%************************************************************************
%*									*
                Implication constraints
%*                                                                      *
%************************************************************************

\begin{code}
data Implication
  = Implic {  
      ic_untch :: Untouchables, -- Untouchables: unification variables
                                -- free in the environment

      ic_skols  :: [TcTyVar],    -- Introduced skolems 
      ic_info  :: SkolemInfo,    -- See Note [Skolems in an implication]
                                 -- See Note [Shadowing in a constraint]

      ic_fsks  :: [TcTyVar],   -- Extra flatten-skolems introduced by the flattening
                               -- done by canonicalisation. 

      ic_given  :: [EvVar],      -- Given evidence variables
      		   		 --   (order does not matter)

      ic_env   :: TcLclEnv,      -- Gives the source location and error context
                                 -- for the implicatdion, and hence for all the
                                 -- given evidence variables

      ic_wanted :: WantedConstraints,  -- The wanted
      ic_insol  :: Bool,               -- True iff insolubleWC ic_wanted is true

      ic_binds  :: EvBindsVar   -- Points to the place to fill in the
                                -- abstraction and bindings
    }

instance Outputable Implication where
  ppr (Implic { ic_untch = untch, ic_skols = skols, ic_fsks = fsks
              , ic_given = given
              , ic_wanted = wanted
              , ic_binds = binds, ic_info = info })
   = ptext (sLit "Implic") <+> braces 
     (sep [ ptext (sLit "Untouchables =") <+> ppr untch
          , ptext (sLit "Skolems =") <+> ppr skols
          , ptext (sLit "Flatten-skolems =") <+> ppr fsks
          , ptext (sLit "Given =") <+> pprEvVars given
          , ptext (sLit "Wanted =") <+> ppr wanted
          , ptext (sLit "Binds =") <+> ppr binds
          , pprSkolInfo info ])
\end{code}

Note [Shadowing in a constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We assume NO SHADOWING in a constraint.  Specifically
 * The unification variables are all implicitly quantified at top
   level, and are all unique
 * The skolem varibles bound in ic_skols are all freah when the
   implication is created.
So we can safely substitute. For example, if we have
   forall a.  a~Int => ...(forall b. ...a...)...
we can push the (a~Int) constraint inwards in the "givens" without
worrying that 'b' might clash.

Note [Skolems in an implication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The skolems in an implication are not there to perform a skolem escape
check.  That happens because all the environment variables are in the
untouchables, and therefore cannot be unified with anything at all,
let alone the skolems.

Instead, ic_skols is used only when considering floating a constraint
outside the implication in TcSimplify.floatEqualities or 
TcSimplify.approximateImplications

Note [Insoluble constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some of the errors that we get during canonicalization are best
reported when all constraints have been simplified as much as
possible. For instance, assume that during simplification the
following constraints arise:
   
 [Wanted]   F alpha ~  uf1 
 [Wanted]   beta ~ uf1 beta 

When canonicalizing the wanted (beta ~ uf1 beta), if we eagerly fail
we will simply see a message:
    'Can't construct the infinite type  beta ~ uf1 beta' 
and the user has no idea what the uf1 variable is.

Instead our plan is that we will NOT fail immediately, but:
    (1) Record the "frozen" error in the ic_insols field
    (2) Isolate the offending constraint from the rest of the inerts 
    (3) Keep on simplifying/canonicalizing

At the end, we will hopefully have substituted uf1 := F alpha, and we
will be able to report a more informative error:
    'Can't construct the infinite type beta ~ F alpha beta'

Insoluble constraints *do* include Derived constraints. For example,
a functional dependency might give rise to [D] Int ~ Bool, and we must
report that.  If insolubles did not contain Deriveds, reportErrors would
never see it.


%************************************************************************
%*									*
            Pretty printing
%*									*
%************************************************************************

\begin{code}
pprEvVars :: [EvVar] -> SDoc	-- Print with their types
pprEvVars ev_vars = vcat (map pprEvVarWithType ev_vars)

pprEvVarTheta :: [EvVar] -> SDoc
pprEvVarTheta ev_vars = pprTheta (map evVarPred ev_vars)
                              
pprEvVarWithType :: EvVar -> SDoc
pprEvVarWithType v = ppr v <+> dcolon <+> pprType (evVarPred v)

pprWantedsWithLocs :: WantedConstraints -> SDoc
pprWantedsWithLocs wcs
  =  vcat [ pprBag ppr (wc_flat wcs)
          , pprBag ppr (wc_impl wcs)
          , pprBag ppr (wc_insol wcs) ]
\end{code}

%************************************************************************
%*									*
            CtEvidence
%*									*
%************************************************************************

Note [Evidence field of CtEvidence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During constraint solving we never look at the type of ctev_evtm, or
ctev_evar; instead we look at the cte_pred field.  The evtm/evar field
may be un-zonked.

\begin{code}
data CtEvidence 
  = CtGiven { ctev_pred :: TcPredType
            , ctev_evtm :: EvTerm }          -- See Note [Evidence field of CtEvidence]
    -- Truly given, not depending on subgoals
    -- NB: Spontaneous unifications belong here
    
  | CtWanted { ctev_pred :: TcPredType
             , ctev_evar :: EvVar }          -- See Note [Evidence field of CtEvidence]
    -- Wanted goal 
    
  | CtDerived { ctev_pred :: TcPredType }
    -- A goal that we don't really have to solve and can't immediately 
    -- rewrite anything other than a derived (there's no evidence!) 
    -- but if we do manage to solve it may help in solving other goals.

data CtFlavour = Given | Wanted | Derived

ctFlavour :: Ct -> CtFlavour
ctFlavour ct = ctEvFlavour (cc_ev ct)

ctEvFlavour :: CtEvidence -> CtFlavour
ctEvFlavour (CtGiven {})   = Given
ctEvFlavour (CtWanted {})  = Wanted
ctEvFlavour (CtDerived {}) = Derived

ctEvPred :: CtEvidence -> TcPredType
-- The predicate of a flavor
ctEvPred = ctev_pred

ctEvTerm :: CtEvidence -> EvTerm
ctEvTerm (CtGiven   { ctev_evtm = tm }) = tm
ctEvTerm (CtWanted  { ctev_evar = ev }) = EvId ev
ctEvTerm ctev@(CtDerived {}) = pprPanic "ctEvTerm: derived constraint cannot have id" 
                                      (ppr ctev)

ctEvId :: CtEvidence -> TcId
ctEvId (CtWanted  { ctev_evar = ev }) = ev
ctEvId ctev = pprPanic "ctEvId:" (ppr ctev)

instance Outputable CtFlavour where
  ppr Given   = ptext (sLit "[G]")
  ppr Wanted  = ptext (sLit "[W]")
  ppr Derived = ptext (sLit "[D]")

instance Outputable CtEvidence where
  ppr fl = case fl of
             CtGiven {}   -> ptext (sLit "[G]") <+> ppr (ctev_evtm fl) <+> ppr_pty
             CtWanted {}  -> ptext (sLit "[W]") <+> ppr (ctev_evar fl) <+> ppr_pty
             CtDerived {} -> ptext (sLit "[D]") <+> text "_" <+> ppr_pty
         where ppr_pty = dcolon <+> ppr (ctEvPred fl)

isWanted :: CtEvidence -> Bool
isWanted (CtWanted {}) = True
isWanted _ = False

isGiven :: CtEvidence -> Bool
isGiven (CtGiven {})  = True
isGiven _ = False

isDerived :: CtEvidence -> Bool
isDerived (CtDerived {}) = True
isDerived _              = False

canSolve :: CtFlavour -> CtFlavour -> Bool
-- canSolve ctid1 ctid2 
-- The constraint ctid1 can be used to solve ctid2 
-- "to solve" means a reaction where the active parts of the two constraints match.
--  active(F xis ~ xi) = F xis 
--  active(tv ~ xi)    = tv 
--  active(D xis)      = D xis 
--  active(IP nm ty)   = nm 
--
-- NB:  either (a `canSolve` b) or (b `canSolve` a) must hold
-----------------------------------------
canSolve Given   _       = True 
canSolve Wanted  Derived = True
canSolve Wanted  Wanted  = True
canSolve Derived Derived = True  -- Derived can't solve wanted/given
canSolve _ _ = False  	       	     	   -- No evidence for a derived, anyway

canRewrite :: CtFlavour -> CtFlavour -> Bool 
-- canRewrite ct1 ct2 
-- The equality constraint ct1 can be used to rewrite inside ct2 
canRewrite = canSolve 
\end{code}

%************************************************************************
%*									*
            CtLoc
%*									*
%************************************************************************

The 'CtLoc' gives information about where a constraint came from.
This is important for decent error message reporting because
dictionaries don't appear in the original source code.
type will evolve...

\begin{code}
data CtLoc = CtLoc { ctl_origin :: CtOrigin
                   , ctl_env ::  TcLclEnv
                   , ctl_depth :: SubGoalDepth }
  -- The TcLclEnv includes particularly
  --    source location:  tcl_loc   :: SrcSpan
  --    context:          tcl_ctxt  :: [ErrCtxt]
  --    binder stack:     tcl_bndrs :: [TcIdBinders]

type SubGoalDepth = Int -- An ever increasing number used to restrict 
                        -- simplifier iterations. Bounded by -fcontext-stack.
                        -- See Note [WorkList]

mkGivenLoc :: SkolemInfo -> TcLclEnv -> CtLoc
mkGivenLoc skol_info env = CtLoc { ctl_origin = GivenOrigin skol_info
                                 , ctl_env = env
                                 , ctl_depth = 0 }

ctLocEnv :: CtLoc -> TcLclEnv
ctLocEnv = ctl_env

ctLocDepth :: CtLoc -> SubGoalDepth
ctLocDepth = ctl_depth

ctLocOrigin :: CtLoc -> CtOrigin
ctLocOrigin = ctl_origin

ctLocSpan :: CtLoc -> SrcSpan
ctLocSpan (CtLoc { ctl_env = lcl}) = tcl_loc lcl

bumpCtLocDepth :: CtLoc -> CtLoc
bumpCtLocDepth loc@(CtLoc { ctl_depth = d }) = loc { ctl_depth = d+1 }

setCtLocOrigin :: CtLoc -> CtOrigin -> CtLoc
setCtLocOrigin ctl orig = ctl { ctl_origin = orig }

setCtLocEnv :: CtLoc -> TcLclEnv -> CtLoc
setCtLocEnv ctl env = ctl { ctl_env = env }

pushErrCtxt :: CtOrigin -> ErrCtxt -> CtLoc -> CtLoc
pushErrCtxt o err loc@(CtLoc { ctl_env = lcl }) 
  = loc { ctl_origin = o, ctl_env = lcl { tcl_ctxt = err : tcl_ctxt lcl } }

pushErrCtxtSameOrigin :: ErrCtxt -> CtLoc -> CtLoc
-- Just add information w/o updating the origin!
pushErrCtxtSameOrigin err loc@(CtLoc { ctl_env = lcl })
  = loc { ctl_env = lcl { tcl_ctxt = err : tcl_ctxt lcl } }

pprArising :: CtOrigin -> SDoc
-- Used for the main, top-level error message
-- We've done special processing for TypeEq and FunDep origins
pprArising (TypeEqOrigin {}) = empty
pprArising FunDepOrigin      = empty
pprArising orig              = text "arising from" <+> ppr orig

pprArisingAt :: CtLoc -> SDoc
pprArisingAt (CtLoc { ctl_origin = o, ctl_env = lcl}) 
  = sep [ text "arising from" <+> ppr o
        , text "at" <+> ppr (tcl_loc lcl)]
\end{code}

%************************************************************************
%*                                                                      *
                SkolemInfo
%*                                                                      *
%************************************************************************

\begin{code}
-- SkolemInfo gives the origin of *given* constraints
--   a) type variables are skolemised
--   b) an implication constraint is generated
data SkolemInfo
  = SigSkol UserTypeCtxt	-- A skolem that is created by instantiating
            Type                -- a programmer-supplied type signature
				-- Location of the binding site is on the TyVar

	-- The rest are for non-scoped skolems
  | ClsSkol Class	-- Bound at a class decl
  | InstSkol 		-- Bound at an instance decl
  | DataSkol            -- Bound at a data type declaration
  | FamInstSkol         -- Bound at a family instance decl
  | PatSkol 	        -- An existential type variable bound by a pattern for
      DataCon           -- a data constructor with an existential type.
      (HsMatchContext Name)	
	     --	e.g.   data T = forall a. Eq a => MkT a
	     --        f (MkT x) = ...
	     -- The pattern MkT x will allocate an existential type
	     -- variable for 'a'.  

  | ArrowSkol 	  	-- An arrow form (see TcArrows)

  | IPSkol [HsIPName]   -- Binding site of an implicit parameter

  | RuleSkol RuleName	-- The LHS of a RULE

  | InferSkol [(Name,TcType)]
                        -- We have inferred a type for these (mutually-recursivive)
                        -- polymorphic Ids, and are now checking that their RHS
                        -- constraints are satisfied.

  | BracketSkol         -- Template Haskell bracket

  | UnifyForAllSkol     -- We are unifying two for-all types
       [TcTyVar]        -- The instantiated skolem variables
       TcType           -- The instantiated type *inside* the forall

  | UnkSkol             -- Unhelpful info (until I improve it)

instance Outputable SkolemInfo where
  ppr = pprSkolInfo

pprSkolInfo :: SkolemInfo -> SDoc
-- Complete the sentence "is a rigid type variable bound by..."
pprSkolInfo (SigSkol (FunSigCtxt f) ty)
                            = hang (ptext (sLit "the type signature for"))
                                 2 (ppr f <+> dcolon <+> ppr ty)
pprSkolInfo (SigSkol cx ty) = hang (pprUserTypeCtxt cx <> colon)
                                 2 (ppr ty)
pprSkolInfo (IPSkol ips)    = ptext (sLit "the implicit-parameter bindings for")
                              <+> pprWithCommas ppr ips
pprSkolInfo (ClsSkol cls)   = ptext (sLit "the class declaration for") <+> quotes (ppr cls)
pprSkolInfo InstSkol        = ptext (sLit "the instance declaration")
pprSkolInfo DataSkol        = ptext (sLit "the data type declaration")
pprSkolInfo FamInstSkol     = ptext (sLit "the family instance declaration")
pprSkolInfo BracketSkol     = ptext (sLit "a Template Haskell bracket")
pprSkolInfo (RuleSkol name) = ptext (sLit "the RULE") <+> doubleQuotes (ftext name)
pprSkolInfo ArrowSkol       = ptext (sLit "the arrow form")
pprSkolInfo (PatSkol dc mc)  = sep [ ptext (sLit "a pattern with constructor")
                                   , nest 2 $ ppr dc <+> dcolon
                                              <+> ppr (dataConUserType dc) <> comma
                                  , ptext (sLit "in") <+> pprMatchContext mc ]
pprSkolInfo (InferSkol ids) = sep [ ptext (sLit "the inferred type of")
                                  , vcat [ ppr name <+> dcolon <+> ppr ty
                                         | (name,ty) <- ids ]]
pprSkolInfo (UnifyForAllSkol tvs ty) = ptext (sLit "the type") <+> ppr (mkForAllTys tvs ty)

-- UnkSkol
-- For type variables the others are dealt with by pprSkolTvBinding.  
-- For Insts, these cases should not happen
pprSkolInfo UnkSkol = WARN( True, text "pprSkolInfo: UnkSkol" ) ptext (sLit "UnkSkol")
\end{code}


%************************************************************************
%*									*
            CtOrigin
%*									*
%************************************************************************

\begin{code}
data CtOrigin
  = GivenOrigin SkolemInfo

  -- All the others are for *wanted* constraints
  | OccurrenceOf Name		-- Occurrence of an overloaded identifier
  | AppOrigin	 		-- An application of some kind

  | SpecPragOrigin Name		-- Specialisation pragma for identifier

  | TypeEqOrigin { uo_actual   :: TcType
                 , uo_expected :: TcType }
  | KindEqOrigin 
      TcType TcType             -- A kind equality arising from unifying these two types
      CtOrigin                  -- originally arising from this

  | IPOccOrigin  HsIPName 	-- Occurrence of an implicit parameter

  | LiteralOrigin (HsOverLit Name)	-- Occurrence of a literal
  | NegateOrigin			-- Occurrence of syntactic negation

  | ArithSeqOrigin (ArithSeqInfo Name) -- [x..], [x..y] etc
  | PArrSeqOrigin  (ArithSeqInfo Name) -- [:x..y:] and [:x,y..z:]
  | SectionOrigin
  | TupleOrigin			       -- (..,..)
  | AmbigOrigin Name	-- f :: ty
  | ExprSigOrigin	-- e :: ty
  | PatSigOrigin	-- p :: ty
  | PatOrigin	        -- Instantiating a polytyped pattern at a constructor
  | RecordUpdOrigin
  | ViewPatOrigin

  | ScOrigin	        -- Typechecking superclasses of an instance declaration
  | DerivOrigin		-- Typechecking deriving
  | StandAloneDerivOrigin -- Typechecking stand-alone deriving
  | DefaultOrigin	-- Typechecking a default decl
  | DoOrigin		-- Arising from a do expression
  | MCompOrigin         -- Arising from a monad comprehension
  | IfOrigin            -- Arising from an if statement
  | ProcOrigin		-- Arising from a proc expression
  | AnnOrigin           -- An annotation
  | FunDepOrigin
  | HoleOrigin

pprO :: CtOrigin -> SDoc
pprO (GivenOrigin sk)      = ppr sk
pprO (OccurrenceOf name)   = hsep [ptext (sLit "a use of"), quotes (ppr name)]
pprO AppOrigin             = ptext (sLit "an application")
pprO (SpecPragOrigin name) = hsep [ptext (sLit "a specialisation pragma for"), quotes (ppr name)]
pprO (IPOccOrigin name)    = hsep [ptext (sLit "a use of implicit parameter"), quotes (ppr name)]
pprO RecordUpdOrigin       = ptext (sLit "a record update")
pprO (AmbigOrigin name)    = ptext (sLit "the ambiguity check for") <+> quotes (ppr name)
pprO ExprSigOrigin         = ptext (sLit "an expression type signature")
pprO PatSigOrigin          = ptext (sLit "a pattern type signature")
pprO PatOrigin             = ptext (sLit "a pattern")
pprO ViewPatOrigin         = ptext (sLit "a view pattern")
pprO IfOrigin              = ptext (sLit "an if statement")
pprO (LiteralOrigin lit)   = hsep [ptext (sLit "the literal"), quotes (ppr lit)]
pprO (ArithSeqOrigin seq)  = hsep [ptext (sLit "the arithmetic sequence"), quotes (ppr seq)]
pprO (PArrSeqOrigin seq)   = hsep [ptext (sLit "the parallel array sequence"), quotes (ppr seq)]
pprO SectionOrigin	   = ptext (sLit "an operator section")
pprO TupleOrigin	   = ptext (sLit "a tuple")
pprO NegateOrigin	   = ptext (sLit "a use of syntactic negation")
pprO ScOrigin	           = ptext (sLit "the superclasses of an instance declaration")
pprO DerivOrigin	   = ptext (sLit "the 'deriving' clause of a data type declaration")
pprO StandAloneDerivOrigin = ptext (sLit "a 'deriving' declaration")
pprO DefaultOrigin	   = ptext (sLit "a 'default' declaration")
pprO DoOrigin	           = ptext (sLit "a do statement")
pprO MCompOrigin           = ptext (sLit "a statement in a monad comprehension")
pprO ProcOrigin	           = ptext (sLit "a proc expression")
pprO (TypeEqOrigin t1 t2)  = ptext (sLit "a type equality") <+> sep [ppr t1, char '~', ppr t2]
pprO (KindEqOrigin t1 t2 _) = ptext (sLit "a kind equality arising from") <+> sep [ppr t1, char '~', ppr t2]
pprO AnnOrigin             = ptext (sLit "an annotation")
pprO FunDepOrigin          = ptext (sLit "a functional dependency")
pprO HoleOrigin            = ptext (sLit "a use of the hole") <+> quotes (ptext $ sLit "_")

instance Outputable CtOrigin where
  ppr = pprO
\end{code}
Back to Top