/fs/btrfs/ordered-data.c
C | 983 lines | 670 code | 105 blank | 208 comment | 121 complexity | 8261c992af5aafebe7eb7689fd6f0b0c MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
1/* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19#include <linux/slab.h> 20#include <linux/blkdev.h> 21#include <linux/writeback.h> 22#include <linux/pagevec.h> 23#include "ctree.h" 24#include "transaction.h" 25#include "btrfs_inode.h" 26#include "extent_io.h" 27 28static u64 entry_end(struct btrfs_ordered_extent *entry) 29{ 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33} 34 35/* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40{ 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60} 61 62/* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68{ 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114} 115 116/* 117 * helper to check if a given offset is inside a given entry 118 */ 119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120{ 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125} 126 127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 128 u64 len) 129{ 130 if (file_offset + len <= entry->file_offset || 131 entry->file_offset + entry->len <= file_offset) 132 return 0; 133 return 1; 134} 135 136/* 137 * look find the first ordered struct that has this offset, otherwise 138 * the first one less than this offset 139 */ 140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 141 u64 file_offset) 142{ 143 struct rb_root *root = &tree->tree; 144 struct rb_node *prev = NULL; 145 struct rb_node *ret; 146 struct btrfs_ordered_extent *entry; 147 148 if (tree->last) { 149 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 150 rb_node); 151 if (offset_in_entry(entry, file_offset)) 152 return tree->last; 153 } 154 ret = __tree_search(root, file_offset, &prev); 155 if (!ret) 156 ret = prev; 157 if (ret) 158 tree->last = ret; 159 return ret; 160} 161 162/* allocate and add a new ordered_extent into the per-inode tree. 163 * file_offset is the logical offset in the file 164 * 165 * start is the disk block number of an extent already reserved in the 166 * extent allocation tree 167 * 168 * len is the length of the extent 169 * 170 * The tree is given a single reference on the ordered extent that was 171 * inserted. 172 */ 173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 174 u64 start, u64 len, u64 disk_len, 175 int type, int dio, int compress_type) 176{ 177 struct btrfs_ordered_inode_tree *tree; 178 struct rb_node *node; 179 struct btrfs_ordered_extent *entry; 180 181 tree = &BTRFS_I(inode)->ordered_tree; 182 entry = kzalloc(sizeof(*entry), GFP_NOFS); 183 if (!entry) 184 return -ENOMEM; 185 186 entry->file_offset = file_offset; 187 entry->start = start; 188 entry->len = len; 189 entry->disk_len = disk_len; 190 entry->bytes_left = len; 191 entry->inode = inode; 192 entry->compress_type = compress_type; 193 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 194 set_bit(type, &entry->flags); 195 196 if (dio) 197 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 198 199 /* one ref for the tree */ 200 atomic_set(&entry->refs, 1); 201 init_waitqueue_head(&entry->wait); 202 INIT_LIST_HEAD(&entry->list); 203 INIT_LIST_HEAD(&entry->root_extent_list); 204 205 trace_btrfs_ordered_extent_add(inode, entry); 206 207 spin_lock(&tree->lock); 208 node = tree_insert(&tree->tree, file_offset, 209 &entry->rb_node); 210 BUG_ON(node); 211 spin_unlock(&tree->lock); 212 213 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 214 list_add_tail(&entry->root_extent_list, 215 &BTRFS_I(inode)->root->fs_info->ordered_extents); 216 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 217 218 BUG_ON(node); 219 return 0; 220} 221 222int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 223 u64 start, u64 len, u64 disk_len, int type) 224{ 225 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 226 disk_len, type, 0, 227 BTRFS_COMPRESS_NONE); 228} 229 230int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 231 u64 start, u64 len, u64 disk_len, int type) 232{ 233 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 234 disk_len, type, 1, 235 BTRFS_COMPRESS_NONE); 236} 237 238int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 239 u64 start, u64 len, u64 disk_len, 240 int type, int compress_type) 241{ 242 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 243 disk_len, type, 0, 244 compress_type); 245} 246 247/* 248 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 249 * when an ordered extent is finished. If the list covers more than one 250 * ordered extent, it is split across multiples. 251 */ 252int btrfs_add_ordered_sum(struct inode *inode, 253 struct btrfs_ordered_extent *entry, 254 struct btrfs_ordered_sum *sum) 255{ 256 struct btrfs_ordered_inode_tree *tree; 257 258 tree = &BTRFS_I(inode)->ordered_tree; 259 spin_lock(&tree->lock); 260 list_add_tail(&sum->list, &entry->list); 261 spin_unlock(&tree->lock); 262 return 0; 263} 264 265/* 266 * this is used to account for finished IO across a given range 267 * of the file. The IO may span ordered extents. If 268 * a given ordered_extent is completely done, 1 is returned, otherwise 269 * 0. 270 * 271 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 272 * to make sure this function only returns 1 once for a given ordered extent. 273 * 274 * file_offset is updated to one byte past the range that is recorded as 275 * complete. This allows you to walk forward in the file. 276 */ 277int btrfs_dec_test_first_ordered_pending(struct inode *inode, 278 struct btrfs_ordered_extent **cached, 279 u64 *file_offset, u64 io_size) 280{ 281 struct btrfs_ordered_inode_tree *tree; 282 struct rb_node *node; 283 struct btrfs_ordered_extent *entry = NULL; 284 int ret; 285 u64 dec_end; 286 u64 dec_start; 287 u64 to_dec; 288 289 tree = &BTRFS_I(inode)->ordered_tree; 290 spin_lock(&tree->lock); 291 node = tree_search(tree, *file_offset); 292 if (!node) { 293 ret = 1; 294 goto out; 295 } 296 297 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 298 if (!offset_in_entry(entry, *file_offset)) { 299 ret = 1; 300 goto out; 301 } 302 303 dec_start = max(*file_offset, entry->file_offset); 304 dec_end = min(*file_offset + io_size, entry->file_offset + 305 entry->len); 306 *file_offset = dec_end; 307 if (dec_start > dec_end) { 308 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 309 (unsigned long long)dec_start, 310 (unsigned long long)dec_end); 311 } 312 to_dec = dec_end - dec_start; 313 if (to_dec > entry->bytes_left) { 314 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 315 (unsigned long long)entry->bytes_left, 316 (unsigned long long)to_dec); 317 } 318 entry->bytes_left -= to_dec; 319 if (entry->bytes_left == 0) 320 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 321 else 322 ret = 1; 323out: 324 if (!ret && cached && entry) { 325 *cached = entry; 326 atomic_inc(&entry->refs); 327 } 328 spin_unlock(&tree->lock); 329 return ret == 0; 330} 331 332/* 333 * this is used to account for finished IO across a given range 334 * of the file. The IO should not span ordered extents. If 335 * a given ordered_extent is completely done, 1 is returned, otherwise 336 * 0. 337 * 338 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 339 * to make sure this function only returns 1 once for a given ordered extent. 340 */ 341int btrfs_dec_test_ordered_pending(struct inode *inode, 342 struct btrfs_ordered_extent **cached, 343 u64 file_offset, u64 io_size) 344{ 345 struct btrfs_ordered_inode_tree *tree; 346 struct rb_node *node; 347 struct btrfs_ordered_extent *entry = NULL; 348 int ret; 349 350 tree = &BTRFS_I(inode)->ordered_tree; 351 spin_lock(&tree->lock); 352 node = tree_search(tree, file_offset); 353 if (!node) { 354 ret = 1; 355 goto out; 356 } 357 358 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 359 if (!offset_in_entry(entry, file_offset)) { 360 ret = 1; 361 goto out; 362 } 363 364 if (io_size > entry->bytes_left) { 365 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 366 (unsigned long long)entry->bytes_left, 367 (unsigned long long)io_size); 368 } 369 entry->bytes_left -= io_size; 370 if (entry->bytes_left == 0) 371 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 372 else 373 ret = 1; 374out: 375 if (!ret && cached && entry) { 376 *cached = entry; 377 atomic_inc(&entry->refs); 378 } 379 spin_unlock(&tree->lock); 380 return ret == 0; 381} 382 383/* 384 * used to drop a reference on an ordered extent. This will free 385 * the extent if the last reference is dropped 386 */ 387int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 388{ 389 struct list_head *cur; 390 struct btrfs_ordered_sum *sum; 391 392 trace_btrfs_ordered_extent_put(entry->inode, entry); 393 394 if (atomic_dec_and_test(&entry->refs)) { 395 while (!list_empty(&entry->list)) { 396 cur = entry->list.next; 397 sum = list_entry(cur, struct btrfs_ordered_sum, list); 398 list_del(&sum->list); 399 kfree(sum); 400 } 401 kfree(entry); 402 } 403 return 0; 404} 405 406/* 407 * remove an ordered extent from the tree. No references are dropped 408 * and you must wake_up entry->wait. You must hold the tree lock 409 * while you call this function. 410 */ 411static int __btrfs_remove_ordered_extent(struct inode *inode, 412 struct btrfs_ordered_extent *entry) 413{ 414 struct btrfs_ordered_inode_tree *tree; 415 struct btrfs_root *root = BTRFS_I(inode)->root; 416 struct rb_node *node; 417 418 tree = &BTRFS_I(inode)->ordered_tree; 419 node = &entry->rb_node; 420 rb_erase(node, &tree->tree); 421 tree->last = NULL; 422 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 423 424 spin_lock(&root->fs_info->ordered_extent_lock); 425 list_del_init(&entry->root_extent_list); 426 427 trace_btrfs_ordered_extent_remove(inode, entry); 428 429 /* 430 * we have no more ordered extents for this inode and 431 * no dirty pages. We can safely remove it from the 432 * list of ordered extents 433 */ 434 if (RB_EMPTY_ROOT(&tree->tree) && 435 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 436 list_del_init(&BTRFS_I(inode)->ordered_operations); 437 } 438 spin_unlock(&root->fs_info->ordered_extent_lock); 439 440 return 0; 441} 442 443/* 444 * remove an ordered extent from the tree. No references are dropped 445 * but any waiters are woken. 446 */ 447int btrfs_remove_ordered_extent(struct inode *inode, 448 struct btrfs_ordered_extent *entry) 449{ 450 struct btrfs_ordered_inode_tree *tree; 451 int ret; 452 453 tree = &BTRFS_I(inode)->ordered_tree; 454 spin_lock(&tree->lock); 455 ret = __btrfs_remove_ordered_extent(inode, entry); 456 spin_unlock(&tree->lock); 457 wake_up(&entry->wait); 458 459 return ret; 460} 461 462/* 463 * wait for all the ordered extents in a root. This is done when balancing 464 * space between drives. 465 */ 466int btrfs_wait_ordered_extents(struct btrfs_root *root, 467 int nocow_only, int delay_iput) 468{ 469 struct list_head splice; 470 struct list_head *cur; 471 struct btrfs_ordered_extent *ordered; 472 struct inode *inode; 473 474 INIT_LIST_HEAD(&splice); 475 476 spin_lock(&root->fs_info->ordered_extent_lock); 477 list_splice_init(&root->fs_info->ordered_extents, &splice); 478 while (!list_empty(&splice)) { 479 cur = splice.next; 480 ordered = list_entry(cur, struct btrfs_ordered_extent, 481 root_extent_list); 482 if (nocow_only && 483 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 484 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 485 list_move(&ordered->root_extent_list, 486 &root->fs_info->ordered_extents); 487 cond_resched_lock(&root->fs_info->ordered_extent_lock); 488 continue; 489 } 490 491 list_del_init(&ordered->root_extent_list); 492 atomic_inc(&ordered->refs); 493 494 /* 495 * the inode may be getting freed (in sys_unlink path). 496 */ 497 inode = igrab(ordered->inode); 498 499 spin_unlock(&root->fs_info->ordered_extent_lock); 500 501 if (inode) { 502 btrfs_start_ordered_extent(inode, ordered, 1); 503 btrfs_put_ordered_extent(ordered); 504 if (delay_iput) 505 btrfs_add_delayed_iput(inode); 506 else 507 iput(inode); 508 } else { 509 btrfs_put_ordered_extent(ordered); 510 } 511 512 spin_lock(&root->fs_info->ordered_extent_lock); 513 } 514 spin_unlock(&root->fs_info->ordered_extent_lock); 515 return 0; 516} 517 518/* 519 * this is used during transaction commit to write all the inodes 520 * added to the ordered operation list. These files must be fully on 521 * disk before the transaction commits. 522 * 523 * we have two modes here, one is to just start the IO via filemap_flush 524 * and the other is to wait for all the io. When we wait, we have an 525 * extra check to make sure the ordered operation list really is empty 526 * before we return 527 */ 528int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 529{ 530 struct btrfs_inode *btrfs_inode; 531 struct inode *inode; 532 struct list_head splice; 533 534 INIT_LIST_HEAD(&splice); 535 536 mutex_lock(&root->fs_info->ordered_operations_mutex); 537 spin_lock(&root->fs_info->ordered_extent_lock); 538again: 539 list_splice_init(&root->fs_info->ordered_operations, &splice); 540 541 while (!list_empty(&splice)) { 542 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 543 ordered_operations); 544 545 inode = &btrfs_inode->vfs_inode; 546 547 list_del_init(&btrfs_inode->ordered_operations); 548 549 /* 550 * the inode may be getting freed (in sys_unlink path). 551 */ 552 inode = igrab(inode); 553 554 if (!wait && inode) { 555 list_add_tail(&BTRFS_I(inode)->ordered_operations, 556 &root->fs_info->ordered_operations); 557 } 558 spin_unlock(&root->fs_info->ordered_extent_lock); 559 560 if (inode) { 561 if (wait) 562 btrfs_wait_ordered_range(inode, 0, (u64)-1); 563 else 564 filemap_flush(inode->i_mapping); 565 btrfs_add_delayed_iput(inode); 566 } 567 568 cond_resched(); 569 spin_lock(&root->fs_info->ordered_extent_lock); 570 } 571 if (wait && !list_empty(&root->fs_info->ordered_operations)) 572 goto again; 573 574 spin_unlock(&root->fs_info->ordered_extent_lock); 575 mutex_unlock(&root->fs_info->ordered_operations_mutex); 576 577 return 0; 578} 579 580/* 581 * Used to start IO or wait for a given ordered extent to finish. 582 * 583 * If wait is one, this effectively waits on page writeback for all the pages 584 * in the extent, and it waits on the io completion code to insert 585 * metadata into the btree corresponding to the extent 586 */ 587void btrfs_start_ordered_extent(struct inode *inode, 588 struct btrfs_ordered_extent *entry, 589 int wait) 590{ 591 u64 start = entry->file_offset; 592 u64 end = start + entry->len - 1; 593 594 trace_btrfs_ordered_extent_start(inode, entry); 595 596 /* 597 * pages in the range can be dirty, clean or writeback. We 598 * start IO on any dirty ones so the wait doesn't stall waiting 599 * for pdflush to find them 600 */ 601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 602 filemap_fdatawrite_range(inode->i_mapping, start, end); 603 if (wait) { 604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 605 &entry->flags)); 606 } 607} 608 609/* 610 * Used to wait on ordered extents across a large range of bytes. 611 */ 612int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 613{ 614 u64 end; 615 u64 orig_end; 616 struct btrfs_ordered_extent *ordered; 617 int found; 618 619 if (start + len < start) { 620 orig_end = INT_LIMIT(loff_t); 621 } else { 622 orig_end = start + len - 1; 623 if (orig_end > INT_LIMIT(loff_t)) 624 orig_end = INT_LIMIT(loff_t); 625 } 626again: 627 /* start IO across the range first to instantiate any delalloc 628 * extents 629 */ 630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 631 632 /* The compression code will leave pages locked but return from 633 * writepage without setting the page writeback. Starting again 634 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 635 */ 636 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 637 638 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 639 640 end = orig_end; 641 found = 0; 642 while (1) { 643 ordered = btrfs_lookup_first_ordered_extent(inode, end); 644 if (!ordered) 645 break; 646 if (ordered->file_offset > orig_end) { 647 btrfs_put_ordered_extent(ordered); 648 break; 649 } 650 if (ordered->file_offset + ordered->len < start) { 651 btrfs_put_ordered_extent(ordered); 652 break; 653 } 654 found++; 655 btrfs_start_ordered_extent(inode, ordered, 1); 656 end = ordered->file_offset; 657 btrfs_put_ordered_extent(ordered); 658 if (end == 0 || end == start) 659 break; 660 end--; 661 } 662 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 663 EXTENT_DELALLOC, 0, NULL)) { 664 schedule_timeout(1); 665 goto again; 666 } 667 return 0; 668} 669 670/* 671 * find an ordered extent corresponding to file_offset. return NULL if 672 * nothing is found, otherwise take a reference on the extent and return it 673 */ 674struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 675 u64 file_offset) 676{ 677 struct btrfs_ordered_inode_tree *tree; 678 struct rb_node *node; 679 struct btrfs_ordered_extent *entry = NULL; 680 681 tree = &BTRFS_I(inode)->ordered_tree; 682 spin_lock(&tree->lock); 683 node = tree_search(tree, file_offset); 684 if (!node) 685 goto out; 686 687 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 688 if (!offset_in_entry(entry, file_offset)) 689 entry = NULL; 690 if (entry) 691 atomic_inc(&entry->refs); 692out: 693 spin_unlock(&tree->lock); 694 return entry; 695} 696 697/* Since the DIO code tries to lock a wide area we need to look for any ordered 698 * extents that exist in the range, rather than just the start of the range. 699 */ 700struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 701 u64 file_offset, 702 u64 len) 703{ 704 struct btrfs_ordered_inode_tree *tree; 705 struct rb_node *node; 706 struct btrfs_ordered_extent *entry = NULL; 707 708 tree = &BTRFS_I(inode)->ordered_tree; 709 spin_lock(&tree->lock); 710 node = tree_search(tree, file_offset); 711 if (!node) { 712 node = tree_search(tree, file_offset + len); 713 if (!node) 714 goto out; 715 } 716 717 while (1) { 718 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 719 if (range_overlaps(entry, file_offset, len)) 720 break; 721 722 if (entry->file_offset >= file_offset + len) { 723 entry = NULL; 724 break; 725 } 726 entry = NULL; 727 node = rb_next(node); 728 if (!node) 729 break; 730 } 731out: 732 if (entry) 733 atomic_inc(&entry->refs); 734 spin_unlock(&tree->lock); 735 return entry; 736} 737 738/* 739 * lookup and return any extent before 'file_offset'. NULL is returned 740 * if none is found 741 */ 742struct btrfs_ordered_extent * 743btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 744{ 745 struct btrfs_ordered_inode_tree *tree; 746 struct rb_node *node; 747 struct btrfs_ordered_extent *entry = NULL; 748 749 tree = &BTRFS_I(inode)->ordered_tree; 750 spin_lock(&tree->lock); 751 node = tree_search(tree, file_offset); 752 if (!node) 753 goto out; 754 755 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 756 atomic_inc(&entry->refs); 757out: 758 spin_unlock(&tree->lock); 759 return entry; 760} 761 762/* 763 * After an extent is done, call this to conditionally update the on disk 764 * i_size. i_size is updated to cover any fully written part of the file. 765 */ 766int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 767 struct btrfs_ordered_extent *ordered) 768{ 769 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 771 u64 disk_i_size; 772 u64 new_i_size; 773 u64 i_size_test; 774 u64 i_size = i_size_read(inode); 775 struct rb_node *node; 776 struct rb_node *prev = NULL; 777 struct btrfs_ordered_extent *test; 778 int ret = 1; 779 780 if (ordered) 781 offset = entry_end(ordered); 782 else 783 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 784 785 spin_lock(&tree->lock); 786 disk_i_size = BTRFS_I(inode)->disk_i_size; 787 788 /* truncate file */ 789 if (disk_i_size > i_size) { 790 BTRFS_I(inode)->disk_i_size = i_size; 791 ret = 0; 792 goto out; 793 } 794 795 /* 796 * if the disk i_size is already at the inode->i_size, or 797 * this ordered extent is inside the disk i_size, we're done 798 */ 799 if (disk_i_size == i_size || offset <= disk_i_size) { 800 goto out; 801 } 802 803 /* 804 * we can't update the disk_isize if there are delalloc bytes 805 * between disk_i_size and this ordered extent 806 */ 807 if (test_range_bit(io_tree, disk_i_size, offset - 1, 808 EXTENT_DELALLOC, 0, NULL)) { 809 goto out; 810 } 811 /* 812 * walk backward from this ordered extent to disk_i_size. 813 * if we find an ordered extent then we can't update disk i_size 814 * yet 815 */ 816 if (ordered) { 817 node = rb_prev(&ordered->rb_node); 818 } else { 819 prev = tree_search(tree, offset); 820 /* 821 * we insert file extents without involving ordered struct, 822 * so there should be no ordered struct cover this offset 823 */ 824 if (prev) { 825 test = rb_entry(prev, struct btrfs_ordered_extent, 826 rb_node); 827 BUG_ON(offset_in_entry(test, offset)); 828 } 829 node = prev; 830 } 831 while (node) { 832 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 833 if (test->file_offset + test->len <= disk_i_size) 834 break; 835 if (test->file_offset >= i_size) 836 break; 837 if (test->file_offset >= disk_i_size) 838 goto out; 839 node = rb_prev(node); 840 } 841 new_i_size = min_t(u64, offset, i_size); 842 843 /* 844 * at this point, we know we can safely update i_size to at least 845 * the offset from this ordered extent. But, we need to 846 * walk forward and see if ios from higher up in the file have 847 * finished. 848 */ 849 if (ordered) { 850 node = rb_next(&ordered->rb_node); 851 } else { 852 if (prev) 853 node = rb_next(prev); 854 else 855 node = rb_first(&tree->tree); 856 } 857 i_size_test = 0; 858 if (node) { 859 /* 860 * do we have an area where IO might have finished 861 * between our ordered extent and the next one. 862 */ 863 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 864 if (test->file_offset > offset) 865 i_size_test = test->file_offset; 866 } else { 867 i_size_test = i_size; 868 } 869 870 /* 871 * i_size_test is the end of a region after this ordered 872 * extent where there are no ordered extents. As long as there 873 * are no delalloc bytes in this area, it is safe to update 874 * disk_i_size to the end of the region. 875 */ 876 if (i_size_test > offset && 877 !test_range_bit(io_tree, offset, i_size_test - 1, 878 EXTENT_DELALLOC, 0, NULL)) { 879 new_i_size = min_t(u64, i_size_test, i_size); 880 } 881 BTRFS_I(inode)->disk_i_size = new_i_size; 882 ret = 0; 883out: 884 /* 885 * we need to remove the ordered extent with the tree lock held 886 * so that other people calling this function don't find our fully 887 * processed ordered entry and skip updating the i_size 888 */ 889 if (ordered) 890 __btrfs_remove_ordered_extent(inode, ordered); 891 spin_unlock(&tree->lock); 892 if (ordered) 893 wake_up(&ordered->wait); 894 return ret; 895} 896 897/* 898 * search the ordered extents for one corresponding to 'offset' and 899 * try to find a checksum. This is used because we allow pages to 900 * be reclaimed before their checksum is actually put into the btree 901 */ 902int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 903 u32 *sum) 904{ 905 struct btrfs_ordered_sum *ordered_sum; 906 struct btrfs_sector_sum *sector_sums; 907 struct btrfs_ordered_extent *ordered; 908 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 909 unsigned long num_sectors; 910 unsigned long i; 911 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 912 int ret = 1; 913 914 ordered = btrfs_lookup_ordered_extent(inode, offset); 915 if (!ordered) 916 return 1; 917 918 spin_lock(&tree->lock); 919 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 920 if (disk_bytenr >= ordered_sum->bytenr) { 921 num_sectors = ordered_sum->len / sectorsize; 922 sector_sums = ordered_sum->sums; 923 for (i = 0; i < num_sectors; i++) { 924 if (sector_sums[i].bytenr == disk_bytenr) { 925 *sum = sector_sums[i].sum; 926 ret = 0; 927 goto out; 928 } 929 } 930 } 931 } 932out: 933 spin_unlock(&tree->lock); 934 btrfs_put_ordered_extent(ordered); 935 return ret; 936} 937 938 939/* 940 * add a given inode to the list of inodes that must be fully on 941 * disk before a transaction commit finishes. 942 * 943 * This basically gives us the ext3 style data=ordered mode, and it is mostly 944 * used to make sure renamed files are fully on disk. 945 * 946 * It is a noop if the inode is already fully on disk. 947 * 948 * If trans is not null, we'll do a friendly check for a transaction that 949 * is already flushing things and force the IO down ourselves. 950 */ 951int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 952 struct btrfs_root *root, 953 struct inode *inode) 954{ 955 u64 last_mod; 956 957 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 958 959 /* 960 * if this file hasn't been changed since the last transaction 961 * commit, we can safely return without doing anything 962 */ 963 if (last_mod < root->fs_info->last_trans_committed) 964 return 0; 965 966 /* 967 * the transaction is already committing. Just start the IO and 968 * don't bother with all of this list nonsense 969 */ 970 if (trans && root->fs_info->running_transaction->blocked) { 971 btrfs_wait_ordered_range(inode, 0, (u64)-1); 972 return 0; 973 } 974 975 spin_lock(&root->fs_info->ordered_extent_lock); 976 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 977 list_add_tail(&BTRFS_I(inode)->ordered_operations, 978 &root->fs_info->ordered_operations); 979 } 980 spin_unlock(&root->fs_info->ordered_extent_lock); 981 982 return 0; 983}