/drivers/net/qla3xxx.c

https://bitbucket.org/cyanogenmod/android_kernel_asus_tf300t · C · 3970 lines · 3021 code · 608 blank · 341 comment · 417 complexity · 4888bbc497e2b144d18a0d09d967762a MD5 · raw file

Large files are truncated click here to view the full file

  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/dmapool.h>
  18. #include <linux/mempool.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/kthread.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/ip.h>
  25. #include <linux/in.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/if_ether.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/rtnetlink.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include <linux/prefetch.h>
  37. #include "qla3xxx.h"
  38. #define DRV_NAME "qla3xxx"
  39. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  40. #define DRV_VERSION "v2.03.00-k5"
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. #define TIMED_OUT_MSG \
  44. "Timed out waiting for management port to get free before issuing command\n"
  45. MODULE_AUTHOR("QLogic Corporation");
  46. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg
  50. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  51. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  52. static int debug = -1; /* defaults above */
  53. module_param(debug, int, 0);
  54. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  55. static int msi;
  56. module_param(msi, int, 0);
  57. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  58. static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
  59. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  60. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  61. /* required last entry */
  62. {0,}
  63. };
  64. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  65. /*
  66. * These are the known PHY's which are used
  67. */
  68. enum PHY_DEVICE_TYPE {
  69. PHY_TYPE_UNKNOWN = 0,
  70. PHY_VITESSE_VSC8211,
  71. PHY_AGERE_ET1011C,
  72. MAX_PHY_DEV_TYPES
  73. };
  74. struct PHY_DEVICE_INFO {
  75. const enum PHY_DEVICE_TYPE phyDevice;
  76. const u32 phyIdOUI;
  77. const u16 phyIdModel;
  78. const char *name;
  79. };
  80. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  81. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  82. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  83. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  84. };
  85. /*
  86. * Caller must take hw_lock.
  87. */
  88. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  89. u32 sem_mask, u32 sem_bits)
  90. {
  91. struct ql3xxx_port_registers __iomem *port_regs =
  92. qdev->mem_map_registers;
  93. u32 value;
  94. unsigned int seconds = 3;
  95. do {
  96. writel((sem_mask | sem_bits),
  97. &port_regs->CommonRegs.semaphoreReg);
  98. value = readl(&port_regs->CommonRegs.semaphoreReg);
  99. if ((value & (sem_mask >> 16)) == sem_bits)
  100. return 0;
  101. ssleep(1);
  102. } while (--seconds);
  103. return -1;
  104. }
  105. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  106. {
  107. struct ql3xxx_port_registers __iomem *port_regs =
  108. qdev->mem_map_registers;
  109. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  110. readl(&port_regs->CommonRegs.semaphoreReg);
  111. }
  112. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  113. {
  114. struct ql3xxx_port_registers __iomem *port_regs =
  115. qdev->mem_map_registers;
  116. u32 value;
  117. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  118. value = readl(&port_regs->CommonRegs.semaphoreReg);
  119. return ((value & (sem_mask >> 16)) == sem_bits);
  120. }
  121. /*
  122. * Caller holds hw_lock.
  123. */
  124. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  125. {
  126. int i = 0;
  127. while (i < 10) {
  128. if (i)
  129. ssleep(1);
  130. if (ql_sem_lock(qdev,
  131. QL_DRVR_SEM_MASK,
  132. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  133. * 2) << 1)) {
  134. netdev_printk(KERN_DEBUG, qdev->ndev,
  135. "driver lock acquired\n");
  136. return 1;
  137. }
  138. }
  139. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  140. return 0;
  141. }
  142. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  143. {
  144. struct ql3xxx_port_registers __iomem *port_regs =
  145. qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  152. {
  153. u32 value;
  154. unsigned long hw_flags;
  155. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  156. value = readl(reg);
  157. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  158. return value;
  159. }
  160. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  161. {
  162. return readl(reg);
  163. }
  164. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  165. {
  166. u32 value;
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. if (qdev->current_page != 0)
  170. ql_set_register_page(qdev, 0);
  171. value = readl(reg);
  172. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  173. return value;
  174. }
  175. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  176. {
  177. if (qdev->current_page != 0)
  178. ql_set_register_page(qdev, 0);
  179. return readl(reg);
  180. }
  181. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. unsigned long hw_flags;
  185. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  186. writel(value, reg);
  187. readl(reg);
  188. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  189. }
  190. static void ql_write_common_reg(struct ql3_adapter *qdev,
  191. u32 __iomem *reg, u32 value)
  192. {
  193. writel(value, reg);
  194. readl(reg);
  195. }
  196. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  197. u32 __iomem *reg, u32 value)
  198. {
  199. writel(value, reg);
  200. readl(reg);
  201. udelay(1);
  202. }
  203. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  204. u32 __iomem *reg, u32 value)
  205. {
  206. if (qdev->current_page != 0)
  207. ql_set_register_page(qdev, 0);
  208. writel(value, reg);
  209. readl(reg);
  210. }
  211. /*
  212. * Caller holds hw_lock. Only called during init.
  213. */
  214. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  215. u32 __iomem *reg, u32 value)
  216. {
  217. if (qdev->current_page != 1)
  218. ql_set_register_page(qdev, 1);
  219. writel(value, reg);
  220. readl(reg);
  221. }
  222. /*
  223. * Caller holds hw_lock. Only called during init.
  224. */
  225. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  226. u32 __iomem *reg, u32 value)
  227. {
  228. if (qdev->current_page != 2)
  229. ql_set_register_page(qdev, 2);
  230. writel(value, reg);
  231. readl(reg);
  232. }
  233. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  234. {
  235. struct ql3xxx_port_registers __iomem *port_regs =
  236. qdev->mem_map_registers;
  237. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  238. (ISP_IMR_ENABLE_INT << 16));
  239. }
  240. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  241. {
  242. struct ql3xxx_port_registers __iomem *port_regs =
  243. qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  246. }
  247. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  248. struct ql_rcv_buf_cb *lrg_buf_cb)
  249. {
  250. dma_addr_t map;
  251. int err;
  252. lrg_buf_cb->next = NULL;
  253. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  254. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  255. } else {
  256. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  257. qdev->lrg_buf_free_tail = lrg_buf_cb;
  258. }
  259. if (!lrg_buf_cb->skb) {
  260. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  261. qdev->lrg_buffer_len);
  262. if (unlikely(!lrg_buf_cb->skb)) {
  263. netdev_err(qdev->ndev, "failed netdev_alloc_skb()\n");
  264. qdev->lrg_buf_skb_check++;
  265. } else {
  266. /*
  267. * We save some space to copy the ethhdr from first
  268. * buffer
  269. */
  270. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  271. map = pci_map_single(qdev->pdev,
  272. lrg_buf_cb->skb->data,
  273. qdev->lrg_buffer_len -
  274. QL_HEADER_SPACE,
  275. PCI_DMA_FROMDEVICE);
  276. err = pci_dma_mapping_error(qdev->pdev, map);
  277. if (err) {
  278. netdev_err(qdev->ndev,
  279. "PCI mapping failed with error: %d\n",
  280. err);
  281. dev_kfree_skb(lrg_buf_cb->skb);
  282. lrg_buf_cb->skb = NULL;
  283. qdev->lrg_buf_skb_check++;
  284. return;
  285. }
  286. lrg_buf_cb->buf_phy_addr_low =
  287. cpu_to_le32(LS_64BITS(map));
  288. lrg_buf_cb->buf_phy_addr_high =
  289. cpu_to_le32(MS_64BITS(map));
  290. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  291. dma_unmap_len_set(lrg_buf_cb, maplen,
  292. qdev->lrg_buffer_len -
  293. QL_HEADER_SPACE);
  294. }
  295. }
  296. qdev->lrg_buf_free_count++;
  297. }
  298. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  299. *qdev)
  300. {
  301. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  302. if (lrg_buf_cb != NULL) {
  303. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  304. if (qdev->lrg_buf_free_head == NULL)
  305. qdev->lrg_buf_free_tail = NULL;
  306. qdev->lrg_buf_free_count--;
  307. }
  308. return lrg_buf_cb;
  309. }
  310. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  311. static u32 dataBits = EEPROM_NO_DATA_BITS;
  312. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  313. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  314. unsigned short *value);
  315. /*
  316. * Caller holds hw_lock.
  317. */
  318. static void fm93c56a_select(struct ql3_adapter *qdev)
  319. {
  320. struct ql3xxx_port_registers __iomem *port_regs =
  321. qdev->mem_map_registers;
  322. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  323. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  324. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  325. ql_write_nvram_reg(qdev, spir,
  326. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  327. }
  328. /*
  329. * Caller holds hw_lock.
  330. */
  331. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  332. {
  333. int i;
  334. u32 mask;
  335. u32 dataBit;
  336. u32 previousBit;
  337. struct ql3xxx_port_registers __iomem *port_regs =
  338. qdev->mem_map_registers;
  339. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  340. /* Clock in a zero, then do the start bit */
  341. ql_write_nvram_reg(qdev, spir,
  342. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  343. AUBURN_EEPROM_DO_1));
  344. ql_write_nvram_reg(qdev, spir,
  345. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  346. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  347. ql_write_nvram_reg(qdev, spir,
  348. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  349. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  350. mask = 1 << (FM93C56A_CMD_BITS - 1);
  351. /* Force the previous data bit to be different */
  352. previousBit = 0xffff;
  353. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  354. dataBit = (cmd & mask)
  355. ? AUBURN_EEPROM_DO_1
  356. : AUBURN_EEPROM_DO_0;
  357. if (previousBit != dataBit) {
  358. /* If the bit changed, change the DO state to match */
  359. ql_write_nvram_reg(qdev, spir,
  360. (ISP_NVRAM_MASK |
  361. qdev->eeprom_cmd_data | dataBit));
  362. previousBit = dataBit;
  363. }
  364. ql_write_nvram_reg(qdev, spir,
  365. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  366. dataBit | AUBURN_EEPROM_CLK_RISE));
  367. ql_write_nvram_reg(qdev, spir,
  368. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  369. dataBit | AUBURN_EEPROM_CLK_FALL));
  370. cmd = cmd << 1;
  371. }
  372. mask = 1 << (addrBits - 1);
  373. /* Force the previous data bit to be different */
  374. previousBit = 0xffff;
  375. for (i = 0; i < addrBits; i++) {
  376. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  377. : AUBURN_EEPROM_DO_0;
  378. if (previousBit != dataBit) {
  379. /*
  380. * If the bit changed, then change the DO state to
  381. * match
  382. */
  383. ql_write_nvram_reg(qdev, spir,
  384. (ISP_NVRAM_MASK |
  385. qdev->eeprom_cmd_data | dataBit));
  386. previousBit = dataBit;
  387. }
  388. ql_write_nvram_reg(qdev, spir,
  389. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  390. dataBit | AUBURN_EEPROM_CLK_RISE));
  391. ql_write_nvram_reg(qdev, spir,
  392. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  393. dataBit | AUBURN_EEPROM_CLK_FALL));
  394. eepromAddr = eepromAddr << 1;
  395. }
  396. }
  397. /*
  398. * Caller holds hw_lock.
  399. */
  400. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  401. {
  402. struct ql3xxx_port_registers __iomem *port_regs =
  403. qdev->mem_map_registers;
  404. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  405. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  406. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  407. }
  408. /*
  409. * Caller holds hw_lock.
  410. */
  411. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  412. {
  413. int i;
  414. u32 data = 0;
  415. u32 dataBit;
  416. struct ql3xxx_port_registers __iomem *port_regs =
  417. qdev->mem_map_registers;
  418. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  419. /* Read the data bits */
  420. /* The first bit is a dummy. Clock right over it. */
  421. for (i = 0; i < dataBits; i++) {
  422. ql_write_nvram_reg(qdev, spir,
  423. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  424. AUBURN_EEPROM_CLK_RISE);
  425. ql_write_nvram_reg(qdev, spir,
  426. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  427. AUBURN_EEPROM_CLK_FALL);
  428. dataBit = (ql_read_common_reg(qdev, spir) &
  429. AUBURN_EEPROM_DI_1) ? 1 : 0;
  430. data = (data << 1) | dataBit;
  431. }
  432. *value = (u16)data;
  433. }
  434. /*
  435. * Caller holds hw_lock.
  436. */
  437. static void eeprom_readword(struct ql3_adapter *qdev,
  438. u32 eepromAddr, unsigned short *value)
  439. {
  440. fm93c56a_select(qdev);
  441. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  442. fm93c56a_datain(qdev, value);
  443. fm93c56a_deselect(qdev);
  444. }
  445. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  446. {
  447. __le16 *p = (__le16 *)ndev->dev_addr;
  448. p[0] = cpu_to_le16(addr[0]);
  449. p[1] = cpu_to_le16(addr[1]);
  450. p[2] = cpu_to_le16(addr[2]);
  451. }
  452. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  453. {
  454. u16 *pEEPROMData;
  455. u16 checksum = 0;
  456. u32 index;
  457. unsigned long hw_flags;
  458. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  459. pEEPROMData = (u16 *)&qdev->nvram_data;
  460. qdev->eeprom_cmd_data = 0;
  461. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  462. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  463. 2) << 10)) {
  464. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  465. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  466. return -1;
  467. }
  468. for (index = 0; index < EEPROM_SIZE; index++) {
  469. eeprom_readword(qdev, index, pEEPROMData);
  470. checksum += *pEEPROMData;
  471. pEEPROMData++;
  472. }
  473. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  474. if (checksum != 0) {
  475. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  476. checksum);
  477. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  478. return -1;
  479. }
  480. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  481. return checksum;
  482. }
  483. static const u32 PHYAddr[2] = {
  484. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  485. };
  486. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  487. {
  488. struct ql3xxx_port_registers __iomem *port_regs =
  489. qdev->mem_map_registers;
  490. u32 temp;
  491. int count = 1000;
  492. while (count) {
  493. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  494. if (!(temp & MAC_MII_STATUS_BSY))
  495. return 0;
  496. udelay(10);
  497. count--;
  498. }
  499. return -1;
  500. }
  501. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  502. {
  503. struct ql3xxx_port_registers __iomem *port_regs =
  504. qdev->mem_map_registers;
  505. u32 scanControl;
  506. if (qdev->numPorts > 1) {
  507. /* Auto scan will cycle through multiple ports */
  508. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  509. } else {
  510. scanControl = MAC_MII_CONTROL_SC;
  511. }
  512. /*
  513. * Scan register 1 of PHY/PETBI,
  514. * Set up to scan both devices
  515. * The autoscan starts from the first register, completes
  516. * the last one before rolling over to the first
  517. */
  518. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  519. PHYAddr[0] | MII_SCAN_REGISTER);
  520. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  521. (scanControl) |
  522. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  523. }
  524. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  525. {
  526. u8 ret;
  527. struct ql3xxx_port_registers __iomem *port_regs =
  528. qdev->mem_map_registers;
  529. /* See if scan mode is enabled before we turn it off */
  530. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  531. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  532. /* Scan is enabled */
  533. ret = 1;
  534. } else {
  535. /* Scan is disabled */
  536. ret = 0;
  537. }
  538. /*
  539. * When disabling scan mode you must first change the MII register
  540. * address
  541. */
  542. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  543. PHYAddr[0] | MII_SCAN_REGISTER);
  544. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  545. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  546. MAC_MII_CONTROL_RC) << 16));
  547. return ret;
  548. }
  549. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  550. u16 regAddr, u16 value, u32 phyAddr)
  551. {
  552. struct ql3xxx_port_registers __iomem *port_regs =
  553. qdev->mem_map_registers;
  554. u8 scanWasEnabled;
  555. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  556. if (ql_wait_for_mii_ready(qdev)) {
  557. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  558. return -1;
  559. }
  560. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  561. phyAddr | regAddr);
  562. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  563. /* Wait for write to complete 9/10/04 SJP */
  564. if (ql_wait_for_mii_ready(qdev)) {
  565. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  566. return -1;
  567. }
  568. if (scanWasEnabled)
  569. ql_mii_enable_scan_mode(qdev);
  570. return 0;
  571. }
  572. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  573. u16 *value, u32 phyAddr)
  574. {
  575. struct ql3xxx_port_registers __iomem *port_regs =
  576. qdev->mem_map_registers;
  577. u8 scanWasEnabled;
  578. u32 temp;
  579. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  580. if (ql_wait_for_mii_ready(qdev)) {
  581. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  582. return -1;
  583. }
  584. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  585. phyAddr | regAddr);
  586. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  587. (MAC_MII_CONTROL_RC << 16));
  588. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  589. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  590. /* Wait for the read to complete */
  591. if (ql_wait_for_mii_ready(qdev)) {
  592. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  593. return -1;
  594. }
  595. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  596. *value = (u16) temp;
  597. if (scanWasEnabled)
  598. ql_mii_enable_scan_mode(qdev);
  599. return 0;
  600. }
  601. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  602. {
  603. struct ql3xxx_port_registers __iomem *port_regs =
  604. qdev->mem_map_registers;
  605. ql_mii_disable_scan_mode(qdev);
  606. if (ql_wait_for_mii_ready(qdev)) {
  607. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  608. return -1;
  609. }
  610. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  611. qdev->PHYAddr | regAddr);
  612. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  613. /* Wait for write to complete. */
  614. if (ql_wait_for_mii_ready(qdev)) {
  615. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  616. return -1;
  617. }
  618. ql_mii_enable_scan_mode(qdev);
  619. return 0;
  620. }
  621. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  622. {
  623. u32 temp;
  624. struct ql3xxx_port_registers __iomem *port_regs =
  625. qdev->mem_map_registers;
  626. ql_mii_disable_scan_mode(qdev);
  627. if (ql_wait_for_mii_ready(qdev)) {
  628. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  629. return -1;
  630. }
  631. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  632. qdev->PHYAddr | regAddr);
  633. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  634. (MAC_MII_CONTROL_RC << 16));
  635. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  636. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  637. /* Wait for the read to complete */
  638. if (ql_wait_for_mii_ready(qdev)) {
  639. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  640. return -1;
  641. }
  642. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  643. *value = (u16) temp;
  644. ql_mii_enable_scan_mode(qdev);
  645. return 0;
  646. }
  647. static void ql_petbi_reset(struct ql3_adapter *qdev)
  648. {
  649. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  650. }
  651. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  652. {
  653. u16 reg;
  654. /* Enable Auto-negotiation sense */
  655. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  656. reg |= PETBI_TBI_AUTO_SENSE;
  657. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  658. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  659. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  660. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  661. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  662. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  663. }
  664. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  665. {
  666. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  667. PHYAddr[qdev->mac_index]);
  668. }
  669. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  670. {
  671. u16 reg;
  672. /* Enable Auto-negotiation sense */
  673. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  674. PHYAddr[qdev->mac_index]);
  675. reg |= PETBI_TBI_AUTO_SENSE;
  676. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  677. PHYAddr[qdev->mac_index]);
  678. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  679. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  680. PHYAddr[qdev->mac_index]);
  681. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  682. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  683. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  684. PHYAddr[qdev->mac_index]);
  685. }
  686. static void ql_petbi_init(struct ql3_adapter *qdev)
  687. {
  688. ql_petbi_reset(qdev);
  689. ql_petbi_start_neg(qdev);
  690. }
  691. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  692. {
  693. ql_petbi_reset_ex(qdev);
  694. ql_petbi_start_neg_ex(qdev);
  695. }
  696. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  697. {
  698. u16 reg;
  699. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  700. return 0;
  701. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  702. }
  703. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  704. {
  705. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  706. /* power down device bit 11 = 1 */
  707. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  708. /* enable diagnostic mode bit 2 = 1 */
  709. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  710. /* 1000MB amplitude adjust (see Agere errata) */
  711. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  712. /* 1000MB amplitude adjust (see Agere errata) */
  713. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  714. /* 100MB amplitude adjust (see Agere errata) */
  715. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  716. /* 100MB amplitude adjust (see Agere errata) */
  717. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  718. /* 10MB amplitude adjust (see Agere errata) */
  719. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  720. /* 10MB amplitude adjust (see Agere errata) */
  721. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  722. /* point to hidden reg 0x2806 */
  723. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  724. /* Write new PHYAD w/bit 5 set */
  725. ql_mii_write_reg_ex(qdev, 0x11,
  726. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  727. /*
  728. * Disable diagnostic mode bit 2 = 0
  729. * Power up device bit 11 = 0
  730. * Link up (on) and activity (blink)
  731. */
  732. ql_mii_write_reg(qdev, 0x12, 0x840a);
  733. ql_mii_write_reg(qdev, 0x00, 0x1140);
  734. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  735. }
  736. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  737. u16 phyIdReg0, u16 phyIdReg1)
  738. {
  739. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  740. u32 oui;
  741. u16 model;
  742. int i;
  743. if (phyIdReg0 == 0xffff)
  744. return result;
  745. if (phyIdReg1 == 0xffff)
  746. return result;
  747. /* oui is split between two registers */
  748. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  749. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  750. /* Scan table for this PHY */
  751. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  752. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  753. (model == PHY_DEVICES[i].phyIdModel)) {
  754. netdev_info(qdev->ndev, "Phy: %s\n",
  755. PHY_DEVICES[i].name);
  756. result = PHY_DEVICES[i].phyDevice;
  757. break;
  758. }
  759. }
  760. return result;
  761. }
  762. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  763. {
  764. u16 reg;
  765. switch (qdev->phyType) {
  766. case PHY_AGERE_ET1011C: {
  767. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  768. return 0;
  769. reg = (reg >> 8) & 3;
  770. break;
  771. }
  772. default:
  773. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  774. return 0;
  775. reg = (((reg & 0x18) >> 3) & 3);
  776. }
  777. switch (reg) {
  778. case 2:
  779. return SPEED_1000;
  780. case 1:
  781. return SPEED_100;
  782. case 0:
  783. return SPEED_10;
  784. default:
  785. return -1;
  786. }
  787. }
  788. static int ql_is_full_dup(struct ql3_adapter *qdev)
  789. {
  790. u16 reg;
  791. switch (qdev->phyType) {
  792. case PHY_AGERE_ET1011C: {
  793. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  794. return 0;
  795. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  796. }
  797. case PHY_VITESSE_VSC8211:
  798. default: {
  799. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  800. return 0;
  801. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  802. }
  803. }
  804. }
  805. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  806. {
  807. u16 reg;
  808. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  809. return 0;
  810. return (reg & PHY_NEG_PAUSE) != 0;
  811. }
  812. static int PHY_Setup(struct ql3_adapter *qdev)
  813. {
  814. u16 reg1;
  815. u16 reg2;
  816. bool agereAddrChangeNeeded = false;
  817. u32 miiAddr = 0;
  818. int err;
  819. /* Determine the PHY we are using by reading the ID's */
  820. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  821. if (err != 0) {
  822. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  823. return err;
  824. }
  825. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  826. if (err != 0) {
  827. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  828. return err;
  829. }
  830. /* Check if we have a Agere PHY */
  831. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  832. /* Determine which MII address we should be using
  833. determined by the index of the card */
  834. if (qdev->mac_index == 0)
  835. miiAddr = MII_AGERE_ADDR_1;
  836. else
  837. miiAddr = MII_AGERE_ADDR_2;
  838. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  839. if (err != 0) {
  840. netdev_err(qdev->ndev,
  841. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  842. return err;
  843. }
  844. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  845. if (err != 0) {
  846. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  847. return err;
  848. }
  849. /* We need to remember to initialize the Agere PHY */
  850. agereAddrChangeNeeded = true;
  851. }
  852. /* Determine the particular PHY we have on board to apply
  853. PHY specific initializations */
  854. qdev->phyType = getPhyType(qdev, reg1, reg2);
  855. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  856. /* need this here so address gets changed */
  857. phyAgereSpecificInit(qdev, miiAddr);
  858. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  859. netdev_err(qdev->ndev, "PHY is unknown\n");
  860. return -EIO;
  861. }
  862. return 0;
  863. }
  864. /*
  865. * Caller holds hw_lock.
  866. */
  867. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  868. {
  869. struct ql3xxx_port_registers __iomem *port_regs =
  870. qdev->mem_map_registers;
  871. u32 value;
  872. if (enable)
  873. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  874. else
  875. value = (MAC_CONFIG_REG_PE << 16);
  876. if (qdev->mac_index)
  877. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  878. else
  879. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  880. }
  881. /*
  882. * Caller holds hw_lock.
  883. */
  884. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  885. {
  886. struct ql3xxx_port_registers __iomem *port_regs =
  887. qdev->mem_map_registers;
  888. u32 value;
  889. if (enable)
  890. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  891. else
  892. value = (MAC_CONFIG_REG_SR << 16);
  893. if (qdev->mac_index)
  894. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  895. else
  896. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  897. }
  898. /*
  899. * Caller holds hw_lock.
  900. */
  901. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  902. {
  903. struct ql3xxx_port_registers __iomem *port_regs =
  904. qdev->mem_map_registers;
  905. u32 value;
  906. if (enable)
  907. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  908. else
  909. value = (MAC_CONFIG_REG_GM << 16);
  910. if (qdev->mac_index)
  911. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  912. else
  913. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  914. }
  915. /*
  916. * Caller holds hw_lock.
  917. */
  918. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  919. {
  920. struct ql3xxx_port_registers __iomem *port_regs =
  921. qdev->mem_map_registers;
  922. u32 value;
  923. if (enable)
  924. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  925. else
  926. value = (MAC_CONFIG_REG_FD << 16);
  927. if (qdev->mac_index)
  928. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  929. else
  930. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  931. }
  932. /*
  933. * Caller holds hw_lock.
  934. */
  935. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  936. {
  937. struct ql3xxx_port_registers __iomem *port_regs =
  938. qdev->mem_map_registers;
  939. u32 value;
  940. if (enable)
  941. value =
  942. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  943. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  944. else
  945. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  946. if (qdev->mac_index)
  947. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  948. else
  949. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  950. }
  951. /*
  952. * Caller holds hw_lock.
  953. */
  954. static int ql_is_fiber(struct ql3_adapter *qdev)
  955. {
  956. struct ql3xxx_port_registers __iomem *port_regs =
  957. qdev->mem_map_registers;
  958. u32 bitToCheck = 0;
  959. u32 temp;
  960. switch (qdev->mac_index) {
  961. case 0:
  962. bitToCheck = PORT_STATUS_SM0;
  963. break;
  964. case 1:
  965. bitToCheck = PORT_STATUS_SM1;
  966. break;
  967. }
  968. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  969. return (temp & bitToCheck) != 0;
  970. }
  971. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  972. {
  973. u16 reg;
  974. ql_mii_read_reg(qdev, 0x00, &reg);
  975. return (reg & 0x1000) != 0;
  976. }
  977. /*
  978. * Caller holds hw_lock.
  979. */
  980. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  981. {
  982. struct ql3xxx_port_registers __iomem *port_regs =
  983. qdev->mem_map_registers;
  984. u32 bitToCheck = 0;
  985. u32 temp;
  986. switch (qdev->mac_index) {
  987. case 0:
  988. bitToCheck = PORT_STATUS_AC0;
  989. break;
  990. case 1:
  991. bitToCheck = PORT_STATUS_AC1;
  992. break;
  993. }
  994. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  995. if (temp & bitToCheck) {
  996. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  997. return 1;
  998. }
  999. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  1000. return 0;
  1001. }
  1002. /*
  1003. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1004. */
  1005. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1006. {
  1007. if (ql_is_fiber(qdev))
  1008. return ql_is_petbi_neg_pause(qdev);
  1009. else
  1010. return ql_is_phy_neg_pause(qdev);
  1011. }
  1012. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1013. {
  1014. struct ql3xxx_port_registers __iomem *port_regs =
  1015. qdev->mem_map_registers;
  1016. u32 bitToCheck = 0;
  1017. u32 temp;
  1018. switch (qdev->mac_index) {
  1019. case 0:
  1020. bitToCheck = PORT_STATUS_AE0;
  1021. break;
  1022. case 1:
  1023. bitToCheck = PORT_STATUS_AE1;
  1024. break;
  1025. }
  1026. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1027. return (temp & bitToCheck) != 0;
  1028. }
  1029. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1030. {
  1031. if (ql_is_fiber(qdev))
  1032. return SPEED_1000;
  1033. else
  1034. return ql_phy_get_speed(qdev);
  1035. }
  1036. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1037. {
  1038. if (ql_is_fiber(qdev))
  1039. return 1;
  1040. else
  1041. return ql_is_full_dup(qdev);
  1042. }
  1043. /*
  1044. * Caller holds hw_lock.
  1045. */
  1046. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1047. {
  1048. struct ql3xxx_port_registers __iomem *port_regs =
  1049. qdev->mem_map_registers;
  1050. u32 bitToCheck = 0;
  1051. u32 temp;
  1052. switch (qdev->mac_index) {
  1053. case 0:
  1054. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1055. break;
  1056. case 1:
  1057. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1058. break;
  1059. }
  1060. temp =
  1061. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1062. return (temp & bitToCheck) != 0;
  1063. }
  1064. /*
  1065. * Caller holds hw_lock.
  1066. */
  1067. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1068. {
  1069. struct ql3xxx_port_registers __iomem *port_regs =
  1070. qdev->mem_map_registers;
  1071. switch (qdev->mac_index) {
  1072. case 0:
  1073. ql_write_common_reg(qdev,
  1074. &port_regs->CommonRegs.ispControlStatus,
  1075. (ISP_CONTROL_LINK_DN_0) |
  1076. (ISP_CONTROL_LINK_DN_0 << 16));
  1077. break;
  1078. case 1:
  1079. ql_write_common_reg(qdev,
  1080. &port_regs->CommonRegs.ispControlStatus,
  1081. (ISP_CONTROL_LINK_DN_1) |
  1082. (ISP_CONTROL_LINK_DN_1 << 16));
  1083. break;
  1084. default:
  1085. return 1;
  1086. }
  1087. return 0;
  1088. }
  1089. /*
  1090. * Caller holds hw_lock.
  1091. */
  1092. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1093. {
  1094. struct ql3xxx_port_registers __iomem *port_regs =
  1095. qdev->mem_map_registers;
  1096. u32 bitToCheck = 0;
  1097. u32 temp;
  1098. switch (qdev->mac_index) {
  1099. case 0:
  1100. bitToCheck = PORT_STATUS_F1_ENABLED;
  1101. break;
  1102. case 1:
  1103. bitToCheck = PORT_STATUS_F3_ENABLED;
  1104. break;
  1105. default:
  1106. break;
  1107. }
  1108. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1109. if (temp & bitToCheck) {
  1110. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1111. "not link master\n");
  1112. return 0;
  1113. }
  1114. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1115. return 1;
  1116. }
  1117. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1118. {
  1119. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1120. PHYAddr[qdev->mac_index]);
  1121. }
  1122. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1123. {
  1124. u16 reg;
  1125. u16 portConfiguration;
  1126. if (qdev->phyType == PHY_AGERE_ET1011C)
  1127. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1128. /* turn off external loopback */
  1129. if (qdev->mac_index == 0)
  1130. portConfiguration =
  1131. qdev->nvram_data.macCfg_port0.portConfiguration;
  1132. else
  1133. portConfiguration =
  1134. qdev->nvram_data.macCfg_port1.portConfiguration;
  1135. /* Some HBA's in the field are set to 0 and they need to
  1136. be reinterpreted with a default value */
  1137. if (portConfiguration == 0)
  1138. portConfiguration = PORT_CONFIG_DEFAULT;
  1139. /* Set the 1000 advertisements */
  1140. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1141. PHYAddr[qdev->mac_index]);
  1142. reg &= ~PHY_GIG_ALL_PARAMS;
  1143. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1144. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1145. reg |= PHY_GIG_ADV_1000F;
  1146. else
  1147. reg |= PHY_GIG_ADV_1000H;
  1148. }
  1149. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1150. PHYAddr[qdev->mac_index]);
  1151. /* Set the 10/100 & pause negotiation advertisements */
  1152. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1153. PHYAddr[qdev->mac_index]);
  1154. reg &= ~PHY_NEG_ALL_PARAMS;
  1155. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1156. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1157. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1158. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1159. reg |= PHY_NEG_ADV_100F;
  1160. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1161. reg |= PHY_NEG_ADV_10F;
  1162. }
  1163. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1164. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1165. reg |= PHY_NEG_ADV_100H;
  1166. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1167. reg |= PHY_NEG_ADV_10H;
  1168. }
  1169. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1170. reg |= 1;
  1171. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1172. PHYAddr[qdev->mac_index]);
  1173. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1174. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1175. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1176. PHYAddr[qdev->mac_index]);
  1177. }
  1178. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1179. {
  1180. ql_phy_reset_ex(qdev);
  1181. PHY_Setup(qdev);
  1182. ql_phy_start_neg_ex(qdev);
  1183. }
  1184. /*
  1185. * Caller holds hw_lock.
  1186. */
  1187. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1188. {
  1189. struct ql3xxx_port_registers __iomem *port_regs =
  1190. qdev->mem_map_registers;
  1191. u32 bitToCheck = 0;
  1192. u32 temp, linkState;
  1193. switch (qdev->mac_index) {
  1194. case 0:
  1195. bitToCheck = PORT_STATUS_UP0;
  1196. break;
  1197. case 1:
  1198. bitToCheck = PORT_STATUS_UP1;
  1199. break;
  1200. }
  1201. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1202. if (temp & bitToCheck)
  1203. linkState = LS_UP;
  1204. else
  1205. linkState = LS_DOWN;
  1206. return linkState;
  1207. }
  1208. static int ql_port_start(struct ql3_adapter *qdev)
  1209. {
  1210. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1211. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1212. 2) << 7)) {
  1213. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1214. return -1;
  1215. }
  1216. if (ql_is_fiber(qdev)) {
  1217. ql_petbi_init(qdev);
  1218. } else {
  1219. /* Copper port */
  1220. ql_phy_init_ex(qdev);
  1221. }
  1222. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1223. return 0;
  1224. }
  1225. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1226. {
  1227. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1228. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1229. 2) << 7))
  1230. return -1;
  1231. if (!ql_auto_neg_error(qdev)) {
  1232. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1233. /* configure the MAC */
  1234. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1235. "Configuring link\n");
  1236. ql_mac_cfg_soft_reset(qdev, 1);
  1237. ql_mac_cfg_gig(qdev,
  1238. (ql_get_link_speed
  1239. (qdev) ==
  1240. SPEED_1000));
  1241. ql_mac_cfg_full_dup(qdev,
  1242. ql_is_link_full_dup
  1243. (qdev));
  1244. ql_mac_cfg_pause(qdev,
  1245. ql_is_neg_pause
  1246. (qdev));
  1247. ql_mac_cfg_soft_reset(qdev, 0);
  1248. /* enable the MAC */
  1249. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1250. "Enabling mac\n");
  1251. ql_mac_enable(qdev, 1);
  1252. }
  1253. qdev->port_link_state = LS_UP;
  1254. netif_start_queue(qdev->ndev);
  1255. netif_carrier_on(qdev->ndev);
  1256. netif_info(qdev, link, qdev->ndev,
  1257. "Link is up at %d Mbps, %s duplex\n",
  1258. ql_get_link_speed(qdev),
  1259. ql_is_link_full_dup(qdev) ? "full" : "half");
  1260. } else { /* Remote error detected */
  1261. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1262. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1263. "Remote error detected. Calling ql_port_start()\n");
  1264. /*
  1265. * ql_port_start() is shared code and needs
  1266. * to lock the PHY on it's own.
  1267. */
  1268. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1269. if (ql_port_start(qdev)) /* Restart port */
  1270. return -1;
  1271. return 0;
  1272. }
  1273. }
  1274. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1275. return 0;
  1276. }
  1277. static void ql_link_state_machine_work(struct work_struct *work)
  1278. {
  1279. struct ql3_adapter *qdev =
  1280. container_of(work, struct ql3_adapter, link_state_work.work);
  1281. u32 curr_link_state;
  1282. unsigned long hw_flags;
  1283. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1284. curr_link_state = ql_get_link_state(qdev);
  1285. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1286. netif_info(qdev, link, qdev->ndev,
  1287. "Reset in progress, skip processing link state\n");
  1288. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1289. /* Restart timer on 2 second interval. */
  1290. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1291. return;
  1292. }
  1293. switch (qdev->port_link_state) {
  1294. default:
  1295. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1296. ql_port_start(qdev);
  1297. qdev->port_link_state = LS_DOWN;
  1298. /* Fall Through */
  1299. case LS_DOWN:
  1300. if (curr_link_state == LS_UP) {
  1301. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1302. if (ql_is_auto_neg_complete(qdev))
  1303. ql_finish_auto_neg(qdev);
  1304. if (qdev->port_link_state == LS_UP)
  1305. ql_link_down_detect_clear(qdev);
  1306. qdev->port_link_state = LS_UP;
  1307. }
  1308. break;
  1309. case LS_UP:
  1310. /*
  1311. * See if the link is currently down or went down and came
  1312. * back up
  1313. */
  1314. if (curr_link_state == LS_DOWN) {
  1315. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1316. qdev->port_link_state = LS_DOWN;
  1317. }
  1318. if (ql_link_down_detect(qdev))
  1319. qdev->port_link_state = LS_DOWN;
  1320. break;
  1321. }
  1322. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1323. /* Restart timer on 2 second interval. */
  1324. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1325. }
  1326. /*
  1327. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1328. */
  1329. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1330. {
  1331. if (ql_this_adapter_controls_port(qdev))
  1332. set_bit(QL_LINK_MASTER, &qdev->flags);
  1333. else
  1334. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1335. }
  1336. /*
  1337. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1338. */
  1339. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1340. {
  1341. ql_mii_enable_scan_mode(qdev);
  1342. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1343. if (ql_this_adapter_controls_port(qdev))
  1344. ql_petbi_init_ex(qdev);
  1345. } else {
  1346. if (ql_this_adapter_controls_port(qdev))
  1347. ql_phy_init_ex(qdev);
  1348. }
  1349. }
  1350. /*
  1351. * MII_Setup needs to be called before taking the PHY out of reset
  1352. * so that the management interface clock speed can be set properly.
  1353. * It would be better if we had a way to disable MDC until after the
  1354. * PHY is out of reset, but we don't have that capability.
  1355. */
  1356. static int ql_mii_setup(struct ql3_adapter *qdev)
  1357. {
  1358. u32 reg;
  1359. struct ql3xxx_port_registers __iomem *port_regs =
  1360. qdev->mem_map_registers;
  1361. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1362. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1363. 2) << 7))
  1364. return -1;
  1365. if (qdev->device_id == QL3032_DEVICE_ID)
  1366. ql_write_page0_reg(qdev,
  1367. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1368. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1369. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1370. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1371. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1372. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1373. return 0;
  1374. }
  1375. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1376. SUPPORTED_FIBRE | \
  1377. SUPPORTED_Autoneg)
  1378. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1379. SUPPORTED_10baseT_Full | \
  1380. SUPPORTED_100baseT_Half | \
  1381. SUPPORTED_100baseT_Full | \
  1382. SUPPORTED_1000baseT_Half | \
  1383. SUPPORTED_1000baseT_Full | \
  1384. SUPPORTED_Autoneg | \
  1385. SUPPORTED_TP); \
  1386. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1387. {
  1388. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1389. return SUPPORTED_OPTICAL_MODES;
  1390. return SUPPORTED_TP_MODES;
  1391. }
  1392. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1393. {
  1394. int status;
  1395. unsigned long hw_flags;
  1396. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1397. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1398. (QL_RESOURCE_BITS_BASE_CODE |
  1399. (qdev->mac_index) * 2) << 7)) {
  1400. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1401. return 0;
  1402. }
  1403. status = ql_is_auto_cfg(qdev);
  1404. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1405. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1406. return status;
  1407. }
  1408. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1409. {
  1410. u32 status;
  1411. unsigned long hw_flags;
  1412. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1413. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1414. (QL_RESOURCE_BITS_BASE_CODE |
  1415. (qdev->mac_index) * 2) << 7)) {
  1416. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1417. return 0;
  1418. }
  1419. status = ql_get_link_speed(qdev);
  1420. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1421. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1422. return status;
  1423. }
  1424. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1425. {
  1426. int status;
  1427. unsigned long hw_flags;
  1428. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1429. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1430. (QL_RESOURCE_BITS_BASE_CODE |
  1431. (qdev->mac_index) * 2) << 7)) {
  1432. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1433. return 0;
  1434. }
  1435. status = ql_is_link_full_dup(qdev);
  1436. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1437. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1438. return status;
  1439. }
  1440. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1441. {
  1442. struct ql3_adapter *qdev = netdev_priv(ndev);
  1443. ecmd->transceiver = XCVR_INTERNAL;
  1444. ecmd->supported = ql_supported_modes(qdev);
  1445. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1446. ecmd->port = PORT_FIBRE;
  1447. } else {
  1448. ecmd->port = PORT_TP;
  1449. ecmd->phy_address = qdev->PHYAddr;
  1450. }
  1451. ecmd->advertising = ql_supported_modes(qdev);
  1452. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1453. ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
  1454. ecmd->duplex = ql_get_full_dup(qdev);
  1455. return 0;
  1456. }
  1457. static void ql_get_drvinfo(struct net_device *ndev,
  1458. struct ethtool_drvinfo *drvinfo)
  1459. {
  1460. struct ql3_adapter *qdev = netdev_priv(ndev);
  1461. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1462. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1463. strncpy(drvinfo->fw_version, "N/A", 32);
  1464. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1465. drvinfo->regdump_len = 0;
  1466. drvinfo->eedump_len = 0;
  1467. }
  1468. static u32 ql_get_msglevel(struct net_device *ndev)
  1469. {
  1470. struct ql3_adapter *qdev = netdev_priv(ndev);
  1471. return qdev->msg_enable;
  1472. }
  1473. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1474. {
  1475. struct ql3_adapter *qdev = netdev_priv(ndev);
  1476. qdev->msg_enable = value;
  1477. }
  1478. static void ql_get_pauseparam(struct net_device *ndev,
  1479. struct ethtool_pauseparam *pause)
  1480. {
  1481. struct ql3_adapter *qdev = netdev_priv(ndev);
  1482. struct ql3xxx_port_registers __iomem *port_regs =
  1483. qdev->mem_map_registers;
  1484. u32 reg;
  1485. if (qdev->mac_index == 0)
  1486. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1487. else
  1488. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1489. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1490. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1491. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1492. }
  1493. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1494. .get_settings = ql_get_settings,
  1495. .get_drvinfo = ql_get_drvinfo,
  1496. .get_link = ethtool_op_get_link,
  1497. .get_msglevel = ql_get_msglevel,
  1498. .set_msglevel = ql_set_msglevel,
  1499. .get_pauseparam = ql_get_pauseparam,
  1500. };
  1501. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1502. {
  1503. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1504. dma_addr_t map;
  1505. int err;
  1506. while (lrg_buf_cb) {
  1507. if (!lrg_buf_cb->skb) {
  1508. lrg_buf_cb->skb =
  1509. netdev_alloc_skb(qdev->ndev,
  1510. qdev->lrg_buffer_len);
  1511. if (unlikely(!lrg_buf_cb->skb)) {
  1512. netdev_printk(KERN_DEBUG, qdev->ndev,
  1513. "Failed netdev_alloc_skb()\n");
  1514. break;
  1515. } else {
  1516. /*
  1517. * We save some space to copy the ethhdr from
  1518. * first buffer
  1519. */
  1520. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1521. map = pci_map_single(qdev->pdev,
  1522. lrg_buf_cb->skb->data,
  1523. qdev->lrg_buffer_len -
  1524. QL_HEADER_SPACE,
  1525. PCI_DMA_FROMDEVICE);
  1526. err = pci_dma_mapping_error(qdev->pdev, map);
  1527. if (err) {
  1528. netdev_err(qdev->ndev,
  1529. "PCI mapping failed with error: %d\n",
  1530. err);
  1531. dev_kfree_skb(lrg_buf_cb->skb);
  1532. lrg_buf_cb->skb = NULL;
  1533. break;
  1534. }
  1535. lrg_buf_cb->buf_phy_addr_low =
  1536. cpu_to_le32(LS_64BITS(map));
  1537. lrg_buf_cb->buf_phy_addr_high =
  1538. cpu_to_le32(MS_64BITS(map));
  1539. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1540. dma_unmap_len_set(lrg_buf_cb, maplen,
  1541. qdev->lrg_buffer_len -
  1542. QL_HEADER_SPACE);
  1543. --qdev->lrg_buf_skb_check;
  1544. if (!qdev->lrg_buf_skb_check)
  1545. return 1;
  1546. }
  1547. }
  1548. lrg_buf_cb = lrg_buf_cb->next;
  1549. }
  1550. return 0;
  1551. }
  1552. /*
  1553. * Caller holds hw_lock.
  1554. */
  1555. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1556. {
  1557. struct ql3xxx_port_registers __iomem *port_regs =
  1558. qdev->mem_map_registers;
  1559. if (qdev->small_buf_release_cnt >= 16) {
  1560. while (qdev->small_buf_release_cnt >= 16) {
  1561. qdev->small_buf_q_producer_index++;
  1562. if (qdev->small_buf_q_producer_index ==
  1563. NUM_SBUFQ_ENTRIES)
  1564. qdev->small_buf_q_producer_index = 0;
  1565. qdev->small_buf_release_cnt -= 8;
  1566. }
  1567. wmb();
  1568. writel(qdev->small_buf_q_producer_index,
  1569. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1570. }
  1571. }
  1572. /*
  1573. * Caller holds hw_lock.
  1574. */
  1575. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1576. {
  1577. struct bufq_addr_element *lrg_buf_q_ele;
  1578. int i;
  1579. struct ql_rcv_buf_cb *lrg_buf_cb;
  1580. struct ql3xxx_port_registers __iomem *port_regs =
  1581. qdev->mem_map_registers;
  1582. if ((qdev->lrg_buf_free_count >= 8) &&
  1583. (qdev->lrg_buf_release_cnt >= 16)) {
  1584. if (qdev->lrg_buf_skb_check)
  1585. if (!ql_populate_free_queue(qdev))
  1586. return;
  1587. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1588. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1589. (qdev->lrg_buf_free_count >= 8)) {
  1590. for (i = 0; i < 8; i++) {
  1591. lrg_buf_cb =
  1592. ql_get_from_lrg_buf_free_list(qdev);
  1593. lrg_buf_q_ele->addr_high =
  1594. lrg_buf_cb->buf_phy_addr_high;
  1595. lrg_buf_q_ele->addr_low =
  1596. lrg_buf_cb->buf_phy_addr_low;
  1597. lrg_buf_q_ele++;
  1598. qdev->lrg_buf_release_cnt--;
  1599. }
  1600. qdev->lrg_buf_q_producer_index++;
  1601. if (qdev->lrg_buf_q_producer_index ==
  1602. qdev->num_lbufq_entries)
  1603. qdev->lrg_buf_q_producer_index = 0;
  1604. if (qdev->lrg_buf_q_producer_index ==
  1605. (qdev->num_lbufq_entries - 1)) {
  1606. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1607. }
  1608. }
  1609. wmb();
  1610. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1611. writel(qdev->lrg_buf_q_producer_index,
  1612. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1613. }
  1614. }
  1615. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1616. struct ob_mac_iocb_rsp *mac_rsp)
  1617. {
  1618. struct ql_tx_buf_cb *tx_cb;
  1619. int i;
  1620. int retval = 0;
  1621. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1622. netdev_warn(qdev->ndev,
  1623. "Frame too short but it was padded and sent\n");
  1624. }
  1625. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1626. /* Check the transmit response flags for any errors */
  1627. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1628. netdev_err(qdev->ndev,
  1629. "Frame too short to be legal, frame not sent\n");
  1630. qdev->ndev->stats.tx_errors++;
  1631. retval = -EIO;
  1632. goto frame_not_sent;
  1633. }
  1634. if (tx_cb->seg_count == 0) {
  1635. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1636. mac_rsp->transaction_id);
  1637. qdev->ndev->stats.tx_errors++;
  1638. retval = -EIO;
  1639. goto invalid_seg_count;
  1640. }
  1641. pci_unmap_single(qdev->pdev,
  1642. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1643. dma_unmap_len(&tx_cb->map[0], maplen),
  1644. PCI_DMA_TODEVICE);
  1645. tx_cb->seg_count--;
  1646. if (tx_cb->seg_count) {
  1647. for (i = 1; i < tx_cb->seg_count; i++) {
  1648. pci_unmap_page(qdev->pdev,
  1649. dma_unmap_addr(&tx_cb->map[i],
  1650. mapaddr),
  1651. dma_unmap_len(&tx_cb->map[i], maplen),
  1652. PCI_DMA_TODEVICE);
  1653. }
  1654. }
  1655. qdev->ndev->stats.tx_packets++;
  1656. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1657. frame_not_sent:
  1658. dev_kfree_skb_irq(tx_cb->skb);
  1659. tx_cb->skb = NULL;
  1660. invalid_seg_count:
  1661. atomic_inc(&qdev->tx_count);
  1662. }
  1663. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1664. {
  1665. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1666. qdev->small_buf_index = 0;
  1667. qdev->small_buf_release_cnt++;
  1668. }
  1669. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1670. {
  1671. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1672. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1673. qdev->lrg_buf_release_cnt++;
  1674. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1675. qdev->lrg_buf_index = 0;
  1676. return lrg_buf_cb;
  1677. }
  1678. /*
  1679. * The difference between 3022 and 3032 for inbound completions:
  1680. * 3022 uses two buffers per completion. The first buffer contains
  1681. * (some) header info, the second the remainder of the headers plus
  1682. * the data. For this chip we reserve some space at the top of the
  1683. * receive buffer so that the header info in buffer one can be
  1684. * prepended to the buffer two. Buffer two is the sent up while
  1685. * buffer one is returned to the hardware to be reused.
  1686. * 3032 receives all of it's data and headers in one buffer for a
  1687. * simpler process. 3032 also supports checksum verification as
  1688. * can be seen in ql_process_macip_rx_intr().
  1689. */
  1690. stat