PageRenderTime 60ms CodeModel.GetById 23ms RepoModel.GetById 1ms app.codeStats 0ms

/kernel/fork.c

https://bitbucket.org/zarboz/ville-upstream-test-branch
C | 1782 lines | 1265 code | 245 blank | 272 comment | 175 complexity | e1f42d02e00860b0807f8838738818cf MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/futex.h>
  39. #include <linux/compat.h>
  40. #include <linux/kthread.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/proc_fs.h>
  49. #include <linux/profile.h>
  50. #include <linux/rmap.h>
  51. #include <linux/ksm.h>
  52. #include <linux/acct.h>
  53. #include <linux/tsacct_kern.h>
  54. #include <linux/cn_proc.h>
  55. #include <linux/freezer.h>
  56. #include <linux/delayacct.h>
  57. #include <linux/taskstats_kern.h>
  58. #include <linux/random.h>
  59. #include <linux/tty.h>
  60. #include <linux/blkdev.h>
  61. #include <linux/fs_struct.h>
  62. #include <linux/magic.h>
  63. #include <linux/perf_event.h>
  64. #include <linux/posix-timers.h>
  65. #include <linux/user-return-notifier.h>
  66. #include <linux/oom.h>
  67. #include <linux/khugepaged.h>
  68. #include <linux/signalfd.h>
  69. #include <asm/pgtable.h>
  70. #include <asm/pgalloc.h>
  71. #include <asm/uaccess.h>
  72. #include <asm/mmu_context.h>
  73. #include <asm/cacheflush.h>
  74. #include <asm/tlbflush.h>
  75. #include <trace/events/sched.h>
  76. /*
  77. * Protected counters by write_lock_irq(&tasklist_lock)
  78. */
  79. unsigned long total_forks; /* Handle normal Linux uptimes. */
  80. int nr_threads; /* The idle threads do not count.. */
  81. int max_threads; /* tunable limit on nr_threads */
  82. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  83. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  84. #ifdef CONFIG_PROVE_RCU
  85. int lockdep_tasklist_lock_is_held(void)
  86. {
  87. return lockdep_is_held(&tasklist_lock);
  88. }
  89. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_RCU */
  91. int nr_processes(void)
  92. {
  93. int cpu;
  94. int total = 0;
  95. for_each_possible_cpu(cpu)
  96. total += per_cpu(process_counts, cpu);
  97. return total;
  98. }
  99. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  100. # define alloc_task_struct_node(node) \
  101. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  102. # define free_task_struct(tsk) \
  103. kmem_cache_free(task_struct_cachep, (tsk))
  104. static struct kmem_cache *task_struct_cachep;
  105. #endif
  106. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  107. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  108. int node)
  109. {
  110. #ifdef CONFIG_DEBUG_STACK_USAGE
  111. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  112. #else
  113. gfp_t mask = GFP_KERNEL;
  114. #endif
  115. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  116. return page ? page_address(page) : NULL;
  117. }
  118. static inline void free_thread_info(struct thread_info *ti)
  119. {
  120. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  121. }
  122. #endif
  123. /* SLAB cache for signal_struct structures (tsk->signal) */
  124. static struct kmem_cache *signal_cachep;
  125. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  126. struct kmem_cache *sighand_cachep;
  127. /* SLAB cache for files_struct structures (tsk->files) */
  128. struct kmem_cache *files_cachep;
  129. /* SLAB cache for fs_struct structures (tsk->fs) */
  130. struct kmem_cache *fs_cachep;
  131. /* SLAB cache for vm_area_struct structures */
  132. struct kmem_cache *vm_area_cachep;
  133. /* SLAB cache for mm_struct structures (tsk->mm) */
  134. static struct kmem_cache *mm_cachep;
  135. static void account_kernel_stack(struct thread_info *ti, int account)
  136. {
  137. struct zone *zone = page_zone(virt_to_page(ti));
  138. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  139. }
  140. void free_task(struct task_struct *tsk)
  141. {
  142. account_kernel_stack(tsk->stack, -1);
  143. free_thread_info(tsk->stack);
  144. rt_mutex_debug_task_free(tsk);
  145. ftrace_graph_exit_task(tsk);
  146. free_task_struct(tsk);
  147. }
  148. EXPORT_SYMBOL(free_task);
  149. static inline void free_signal_struct(struct signal_struct *sig)
  150. {
  151. taskstats_tgid_free(sig);
  152. sched_autogroup_exit(sig);
  153. kmem_cache_free(signal_cachep, sig);
  154. }
  155. static inline void put_signal_struct(struct signal_struct *sig)
  156. {
  157. if (atomic_dec_and_test(&sig->sigcnt))
  158. free_signal_struct(sig);
  159. }
  160. void __put_task_struct(struct task_struct *tsk)
  161. {
  162. WARN_ON(!tsk->exit_state);
  163. WARN_ON(atomic_read(&tsk->usage));
  164. WARN_ON(tsk == current);
  165. exit_creds(tsk);
  166. delayacct_tsk_free(tsk);
  167. put_signal_struct(tsk->signal);
  168. if (!profile_handoff_task(tsk))
  169. free_task(tsk);
  170. }
  171. EXPORT_SYMBOL_GPL(__put_task_struct);
  172. /*
  173. * macro override instead of weak attribute alias, to workaround
  174. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  175. */
  176. #ifndef arch_task_cache_init
  177. #define arch_task_cache_init()
  178. #endif
  179. void __init fork_init(unsigned long mempages)
  180. {
  181. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  182. #ifndef ARCH_MIN_TASKALIGN
  183. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  184. #endif
  185. /* create a slab on which task_structs can be allocated */
  186. task_struct_cachep =
  187. kmem_cache_create("task_struct", sizeof(struct task_struct),
  188. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  189. #endif
  190. /* do the arch specific task caches init */
  191. arch_task_cache_init();
  192. /*
  193. * The default maximum number of threads is set to a safe
  194. * value: the thread structures can take up at most half
  195. * of memory.
  196. */
  197. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  198. /*
  199. * we need to allow at least 20 threads to boot a system
  200. */
  201. if (max_threads < 20)
  202. max_threads = 20;
  203. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  204. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  205. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  206. init_task.signal->rlim[RLIMIT_NPROC];
  207. }
  208. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  209. struct task_struct *src)
  210. {
  211. *dst = *src;
  212. return 0;
  213. }
  214. static struct task_struct *dup_task_struct(struct task_struct *orig)
  215. {
  216. struct task_struct *tsk;
  217. struct thread_info *ti;
  218. unsigned long *stackend;
  219. int node = tsk_fork_get_node(orig);
  220. int err;
  221. prepare_to_copy(orig);
  222. tsk = alloc_task_struct_node(node);
  223. if (!tsk)
  224. return NULL;
  225. ti = alloc_thread_info_node(tsk, node);
  226. if (!ti) {
  227. free_task_struct(tsk);
  228. return NULL;
  229. }
  230. err = arch_dup_task_struct(tsk, orig);
  231. if (err)
  232. goto out;
  233. tsk->stack = ti;
  234. setup_thread_stack(tsk, orig);
  235. clear_user_return_notifier(tsk);
  236. clear_tsk_need_resched(tsk);
  237. stackend = end_of_stack(tsk);
  238. *stackend = STACK_END_MAGIC; /* for overflow detection */
  239. #ifdef CONFIG_CC_STACKPROTECTOR
  240. tsk->stack_canary = get_random_int();
  241. #endif
  242. /*
  243. * One for us, one for whoever does the "release_task()" (usually
  244. * parent)
  245. */
  246. atomic_set(&tsk->usage, 2);
  247. #ifdef CONFIG_BLK_DEV_IO_TRACE
  248. tsk->btrace_seq = 0;
  249. #endif
  250. tsk->splice_pipe = NULL;
  251. account_kernel_stack(ti, 1);
  252. return tsk;
  253. out:
  254. free_thread_info(ti);
  255. free_task_struct(tsk);
  256. return NULL;
  257. }
  258. #ifdef CONFIG_MMU
  259. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  260. {
  261. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  262. struct rb_node **rb_link, *rb_parent;
  263. int retval;
  264. unsigned long charge;
  265. struct mempolicy *pol;
  266. down_write(&oldmm->mmap_sem);
  267. flush_cache_dup_mm(oldmm);
  268. /*
  269. * Not linked in yet - no deadlock potential:
  270. */
  271. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  272. mm->locked_vm = 0;
  273. mm->mmap = NULL;
  274. mm->mmap_cache = NULL;
  275. mm->free_area_cache = oldmm->mmap_base;
  276. mm->cached_hole_size = ~0UL;
  277. mm->map_count = 0;
  278. cpumask_clear(mm_cpumask(mm));
  279. mm->mm_rb = RB_ROOT;
  280. rb_link = &mm->mm_rb.rb_node;
  281. rb_parent = NULL;
  282. pprev = &mm->mmap;
  283. retval = ksm_fork(mm, oldmm);
  284. if (retval)
  285. goto out;
  286. retval = khugepaged_fork(mm, oldmm);
  287. if (retval)
  288. goto out;
  289. prev = NULL;
  290. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  291. struct file *file;
  292. if (mpnt->vm_flags & VM_DONTCOPY) {
  293. long pages = vma_pages(mpnt);
  294. mm->total_vm -= pages;
  295. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  296. -pages);
  297. continue;
  298. }
  299. charge = 0;
  300. if (mpnt->vm_flags & VM_ACCOUNT) {
  301. unsigned long len;
  302. len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  303. if (security_vm_enough_memory(len))
  304. goto fail_nomem;
  305. charge = len;
  306. }
  307. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  308. if (!tmp)
  309. goto fail_nomem;
  310. *tmp = *mpnt;
  311. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  312. pol = mpol_dup(vma_policy(mpnt));
  313. retval = PTR_ERR(pol);
  314. if (IS_ERR(pol))
  315. goto fail_nomem_policy;
  316. vma_set_policy(tmp, pol);
  317. tmp->vm_mm = mm;
  318. if (anon_vma_fork(tmp, mpnt))
  319. goto fail_nomem_anon_vma_fork;
  320. tmp->vm_flags &= ~VM_LOCKED;
  321. tmp->vm_next = tmp->vm_prev = NULL;
  322. file = tmp->vm_file;
  323. if (file) {
  324. struct inode *inode = file->f_path.dentry->d_inode;
  325. struct address_space *mapping = file->f_mapping;
  326. get_file(file);
  327. if (tmp->vm_flags & VM_DENYWRITE)
  328. atomic_dec(&inode->i_writecount);
  329. mutex_lock(&mapping->i_mmap_mutex);
  330. if (tmp->vm_flags & VM_SHARED)
  331. mapping->i_mmap_writable++;
  332. flush_dcache_mmap_lock(mapping);
  333. /* insert tmp into the share list, just after mpnt */
  334. vma_prio_tree_add(tmp, mpnt);
  335. flush_dcache_mmap_unlock(mapping);
  336. mutex_unlock(&mapping->i_mmap_mutex);
  337. }
  338. /*
  339. * Clear hugetlb-related page reserves for children. This only
  340. * affects MAP_PRIVATE mappings. Faults generated by the child
  341. * are not guaranteed to succeed, even if read-only
  342. */
  343. if (is_vm_hugetlb_page(tmp))
  344. reset_vma_resv_huge_pages(tmp);
  345. /*
  346. * Link in the new vma and copy the page table entries.
  347. */
  348. *pprev = tmp;
  349. pprev = &tmp->vm_next;
  350. tmp->vm_prev = prev;
  351. prev = tmp;
  352. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  353. rb_link = &tmp->vm_rb.rb_right;
  354. rb_parent = &tmp->vm_rb;
  355. mm->map_count++;
  356. retval = copy_page_range(mm, oldmm, mpnt);
  357. if (tmp->vm_ops && tmp->vm_ops->open)
  358. tmp->vm_ops->open(tmp);
  359. if (retval)
  360. goto out;
  361. }
  362. /* a new mm has just been created */
  363. arch_dup_mmap(oldmm, mm);
  364. retval = 0;
  365. out:
  366. up_write(&mm->mmap_sem);
  367. flush_tlb_mm(oldmm);
  368. up_write(&oldmm->mmap_sem);
  369. return retval;
  370. fail_nomem_anon_vma_fork:
  371. mpol_put(pol);
  372. fail_nomem_policy:
  373. kmem_cache_free(vm_area_cachep, tmp);
  374. fail_nomem:
  375. retval = -ENOMEM;
  376. vm_unacct_memory(charge);
  377. goto out;
  378. }
  379. static inline int mm_alloc_pgd(struct mm_struct *mm)
  380. {
  381. mm->pgd = pgd_alloc(mm);
  382. if (unlikely(!mm->pgd))
  383. return -ENOMEM;
  384. return 0;
  385. }
  386. static inline void mm_free_pgd(struct mm_struct *mm)
  387. {
  388. pgd_free(mm, mm->pgd);
  389. }
  390. #else
  391. #define dup_mmap(mm, oldmm) (0)
  392. #define mm_alloc_pgd(mm) (0)
  393. #define mm_free_pgd(mm)
  394. #endif /* CONFIG_MMU */
  395. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  396. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  397. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  398. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  399. static int __init coredump_filter_setup(char *s)
  400. {
  401. default_dump_filter =
  402. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  403. MMF_DUMP_FILTER_MASK;
  404. return 1;
  405. }
  406. __setup("coredump_filter=", coredump_filter_setup);
  407. #include <linux/init_task.h>
  408. static void mm_init_aio(struct mm_struct *mm)
  409. {
  410. #ifdef CONFIG_AIO
  411. spin_lock_init(&mm->ioctx_lock);
  412. INIT_HLIST_HEAD(&mm->ioctx_list);
  413. #endif
  414. }
  415. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  416. {
  417. atomic_set(&mm->mm_users, 1);
  418. atomic_set(&mm->mm_count, 1);
  419. init_rwsem(&mm->mmap_sem);
  420. INIT_LIST_HEAD(&mm->mmlist);
  421. mm->flags = (current->mm) ?
  422. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  423. mm->core_state = NULL;
  424. mm->nr_ptes = 0;
  425. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  426. spin_lock_init(&mm->page_table_lock);
  427. mm->free_area_cache = TASK_UNMAPPED_BASE;
  428. mm->cached_hole_size = ~0UL;
  429. mm_init_aio(mm);
  430. mm_init_owner(mm, p);
  431. if (likely(!mm_alloc_pgd(mm))) {
  432. mm->def_flags = 0;
  433. mmu_notifier_mm_init(mm);
  434. return mm;
  435. }
  436. free_mm(mm);
  437. return NULL;
  438. }
  439. /*
  440. * Allocate and initialize an mm_struct.
  441. */
  442. struct mm_struct *mm_alloc(void)
  443. {
  444. struct mm_struct *mm;
  445. mm = allocate_mm();
  446. if (!mm)
  447. return NULL;
  448. memset(mm, 0, sizeof(*mm));
  449. mm_init_cpumask(mm);
  450. return mm_init(mm, current);
  451. }
  452. /*
  453. * Called when the last reference to the mm
  454. * is dropped: either by a lazy thread or by
  455. * mmput. Free the page directory and the mm.
  456. */
  457. void __mmdrop(struct mm_struct *mm)
  458. {
  459. BUG_ON(mm == &init_mm);
  460. mm_free_pgd(mm);
  461. destroy_context(mm);
  462. mmu_notifier_mm_destroy(mm);
  463. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  464. VM_BUG_ON(mm->pmd_huge_pte);
  465. #endif
  466. free_mm(mm);
  467. }
  468. EXPORT_SYMBOL_GPL(__mmdrop);
  469. /*
  470. * Decrement the use count and release all resources for an mm.
  471. */
  472. void mmput(struct mm_struct *mm)
  473. {
  474. might_sleep();
  475. if (atomic_dec_and_test(&mm->mm_users)) {
  476. exit_aio(mm);
  477. ksm_exit(mm);
  478. khugepaged_exit(mm); /* must run before exit_mmap */
  479. exit_mmap(mm);
  480. set_mm_exe_file(mm, NULL);
  481. if (!list_empty(&mm->mmlist)) {
  482. spin_lock(&mmlist_lock);
  483. list_del(&mm->mmlist);
  484. spin_unlock(&mmlist_lock);
  485. }
  486. put_swap_token(mm);
  487. if (mm->binfmt)
  488. module_put(mm->binfmt->module);
  489. mmdrop(mm);
  490. }
  491. }
  492. EXPORT_SYMBOL_GPL(mmput);
  493. /*
  494. * We added or removed a vma mapping the executable. The vmas are only mapped
  495. * during exec and are not mapped with the mmap system call.
  496. * Callers must hold down_write() on the mm's mmap_sem for these
  497. */
  498. void added_exe_file_vma(struct mm_struct *mm)
  499. {
  500. mm->num_exe_file_vmas++;
  501. }
  502. void removed_exe_file_vma(struct mm_struct *mm)
  503. {
  504. mm->num_exe_file_vmas--;
  505. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  506. fput(mm->exe_file);
  507. mm->exe_file = NULL;
  508. }
  509. }
  510. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  511. {
  512. if (new_exe_file)
  513. get_file(new_exe_file);
  514. if (mm->exe_file)
  515. fput(mm->exe_file);
  516. mm->exe_file = new_exe_file;
  517. mm->num_exe_file_vmas = 0;
  518. }
  519. struct file *get_mm_exe_file(struct mm_struct *mm)
  520. {
  521. struct file *exe_file;
  522. /* We need mmap_sem to protect against races with removal of
  523. * VM_EXECUTABLE vmas */
  524. down_read(&mm->mmap_sem);
  525. exe_file = mm->exe_file;
  526. if (exe_file)
  527. get_file(exe_file);
  528. up_read(&mm->mmap_sem);
  529. return exe_file;
  530. }
  531. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  532. {
  533. /* It's safe to write the exe_file pointer without exe_file_lock because
  534. * this is called during fork when the task is not yet in /proc */
  535. newmm->exe_file = get_mm_exe_file(oldmm);
  536. }
  537. /**
  538. * get_task_mm - acquire a reference to the task's mm
  539. *
  540. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  541. * this kernel workthread has transiently adopted a user mm with use_mm,
  542. * to do its AIO) is not set and if so returns a reference to it, after
  543. * bumping up the use count. User must release the mm via mmput()
  544. * after use. Typically used by /proc and ptrace.
  545. */
  546. struct mm_struct *get_task_mm(struct task_struct *task)
  547. {
  548. struct mm_struct *mm;
  549. task_lock(task);
  550. mm = task->mm;
  551. if (mm) {
  552. if (task->flags & PF_KTHREAD)
  553. mm = NULL;
  554. else
  555. atomic_inc(&mm->mm_users);
  556. }
  557. task_unlock(task);
  558. return mm;
  559. }
  560. EXPORT_SYMBOL_GPL(get_task_mm);
  561. /* Please note the differences between mmput and mm_release.
  562. * mmput is called whenever we stop holding onto a mm_struct,
  563. * error success whatever.
  564. *
  565. * mm_release is called after a mm_struct has been removed
  566. * from the current process.
  567. *
  568. * This difference is important for error handling, when we
  569. * only half set up a mm_struct for a new process and need to restore
  570. * the old one. Because we mmput the new mm_struct before
  571. * restoring the old one. . .
  572. * Eric Biederman 10 January 1998
  573. */
  574. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  575. {
  576. struct completion *vfork_done = tsk->vfork_done;
  577. /* Get rid of any futexes when releasing the mm */
  578. #ifdef CONFIG_FUTEX
  579. if (unlikely(tsk->robust_list)) {
  580. exit_robust_list(tsk);
  581. tsk->robust_list = NULL;
  582. }
  583. #ifdef CONFIG_COMPAT
  584. if (unlikely(tsk->compat_robust_list)) {
  585. compat_exit_robust_list(tsk);
  586. tsk->compat_robust_list = NULL;
  587. }
  588. #endif
  589. if (unlikely(!list_empty(&tsk->pi_state_list)))
  590. exit_pi_state_list(tsk);
  591. #endif
  592. /* Get rid of any cached register state */
  593. deactivate_mm(tsk, mm);
  594. /* notify parent sleeping on vfork() */
  595. if (vfork_done) {
  596. tsk->vfork_done = NULL;
  597. complete(vfork_done);
  598. }
  599. /*
  600. * If we're exiting normally, clear a user-space tid field if
  601. * requested. We leave this alone when dying by signal, to leave
  602. * the value intact in a core dump, and to save the unnecessary
  603. * trouble otherwise. Userland only wants this done for a sys_exit.
  604. */
  605. if (tsk->clear_child_tid) {
  606. if (!(tsk->flags & PF_SIGNALED) &&
  607. atomic_read(&mm->mm_users) > 1) {
  608. /*
  609. * We don't check the error code - if userspace has
  610. * not set up a proper pointer then tough luck.
  611. */
  612. put_user(0, tsk->clear_child_tid);
  613. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  614. 1, NULL, NULL, 0);
  615. }
  616. tsk->clear_child_tid = NULL;
  617. }
  618. }
  619. /*
  620. * Allocate a new mm structure and copy contents from the
  621. * mm structure of the passed in task structure.
  622. */
  623. struct mm_struct *dup_mm(struct task_struct *tsk)
  624. {
  625. struct mm_struct *mm, *oldmm = current->mm;
  626. int err;
  627. if (!oldmm)
  628. return NULL;
  629. mm = allocate_mm();
  630. if (!mm)
  631. goto fail_nomem;
  632. memcpy(mm, oldmm, sizeof(*mm));
  633. mm_init_cpumask(mm);
  634. /* Initializing for Swap token stuff */
  635. mm->token_priority = 0;
  636. mm->last_interval = 0;
  637. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  638. mm->pmd_huge_pte = NULL;
  639. #endif
  640. if (!mm_init(mm, tsk))
  641. goto fail_nomem;
  642. if (init_new_context(tsk, mm))
  643. goto fail_nocontext;
  644. dup_mm_exe_file(oldmm, mm);
  645. err = dup_mmap(mm, oldmm);
  646. if (err)
  647. goto free_pt;
  648. mm->hiwater_rss = get_mm_rss(mm);
  649. mm->hiwater_vm = mm->total_vm;
  650. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  651. goto free_pt;
  652. return mm;
  653. free_pt:
  654. /* don't put binfmt in mmput, we haven't got module yet */
  655. mm->binfmt = NULL;
  656. mmput(mm);
  657. fail_nomem:
  658. return NULL;
  659. fail_nocontext:
  660. /*
  661. * If init_new_context() failed, we cannot use mmput() to free the mm
  662. * because it calls destroy_context()
  663. */
  664. mm_free_pgd(mm);
  665. free_mm(mm);
  666. return NULL;
  667. }
  668. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  669. {
  670. struct mm_struct *mm, *oldmm;
  671. int retval;
  672. tsk->min_flt = tsk->maj_flt = 0;
  673. tsk->nvcsw = tsk->nivcsw = 0;
  674. #ifdef CONFIG_DETECT_HUNG_TASK
  675. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  676. #endif
  677. tsk->mm = NULL;
  678. tsk->active_mm = NULL;
  679. /*
  680. * Are we cloning a kernel thread?
  681. *
  682. * We need to steal a active VM for that..
  683. */
  684. oldmm = current->mm;
  685. if (!oldmm)
  686. return 0;
  687. if (clone_flags & CLONE_VM) {
  688. atomic_inc(&oldmm->mm_users);
  689. mm = oldmm;
  690. goto good_mm;
  691. }
  692. retval = -ENOMEM;
  693. mm = dup_mm(tsk);
  694. if (!mm)
  695. goto fail_nomem;
  696. good_mm:
  697. /* Initializing for Swap token stuff */
  698. mm->token_priority = 0;
  699. mm->last_interval = 0;
  700. tsk->mm = mm;
  701. tsk->active_mm = mm;
  702. return 0;
  703. fail_nomem:
  704. return retval;
  705. }
  706. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  707. {
  708. struct fs_struct *fs = current->fs;
  709. if (clone_flags & CLONE_FS) {
  710. /* tsk->fs is already what we want */
  711. spin_lock(&fs->lock);
  712. if (fs->in_exec) {
  713. spin_unlock(&fs->lock);
  714. return -EAGAIN;
  715. }
  716. fs->users++;
  717. spin_unlock(&fs->lock);
  718. return 0;
  719. }
  720. tsk->fs = copy_fs_struct(fs);
  721. if (!tsk->fs)
  722. return -ENOMEM;
  723. return 0;
  724. }
  725. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  726. {
  727. struct files_struct *oldf, *newf;
  728. int error = 0;
  729. /*
  730. * A background process may not have any files ...
  731. */
  732. oldf = current->files;
  733. if (!oldf)
  734. goto out;
  735. if (clone_flags & CLONE_FILES) {
  736. atomic_inc(&oldf->count);
  737. goto out;
  738. }
  739. newf = dup_fd(oldf, &error);
  740. if (!newf)
  741. goto out;
  742. tsk->files = newf;
  743. error = 0;
  744. out:
  745. return error;
  746. }
  747. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  748. {
  749. #ifdef CONFIG_BLOCK
  750. struct io_context *ioc = current->io_context;
  751. if (!ioc)
  752. return 0;
  753. /*
  754. * Share io context with parent, if CLONE_IO is set
  755. */
  756. if (clone_flags & CLONE_IO) {
  757. tsk->io_context = ioc_task_link(ioc);
  758. if (unlikely(!tsk->io_context))
  759. return -ENOMEM;
  760. } else if (ioprio_valid(ioc->ioprio)) {
  761. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  762. if (unlikely(!tsk->io_context))
  763. return -ENOMEM;
  764. tsk->io_context->ioprio = ioc->ioprio;
  765. }
  766. #endif
  767. return 0;
  768. }
  769. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  770. {
  771. struct sighand_struct *sig;
  772. if (clone_flags & CLONE_SIGHAND) {
  773. atomic_inc(&current->sighand->count);
  774. return 0;
  775. }
  776. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  777. rcu_assign_pointer(tsk->sighand, sig);
  778. if (!sig)
  779. return -ENOMEM;
  780. atomic_set(&sig->count, 1);
  781. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  782. return 0;
  783. }
  784. void __cleanup_sighand(struct sighand_struct *sighand)
  785. {
  786. if (atomic_dec_and_test(&sighand->count)) {
  787. signalfd_cleanup(sighand);
  788. kmem_cache_free(sighand_cachep, sighand);
  789. }
  790. }
  791. /*
  792. * Initialize POSIX timer handling for a thread group.
  793. */
  794. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  795. {
  796. unsigned long cpu_limit;
  797. /* Thread group counters. */
  798. thread_group_cputime_init(sig);
  799. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  800. if (cpu_limit != RLIM_INFINITY) {
  801. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  802. sig->cputimer.running = 1;
  803. }
  804. /* The timer lists. */
  805. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  806. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  807. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  808. }
  809. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  810. {
  811. struct signal_struct *sig;
  812. if (clone_flags & CLONE_THREAD)
  813. return 0;
  814. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  815. tsk->signal = sig;
  816. if (!sig)
  817. return -ENOMEM;
  818. sig->nr_threads = 1;
  819. atomic_set(&sig->live, 1);
  820. atomic_set(&sig->sigcnt, 1);
  821. init_waitqueue_head(&sig->wait_chldexit);
  822. if (clone_flags & CLONE_NEWPID)
  823. sig->flags |= SIGNAL_UNKILLABLE;
  824. sig->curr_target = tsk;
  825. init_sigpending(&sig->shared_pending);
  826. INIT_LIST_HEAD(&sig->posix_timers);
  827. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  828. sig->real_timer.function = it_real_fn;
  829. task_lock(current->group_leader);
  830. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  831. task_unlock(current->group_leader);
  832. posix_cpu_timers_init_group(sig);
  833. tty_audit_fork(sig);
  834. sched_autogroup_fork(sig);
  835. #ifdef CONFIG_CGROUPS
  836. init_rwsem(&sig->threadgroup_fork_lock);
  837. #endif
  838. #ifdef CONFIG_CPUSETS
  839. seqcount_init(&tsk->mems_allowed_seq);
  840. #endif
  841. sig->oom_adj = current->signal->oom_adj;
  842. sig->oom_score_adj = current->signal->oom_score_adj;
  843. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  844. mutex_init(&sig->cred_guard_mutex);
  845. return 0;
  846. }
  847. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  848. {
  849. unsigned long new_flags = p->flags;
  850. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  851. new_flags |= PF_FORKNOEXEC;
  852. new_flags |= PF_STARTING;
  853. p->flags = new_flags;
  854. clear_freeze_flag(p);
  855. }
  856. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  857. {
  858. current->clear_child_tid = tidptr;
  859. return task_pid_vnr(current);
  860. }
  861. static void rt_mutex_init_task(struct task_struct *p)
  862. {
  863. raw_spin_lock_init(&p->pi_lock);
  864. #ifdef CONFIG_RT_MUTEXES
  865. plist_head_init(&p->pi_waiters);
  866. p->pi_blocked_on = NULL;
  867. #endif
  868. }
  869. #ifdef CONFIG_MM_OWNER
  870. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  871. {
  872. mm->owner = p;
  873. }
  874. #endif /* CONFIG_MM_OWNER */
  875. /*
  876. * Initialize POSIX timer handling for a single task.
  877. */
  878. static void posix_cpu_timers_init(struct task_struct *tsk)
  879. {
  880. tsk->cputime_expires.prof_exp = cputime_zero;
  881. tsk->cputime_expires.virt_exp = cputime_zero;
  882. tsk->cputime_expires.sched_exp = 0;
  883. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  884. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  885. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  886. }
  887. /*
  888. * This creates a new process as a copy of the old one,
  889. * but does not actually start it yet.
  890. *
  891. * It copies the registers, and all the appropriate
  892. * parts of the process environment (as per the clone
  893. * flags). The actual kick-off is left to the caller.
  894. */
  895. static struct task_struct *copy_process(unsigned long clone_flags,
  896. unsigned long stack_start,
  897. struct pt_regs *regs,
  898. unsigned long stack_size,
  899. int __user *child_tidptr,
  900. struct pid *pid,
  901. int trace)
  902. {
  903. int retval;
  904. struct task_struct *p;
  905. int cgroup_callbacks_done = 0;
  906. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  907. return ERR_PTR(-EINVAL);
  908. /*
  909. * Thread groups must share signals as well, and detached threads
  910. * can only be started up within the thread group.
  911. */
  912. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  913. return ERR_PTR(-EINVAL);
  914. /*
  915. * Shared signal handlers imply shared VM. By way of the above,
  916. * thread groups also imply shared VM. Blocking this case allows
  917. * for various simplifications in other code.
  918. */
  919. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  920. return ERR_PTR(-EINVAL);
  921. /*
  922. * Siblings of global init remain as zombies on exit since they are
  923. * not reaped by their parent (swapper). To solve this and to avoid
  924. * multi-rooted process trees, prevent global and container-inits
  925. * from creating siblings.
  926. */
  927. if ((clone_flags & CLONE_PARENT) &&
  928. current->signal->flags & SIGNAL_UNKILLABLE)
  929. return ERR_PTR(-EINVAL);
  930. retval = security_task_create(clone_flags);
  931. if (retval)
  932. goto fork_out;
  933. retval = -ENOMEM;
  934. p = dup_task_struct(current);
  935. if (!p)
  936. goto fork_out;
  937. ftrace_graph_init_task(p);
  938. rt_mutex_init_task(p);
  939. #ifdef CONFIG_PROVE_LOCKING
  940. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  941. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  942. #endif
  943. retval = -EAGAIN;
  944. if (atomic_read(&p->real_cred->user->processes) >=
  945. task_rlimit(p, RLIMIT_NPROC)) {
  946. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  947. p->real_cred->user != INIT_USER)
  948. goto bad_fork_free;
  949. }
  950. current->flags &= ~PF_NPROC_EXCEEDED;
  951. retval = copy_creds(p, clone_flags);
  952. if (retval < 0)
  953. goto bad_fork_free;
  954. /*
  955. * If multiple threads are within copy_process(), then this check
  956. * triggers too late. This doesn't hurt, the check is only there
  957. * to stop root fork bombs.
  958. */
  959. retval = -EAGAIN;
  960. if (nr_threads >= max_threads)
  961. goto bad_fork_cleanup_count;
  962. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  963. goto bad_fork_cleanup_count;
  964. p->did_exec = 0;
  965. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  966. copy_flags(clone_flags, p);
  967. INIT_LIST_HEAD(&p->children);
  968. INIT_LIST_HEAD(&p->sibling);
  969. rcu_copy_process(p);
  970. p->vfork_done = NULL;
  971. spin_lock_init(&p->alloc_lock);
  972. init_sigpending(&p->pending);
  973. p->utime = cputime_zero;
  974. p->stime = cputime_zero;
  975. p->gtime = cputime_zero;
  976. p->utimescaled = cputime_zero;
  977. p->stimescaled = cputime_zero;
  978. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  979. p->prev_utime = cputime_zero;
  980. p->prev_stime = cputime_zero;
  981. #endif
  982. #if defined(SPLIT_RSS_COUNTING)
  983. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  984. #endif
  985. p->default_timer_slack_ns = current->timer_slack_ns;
  986. task_io_accounting_init(&p->ioac);
  987. acct_clear_integrals(p);
  988. posix_cpu_timers_init(p);
  989. do_posix_clock_monotonic_gettime(&p->start_time);
  990. p->real_start_time = p->start_time;
  991. monotonic_to_bootbased(&p->real_start_time);
  992. p->io_context = NULL;
  993. p->audit_context = NULL;
  994. if (clone_flags & CLONE_THREAD)
  995. threadgroup_fork_read_lock(current);
  996. cgroup_fork(p);
  997. #ifdef CONFIG_NUMA
  998. p->mempolicy = mpol_dup(p->mempolicy);
  999. if (IS_ERR(p->mempolicy)) {
  1000. retval = PTR_ERR(p->mempolicy);
  1001. p->mempolicy = NULL;
  1002. goto bad_fork_cleanup_cgroup;
  1003. }
  1004. mpol_fix_fork_child_flag(p);
  1005. #endif
  1006. #ifdef CONFIG_CPUSETS
  1007. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1008. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1009. #endif
  1010. #ifdef CONFIG_TRACE_IRQFLAGS
  1011. p->irq_events = 0;
  1012. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1013. p->hardirqs_enabled = 1;
  1014. #else
  1015. p->hardirqs_enabled = 0;
  1016. #endif
  1017. p->hardirq_enable_ip = 0;
  1018. p->hardirq_enable_event = 0;
  1019. p->hardirq_disable_ip = _THIS_IP_;
  1020. p->hardirq_disable_event = 0;
  1021. p->softirqs_enabled = 1;
  1022. p->softirq_enable_ip = _THIS_IP_;
  1023. p->softirq_enable_event = 0;
  1024. p->softirq_disable_ip = 0;
  1025. p->softirq_disable_event = 0;
  1026. p->hardirq_context = 0;
  1027. p->softirq_context = 0;
  1028. #endif
  1029. #ifdef CONFIG_LOCKDEP
  1030. p->lockdep_depth = 0; /* no locks held yet */
  1031. p->curr_chain_key = 0;
  1032. p->lockdep_recursion = 0;
  1033. #endif
  1034. #ifdef CONFIG_DEBUG_MUTEXES
  1035. p->blocked_on = NULL; /* not blocked yet */
  1036. #endif
  1037. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1038. p->memcg_batch.do_batch = 0;
  1039. p->memcg_batch.memcg = NULL;
  1040. #endif
  1041. /* Perform scheduler related setup. Assign this task to a CPU. */
  1042. sched_fork(p);
  1043. retval = perf_event_init_task(p);
  1044. if (retval)
  1045. goto bad_fork_cleanup_policy;
  1046. retval = audit_alloc(p);
  1047. if (retval)
  1048. goto bad_fork_cleanup_policy;
  1049. /* copy all the process information */
  1050. retval = copy_semundo(clone_flags, p);
  1051. if (retval)
  1052. goto bad_fork_cleanup_audit;
  1053. retval = copy_files(clone_flags, p);
  1054. if (retval)
  1055. goto bad_fork_cleanup_semundo;
  1056. retval = copy_fs(clone_flags, p);
  1057. if (retval)
  1058. goto bad_fork_cleanup_files;
  1059. retval = copy_sighand(clone_flags, p);
  1060. if (retval)
  1061. goto bad_fork_cleanup_fs;
  1062. retval = copy_signal(clone_flags, p);
  1063. if (retval)
  1064. goto bad_fork_cleanup_sighand;
  1065. retval = copy_mm(clone_flags, p);
  1066. if (retval)
  1067. goto bad_fork_cleanup_signal;
  1068. retval = copy_namespaces(clone_flags, p);
  1069. if (retval)
  1070. goto bad_fork_cleanup_mm;
  1071. retval = copy_io(clone_flags, p);
  1072. if (retval)
  1073. goto bad_fork_cleanup_namespaces;
  1074. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1075. if (retval)
  1076. goto bad_fork_cleanup_io;
  1077. if (pid != &init_struct_pid) {
  1078. retval = -ENOMEM;
  1079. pid = alloc_pid(p->nsproxy->pid_ns);
  1080. if (!pid)
  1081. goto bad_fork_cleanup_io;
  1082. }
  1083. p->pid = pid_nr(pid);
  1084. p->tgid = p->pid;
  1085. if (clone_flags & CLONE_THREAD)
  1086. p->tgid = current->tgid;
  1087. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1088. /*
  1089. * Clear TID on mm_release()?
  1090. */
  1091. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1092. #ifdef CONFIG_BLOCK
  1093. p->plug = NULL;
  1094. #endif
  1095. #ifdef CONFIG_FUTEX
  1096. p->robust_list = NULL;
  1097. #ifdef CONFIG_COMPAT
  1098. p->compat_robust_list = NULL;
  1099. #endif
  1100. INIT_LIST_HEAD(&p->pi_state_list);
  1101. p->pi_state_cache = NULL;
  1102. #endif
  1103. /*
  1104. * sigaltstack should be cleared when sharing the same VM
  1105. */
  1106. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1107. p->sas_ss_sp = p->sas_ss_size = 0;
  1108. /*
  1109. * Syscall tracing and stepping should be turned off in the
  1110. * child regardless of CLONE_PTRACE.
  1111. */
  1112. user_disable_single_step(p);
  1113. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1114. #ifdef TIF_SYSCALL_EMU
  1115. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1116. #endif
  1117. clear_all_latency_tracing(p);
  1118. /* ok, now we should be set up.. */
  1119. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1120. p->pdeath_signal = 0;
  1121. p->exit_state = 0;
  1122. p->nr_dirtied = 0;
  1123. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1124. /*
  1125. * Ok, make it visible to the rest of the system.
  1126. * We dont wake it up yet.
  1127. */
  1128. p->group_leader = p;
  1129. INIT_LIST_HEAD(&p->thread_group);
  1130. /* Now that the task is set up, run cgroup callbacks if
  1131. * necessary. We need to run them before the task is visible
  1132. * on the tasklist. */
  1133. cgroup_fork_callbacks(p);
  1134. cgroup_callbacks_done = 1;
  1135. /* Need tasklist lock for parent etc handling! */
  1136. write_lock_irq(&tasklist_lock);
  1137. /* CLONE_PARENT re-uses the old parent */
  1138. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1139. p->real_parent = current->real_parent;
  1140. p->parent_exec_id = current->parent_exec_id;
  1141. } else {
  1142. p->real_parent = current;
  1143. p->parent_exec_id = current->self_exec_id;
  1144. }
  1145. spin_lock(&current->sighand->siglock);
  1146. /*
  1147. * Process group and session signals need to be delivered to just the
  1148. * parent before the fork or both the parent and the child after the
  1149. * fork. Restart if a signal comes in before we add the new process to
  1150. * it's process group.
  1151. * A fatal signal pending means that current will exit, so the new
  1152. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1153. */
  1154. recalc_sigpending();
  1155. if (signal_pending(current)) {
  1156. spin_unlock(&current->sighand->siglock);
  1157. write_unlock_irq(&tasklist_lock);
  1158. retval = -ERESTARTNOINTR;
  1159. goto bad_fork_free_pid;
  1160. }
  1161. if (clone_flags & CLONE_THREAD) {
  1162. current->signal->nr_threads++;
  1163. atomic_inc(&current->signal->live);
  1164. atomic_inc(&current->signal->sigcnt);
  1165. p->group_leader = current->group_leader;
  1166. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1167. }
  1168. if (likely(p->pid)) {
  1169. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1170. if (thread_group_leader(p)) {
  1171. if (is_child_reaper(pid))
  1172. p->nsproxy->pid_ns->child_reaper = p;
  1173. p->signal->leader_pid = pid;
  1174. p->signal->tty = tty_kref_get(current->signal->tty);
  1175. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1176. attach_pid(p, PIDTYPE_SID, task_session(current));
  1177. list_add_tail(&p->sibling, &p->real_parent->children);
  1178. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1179. __this_cpu_inc(process_counts);
  1180. }
  1181. attach_pid(p, PIDTYPE_PID, pid);
  1182. nr_threads++;
  1183. }
  1184. total_forks++;
  1185. spin_unlock(&current->sighand->siglock);
  1186. write_unlock_irq(&tasklist_lock);
  1187. proc_fork_connector(p);
  1188. cgroup_post_fork(p);
  1189. if (clone_flags & CLONE_THREAD)
  1190. threadgroup_fork_read_unlock(current);
  1191. perf_event_fork(p);
  1192. return p;
  1193. bad_fork_free_pid:
  1194. if (pid != &init_struct_pid)
  1195. free_pid(pid);
  1196. bad_fork_cleanup_io:
  1197. if (p->io_context)
  1198. exit_io_context(p);
  1199. bad_fork_cleanup_namespaces:
  1200. if (unlikely(clone_flags & CLONE_NEWPID))
  1201. pid_ns_release_proc(p->nsproxy->pid_ns);
  1202. exit_task_namespaces(p);
  1203. bad_fork_cleanup_mm:
  1204. if (p->mm)
  1205. mmput(p->mm);
  1206. bad_fork_cleanup_signal:
  1207. if (!(clone_flags & CLONE_THREAD))
  1208. free_signal_struct(p->signal);
  1209. bad_fork_cleanup_sighand:
  1210. __cleanup_sighand(p->sighand);
  1211. bad_fork_cleanup_fs:
  1212. exit_fs(p); /* blocking */
  1213. bad_fork_cleanup_files:
  1214. exit_files(p); /* blocking */
  1215. bad_fork_cleanup_semundo:
  1216. exit_sem(p);
  1217. bad_fork_cleanup_audit:
  1218. audit_free(p);
  1219. bad_fork_cleanup_policy:
  1220. perf_event_free_task(p);
  1221. #ifdef CONFIG_NUMA
  1222. mpol_put(p->mempolicy);
  1223. bad_fork_cleanup_cgroup:
  1224. #endif
  1225. if (clone_flags & CLONE_THREAD)
  1226. threadgroup_fork_read_unlock(current);
  1227. cgroup_exit(p, cgroup_callbacks_done);
  1228. delayacct_tsk_free(p);
  1229. module_put(task_thread_info(p)->exec_domain->module);
  1230. bad_fork_cleanup_count:
  1231. atomic_dec(&p->cred->user->processes);
  1232. exit_creds(p);
  1233. bad_fork_free:
  1234. free_task(p);
  1235. fork_out:
  1236. return ERR_PTR(retval);
  1237. }
  1238. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1239. {
  1240. memset(regs, 0, sizeof(struct pt_regs));
  1241. return regs;
  1242. }
  1243. static inline void init_idle_pids(struct pid_link *links)
  1244. {
  1245. enum pid_type type;
  1246. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1247. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1248. links[type].pid = &init_struct_pid;
  1249. }
  1250. }
  1251. struct task_struct * __cpuinit fork_idle(int cpu)
  1252. {
  1253. struct task_struct *task;
  1254. struct pt_regs regs;
  1255. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1256. &init_struct_pid, 0);
  1257. if (!IS_ERR(task)) {
  1258. init_idle_pids(task->pids);
  1259. init_idle(task, cpu);
  1260. }
  1261. return task;
  1262. }
  1263. /*
  1264. * Ok, this is the main fork-routine.
  1265. *
  1266. * It copies the process, and if successful kick-starts
  1267. * it and waits for it to finish using the VM if required.
  1268. */
  1269. long do_fork(unsigned long clone_flags,
  1270. unsigned long stack_start,
  1271. struct pt_regs *regs,
  1272. unsigned long stack_size,
  1273. int __user *parent_tidptr,
  1274. int __user *child_tidptr)
  1275. {
  1276. struct task_struct *p;
  1277. int trace = 0;
  1278. long nr;
  1279. /*
  1280. * Do some preliminary argument and permissions checking before we
  1281. * actually start allocating stuff
  1282. */
  1283. if (clone_flags & CLONE_NEWUSER) {
  1284. if (clone_flags & CLONE_THREAD)
  1285. return -EINVAL;
  1286. /* hopefully this check will go away when userns support is
  1287. * complete
  1288. */
  1289. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1290. !capable(CAP_SETGID))
  1291. return -EPERM;
  1292. }
  1293. /*
  1294. * Determine whether and which event to report to ptracer. When
  1295. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1296. * requested, no event is reported; otherwise, report if the event
  1297. * for the type of forking is enabled.
  1298. */
  1299. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1300. if (clone_flags & CLONE_VFORK)
  1301. trace = PTRACE_EVENT_VFORK;
  1302. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1303. trace = PTRACE_EVENT_CLONE;
  1304. else
  1305. trace = PTRACE_EVENT_FORK;
  1306. if (likely(!ptrace_event_enabled(current, trace)))
  1307. trace = 0;
  1308. }
  1309. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1310. child_tidptr, NULL, trace);
  1311. /*
  1312. * Do this prior waking up the new thread - the thread pointer
  1313. * might get invalid after that point, if the thread exits quickly.
  1314. */
  1315. if (!IS_ERR(p)) {
  1316. struct completion vfork;
  1317. trace_sched_process_fork(current, p);
  1318. nr = task_pid_vnr(p);
  1319. if (clone_flags & CLONE_PARENT_SETTID)
  1320. put_user(nr, parent_tidptr);
  1321. if (clone_flags & CLONE_VFORK) {
  1322. p->vfork_done = &vfork;
  1323. init_completion(&vfork);
  1324. }
  1325. audit_finish_fork(p);
  1326. /*
  1327. * We set PF_STARTING at creation in case tracing wants to
  1328. * use this to distinguish a fully live task from one that
  1329. * hasn't finished SIGSTOP raising yet. Now we clear it
  1330. * and set the child going.
  1331. */
  1332. p->flags &= ~PF_STARTING;
  1333. wake_up_new_task(p);
  1334. /* forking complete and child started to run, tell ptracer */
  1335. if (unlikely(trace))
  1336. ptrace_event(trace, nr);
  1337. if (clone_flags & CLONE_VFORK) {
  1338. freezer_do_not_count();
  1339. wait_for_completion(&vfork);
  1340. freezer_count();
  1341. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1342. }
  1343. } else {
  1344. nr = PTR_ERR(p);
  1345. }
  1346. return nr;
  1347. }
  1348. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1349. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1350. #endif
  1351. static void sighand_ctor(void *data)
  1352. {
  1353. struct sighand_struct *sighand = data;
  1354. spin_lock_init(&sighand->siglock);
  1355. init_waitqueue_head(&sighand->signalfd_wqh);
  1356. }
  1357. void __init proc_caches_init(void)
  1358. {
  1359. sighand_cachep = kmem_cache_create("sighand_cache",
  1360. sizeof(struct sighand_struct), 0,
  1361. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1362. SLAB_NOTRACK, sighand_ctor);
  1363. signal_cachep = kmem_cache_create("signal_cache",
  1364. sizeof(struct signal_struct), 0,
  1365. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1366. files_cachep = kmem_cache_create("files_cache",
  1367. sizeof(struct files_struct), 0,
  1368. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1369. fs_cachep = kmem_cache_create("fs_cache",
  1370. sizeof(struct fs_struct), 0,
  1371. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1372. /*
  1373. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1374. * whole struct cpumask for the OFFSTACK case. We could change
  1375. * this to *only* allocate as much of it as required by the
  1376. * maximum number of CPU's we can ever have. The cpumask_allocation
  1377. * is at the end of the structure, exactly for that reason.
  1378. */
  1379. mm_cachep = kmem_cache_create("mm_struct",
  1380. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1381. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1382. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1383. mmap_init();
  1384. nsproxy_cache_init();
  1385. }
  1386. /*
  1387. * Check constraints on flags passed to the unshare system call.
  1388. */
  1389. static int check_unshare_flags(unsigned long unshare_flags)
  1390. {
  1391. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1392. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1393. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1394. return -EINVAL;
  1395. /*
  1396. * Not implemented, but pretend it works if there is nothing to
  1397. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1398. * needs to unshare vm.
  1399. */
  1400. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1401. /* FIXME: get_task_mm() increments ->mm_users */
  1402. if (atomic_read(&current->mm->mm_users) > 1)
  1403. return -EINVAL;
  1404. }
  1405. return 0;
  1406. }
  1407. /*
  1408. * Unshare the filesystem structure if it is being shared
  1409. */
  1410. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1411. {
  1412. struct fs_struct *fs = current->fs;
  1413. if (!(unshare_flags & CLONE_FS) || !fs)
  1414. return 0;
  1415. /* don't need lock here; in the worst case we'll do useless copy */
  1416. if (fs->users == 1)
  1417. return 0;
  1418. *new_fsp = copy_fs_struct(fs);
  1419. if (!*new_fsp)
  1420. return -ENOMEM;
  1421. return 0;
  1422. }
  1423. /*
  1424. * Unshare file descriptor table if it is being shared
  1425. */
  1426. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1427. {
  1428. struct files_struct *fd = current->files;
  1429. int error = 0;
  1430. if ((unshare_flags & CLONE_FILES) &&
  1431. (fd && atomic_read(&fd->count) > 1)) {
  1432. *new_fdp = dup_fd(fd, &error);
  1433. if (!*new_fdp)
  1434. return error;
  1435. }
  1436. return 0;
  1437. }
  1438. /*
  1439. * unshare allows a process to 'unshare' part of the process
  1440. * context which was originally shared using clone. copy_*
  1441. * functions used by do_fork() cannot be used here directly
  1442. * because they modify an inactive task_struct that is being
  1443. * constructed. Here we are modifying the current, active,
  1444. * task_struct.
  1445. */
  1446. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1447. {
  1448. struct fs_struct *fs, *new_fs = NULL;
  1449. struct files_struct *fd, *new_fd = NULL;
  1450. struct nsproxy *new_nsproxy = NULL;
  1451. int do_sysvsem = 0;
  1452. int err;
  1453. err = check_unshare_flags(unshare_flags);
  1454. if (err)
  1455. goto bad_unshare_out;
  1456. /*
  1457. * If unsharing namespace, must also unshare filesystem information.
  1458. */
  1459. if (unshare_flags & CLONE_NEWNS)
  1460. unshare_flags |= CLONE_FS;
  1461. /*
  1462. * CLONE_NEWIPC must also detach from the undolist: after switching
  1463. * to a new ipc namespace, the semaphore arrays from the old
  1464. * namespace are unreachable.
  1465. */
  1466. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1467. do_sysvsem = 1;
  1468. err = unshare_fs(unshare_flags, &new_fs);
  1469. if (err)
  1470. goto bad_unshare_out;
  1471. err = unshare_fd(unshare_flags, &new_fd);
  1472. if (err)
  1473. goto bad_unshare_cleanup_fs;
  1474. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1475. if (err)
  1476. goto bad_unshare_cleanup_fd;
  1477. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1478. if (do_sysvsem) {
  1479. /*
  1480. * CLONE_SYSVSEM is equivalent to sys_exit().
  1481. */
  1482. exit_sem(current);
  1483. }
  1484. if (new_nsproxy) {
  1485. switch_task_namespaces(current, new_nsproxy);
  1486. new_nsproxy = NULL;
  1487. }
  1488. task_lock(current);
  1489. if (new_fs) {
  1490. fs = current->fs;
  1491. spin_lock(&fs->lock);
  1492. current->fs = new_fs;
  1493. if (--fs->users)
  1494. new_fs = NULL;
  1495. else
  1496. new_fs = fs;
  1497. spin_unlock(&fs->lock);
  1498. }
  1499. if (new_fd) {
  1500. fd = current->files;
  1501. current->files = new_fd;
  1502. new_fd = fd;
  1503. }
  1504. task_unlock(current);
  1505. }
  1506. if (new_nsproxy)
  1507. put_nsproxy(new_nsproxy);
  1508. bad_unshare_cleanup_fd:
  1509. if (new_fd)
  1510. put_files_struct(new_fd);
  1511. bad_unshare_cleanup_fs:
  1512. if (new_fs)
  1513. free_fs_struct(new_fs);
  1514. bad_unshare_out:
  1515. return err;
  1516. }
  1517. /*
  1518. * Helper to unshare the files of the current task.
  1519. * We don't want to expose copy_files internals to
  1520. * the exec layer of the kernel.
  1521. */
  1522. int unshare_files(struct files_struct **displaced)
  1523. {
  1524. struct task_struct *task = current;
  1525. struct files_struct *copy = NULL;
  1526. int error;
  1527. error = unshare_fd(CLONE_FILES, &copy);
  1528. if (error || !copy) {
  1529. *displaced = NULL;
  1530. return error;
  1531. }
  1532. *displaced = task->files;
  1533. task_lock(task);
  1534. task->files = copy;
  1535. task_unlock(task);
  1536. return 0;
  1537. }