PageRenderTime 57ms CodeModel.GetById 23ms RepoModel.GetById 0ms app.codeStats 0ms

/linux-2.6.21.x/kernel/fork.c

https://bitbucket.org/altlc/wive-rtnl-ralink-rt305x-routers-firmware-amod
C | 1544 lines | 1098 code | 214 blank | 232 comment | 163 complexity | 84a7e1f6c03848c66207e892b47b61e0 MD5 | raw file
Possible License(s): CC-BY-SA-3.0, BSD-3-Clause, MPL-2.0-no-copyleft-exception, GPL-2.0, GPL-3.0, LGPL-3.0, 0BSD, AGPL-1.0, LGPL-2.1, LGPL-2.0
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/taskstats_kern.h>
  48. #include <linux/random.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/mmu_context.h>
  53. #include <asm/cacheflush.h>
  54. #include <asm/tlbflush.h>
  55. /*
  56. * Protected counters by write_lock_irq(&tasklist_lock)
  57. */
  58. unsigned long total_forks; /* Handle normal Linux uptimes. */
  59. int nr_threads; /* The idle threads do not count.. */
  60. int max_threads; /* tunable limit on nr_threads */
  61. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  62. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  63. int nr_processes(void)
  64. {
  65. int cpu;
  66. int total = 0;
  67. for_each_online_cpu(cpu)
  68. total += per_cpu(process_counts, cpu);
  69. return total;
  70. }
  71. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  72. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  73. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  74. static struct kmem_cache *task_struct_cachep;
  75. #endif
  76. /* SLAB cache for signal_struct structures (tsk->signal) */
  77. static struct kmem_cache *signal_cachep;
  78. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  79. struct kmem_cache *sighand_cachep;
  80. /* SLAB cache for files_struct structures (tsk->files) */
  81. struct kmem_cache *files_cachep;
  82. /* SLAB cache for fs_struct structures (tsk->fs) */
  83. struct kmem_cache *fs_cachep;
  84. /* SLAB cache for vm_area_struct structures */
  85. struct kmem_cache *vm_area_cachep;
  86. /* SLAB cache for mm_struct structures (tsk->mm) */
  87. static struct kmem_cache *mm_cachep;
  88. void free_task(struct task_struct *tsk)
  89. {
  90. free_thread_info(tsk->thread_info);
  91. rt_mutex_debug_task_free(tsk);
  92. free_task_struct(tsk);
  93. }
  94. EXPORT_SYMBOL(free_task);
  95. void __put_task_struct(struct task_struct *tsk)
  96. {
  97. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  98. WARN_ON(atomic_read(&tsk->usage));
  99. WARN_ON(tsk == current);
  100. security_task_free(tsk);
  101. free_uid(tsk->user);
  102. put_group_info(tsk->group_info);
  103. delayacct_tsk_free(tsk);
  104. if (!profile_handoff_task(tsk))
  105. free_task(tsk);
  106. }
  107. void __init fork_init(unsigned long mempages)
  108. {
  109. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  110. #ifndef ARCH_MIN_TASKALIGN
  111. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  112. #endif
  113. /* create a slab on which task_structs can be allocated */
  114. task_struct_cachep =
  115. kmem_cache_create("task_struct", sizeof(struct task_struct),
  116. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  117. #endif
  118. /*
  119. * The default maximum number of threads is set to a safe
  120. * value: the thread structures can take up at most half
  121. * of memory.
  122. */
  123. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  124. /*
  125. * we need to allow at least 20 threads to boot a system
  126. */
  127. if(max_threads < 20)
  128. max_threads = 20;
  129. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  130. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  131. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  132. init_task.signal->rlim[RLIMIT_NPROC];
  133. }
  134. static struct task_struct *dup_task_struct(struct task_struct *orig)
  135. {
  136. struct task_struct *tsk;
  137. struct thread_info *ti;
  138. prepare_to_copy(orig);
  139. tsk = alloc_task_struct();
  140. if (!tsk)
  141. return NULL;
  142. ti = alloc_thread_info(tsk);
  143. if (!ti) {
  144. free_task_struct(tsk);
  145. return NULL;
  146. }
  147. *tsk = *orig;
  148. tsk->thread_info = ti;
  149. setup_thread_stack(tsk, orig);
  150. #ifdef CONFIG_CC_STACKPROTECTOR
  151. tsk->stack_canary = get_random_int();
  152. #endif
  153. /* One for us, one for whoever does the "release_task()" (usually parent) */
  154. atomic_set(&tsk->usage,2);
  155. atomic_set(&tsk->fs_excl, 0);
  156. #ifdef CONFIG_BLK_DEV_IO_TRACE
  157. tsk->btrace_seq = 0;
  158. #endif
  159. tsk->splice_pipe = NULL;
  160. return tsk;
  161. }
  162. #ifdef CONFIG_MMU
  163. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  164. {
  165. struct vm_area_struct *mpnt, *tmp, **pprev;
  166. struct rb_node **rb_link, *rb_parent;
  167. int retval;
  168. unsigned long charge;
  169. struct mempolicy *pol;
  170. down_write(&oldmm->mmap_sem);
  171. flush_cache_dup_mm(oldmm);
  172. /*
  173. * Not linked in yet - no deadlock potential:
  174. */
  175. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  176. mm->locked_vm = 0;
  177. mm->mmap = NULL;
  178. mm->mmap_cache = NULL;
  179. mm->free_area_cache = oldmm->mmap_base;
  180. mm->cached_hole_size = ~0UL;
  181. mm->map_count = 0;
  182. cpus_clear(mm->cpu_vm_mask);
  183. mm->mm_rb = RB_ROOT;
  184. rb_link = &mm->mm_rb.rb_node;
  185. rb_parent = NULL;
  186. pprev = &mm->mmap;
  187. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  188. struct file *file;
  189. if (mpnt->vm_flags & VM_DONTCOPY) {
  190. long pages = vma_pages(mpnt);
  191. mm->total_vm -= pages;
  192. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  193. -pages);
  194. continue;
  195. }
  196. charge = 0;
  197. if (mpnt->vm_flags & VM_ACCOUNT) {
  198. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  199. if (security_vm_enough_memory(len))
  200. goto fail_nomem;
  201. charge = len;
  202. }
  203. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  204. if (!tmp)
  205. goto fail_nomem;
  206. *tmp = *mpnt;
  207. pol = mpol_copy(vma_policy(mpnt));
  208. retval = PTR_ERR(pol);
  209. if (IS_ERR(pol))
  210. goto fail_nomem_policy;
  211. vma_set_policy(tmp, pol);
  212. tmp->vm_flags &= ~VM_LOCKED;
  213. tmp->vm_mm = mm;
  214. tmp->vm_next = NULL;
  215. anon_vma_link(tmp);
  216. file = tmp->vm_file;
  217. if (file) {
  218. struct inode *inode = file->f_path.dentry->d_inode;
  219. get_file(file);
  220. if (tmp->vm_flags & VM_DENYWRITE)
  221. atomic_dec(&inode->i_writecount);
  222. /* insert tmp into the share list, just after mpnt */
  223. spin_lock(&file->f_mapping->i_mmap_lock);
  224. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  225. flush_dcache_mmap_lock(file->f_mapping);
  226. vma_prio_tree_add(tmp, mpnt);
  227. flush_dcache_mmap_unlock(file->f_mapping);
  228. spin_unlock(&file->f_mapping->i_mmap_lock);
  229. }
  230. /*
  231. * Link in the new vma and copy the page table entries.
  232. */
  233. *pprev = tmp;
  234. pprev = &tmp->vm_next;
  235. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  236. rb_link = &tmp->vm_rb.rb_right;
  237. rb_parent = &tmp->vm_rb;
  238. mm->map_count++;
  239. retval = copy_page_range(mm, oldmm, mpnt);
  240. if (tmp->vm_ops && tmp->vm_ops->open)
  241. tmp->vm_ops->open(tmp);
  242. if (retval)
  243. goto out;
  244. }
  245. retval = 0;
  246. out:
  247. up_write(&mm->mmap_sem);
  248. flush_tlb_mm(oldmm);
  249. up_write(&oldmm->mmap_sem);
  250. return retval;
  251. fail_nomem_policy:
  252. kmem_cache_free(vm_area_cachep, tmp);
  253. fail_nomem:
  254. retval = -ENOMEM;
  255. vm_unacct_memory(charge);
  256. goto out;
  257. }
  258. static inline int mm_alloc_pgd(struct mm_struct * mm)
  259. {
  260. mm->pgd = pgd_alloc(mm);
  261. if (unlikely(!mm->pgd))
  262. return -ENOMEM;
  263. return 0;
  264. }
  265. static inline void mm_free_pgd(struct mm_struct * mm)
  266. {
  267. pgd_free(mm->pgd);
  268. }
  269. #else
  270. #define dup_mmap(mm, oldmm) (0)
  271. #define mm_alloc_pgd(mm) (0)
  272. #define mm_free_pgd(mm)
  273. #endif /* CONFIG_MMU */
  274. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  275. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  276. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  277. #include <linux/init_task.h>
  278. static struct mm_struct * mm_init(struct mm_struct * mm)
  279. {
  280. atomic_set(&mm->mm_users, 1);
  281. atomic_set(&mm->mm_count, 1);
  282. init_rwsem(&mm->mmap_sem);
  283. INIT_LIST_HEAD(&mm->mmlist);
  284. mm->core_waiters = 0;
  285. mm->nr_ptes = 0;
  286. set_mm_counter(mm, file_rss, 0);
  287. set_mm_counter(mm, anon_rss, 0);
  288. spin_lock_init(&mm->page_table_lock);
  289. rwlock_init(&mm->ioctx_list_lock);
  290. mm->ioctx_list = NULL;
  291. mm->free_area_cache = TASK_UNMAPPED_BASE;
  292. mm->cached_hole_size = ~0UL;
  293. if (likely(!mm_alloc_pgd(mm))) {
  294. mm->def_flags = 0;
  295. return mm;
  296. }
  297. free_mm(mm);
  298. return NULL;
  299. }
  300. /*
  301. * Allocate and initialize an mm_struct.
  302. */
  303. struct mm_struct * mm_alloc(void)
  304. {
  305. struct mm_struct * mm;
  306. mm = allocate_mm();
  307. if (mm) {
  308. memset(mm, 0, sizeof(*mm));
  309. mm = mm_init(mm);
  310. }
  311. return mm;
  312. }
  313. /*
  314. * Called when the last reference to the mm
  315. * is dropped: either by a lazy thread or by
  316. * mmput. Free the page directory and the mm.
  317. */
  318. void fastcall __mmdrop(struct mm_struct *mm)
  319. {
  320. BUG_ON(mm == &init_mm);
  321. mm_free_pgd(mm);
  322. destroy_context(mm);
  323. free_mm(mm);
  324. }
  325. /*
  326. * Decrement the use count and release all resources for an mm.
  327. */
  328. void mmput(struct mm_struct *mm)
  329. {
  330. might_sleep();
  331. if (atomic_dec_and_test(&mm->mm_users)) {
  332. exit_aio(mm);
  333. exit_mmap(mm);
  334. if (!list_empty(&mm->mmlist)) {
  335. spin_lock(&mmlist_lock);
  336. list_del(&mm->mmlist);
  337. spin_unlock(&mmlist_lock);
  338. }
  339. put_swap_token(mm);
  340. mmdrop(mm);
  341. }
  342. }
  343. EXPORT_SYMBOL_GPL(mmput);
  344. /**
  345. * get_task_mm - acquire a reference to the task's mm
  346. *
  347. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  348. * this kernel workthread has transiently adopted a user mm with use_mm,
  349. * to do its AIO) is not set and if so returns a reference to it, after
  350. * bumping up the use count. User must release the mm via mmput()
  351. * after use. Typically used by /proc and ptrace.
  352. */
  353. struct mm_struct *get_task_mm(struct task_struct *task)
  354. {
  355. struct mm_struct *mm;
  356. task_lock(task);
  357. mm = task->mm;
  358. if (mm) {
  359. if (task->flags & PF_BORROWED_MM)
  360. mm = NULL;
  361. else
  362. atomic_inc(&mm->mm_users);
  363. }
  364. task_unlock(task);
  365. return mm;
  366. }
  367. EXPORT_SYMBOL_GPL(get_task_mm);
  368. /* Please note the differences between mmput and mm_release.
  369. * mmput is called whenever we stop holding onto a mm_struct,
  370. * error success whatever.
  371. *
  372. * mm_release is called after a mm_struct has been removed
  373. * from the current process.
  374. *
  375. * This difference is important for error handling, when we
  376. * only half set up a mm_struct for a new process and need to restore
  377. * the old one. Because we mmput the new mm_struct before
  378. * restoring the old one. . .
  379. * Eric Biederman 10 January 1998
  380. */
  381. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  382. {
  383. struct completion *vfork_done = tsk->vfork_done;
  384. /* Get rid of any cached register state */
  385. deactivate_mm(tsk, mm);
  386. /* notify parent sleeping on vfork() */
  387. if (vfork_done) {
  388. tsk->vfork_done = NULL;
  389. complete(vfork_done);
  390. }
  391. /*
  392. * If we're exiting normally, clear a user-space tid field if
  393. * requested. We leave this alone when dying by signal, to leave
  394. * the value intact in a core dump, and to save the unnecessary
  395. * trouble otherwise. Userland only wants this done for a sys_exit.
  396. */
  397. if (tsk->clear_child_tid) {
  398. if (!(tsk->flags & PF_SIGNALED) &&
  399. atomic_read(&mm->mm_users) > 1) {
  400. /*
  401. * We don't check the error code - if userspace has
  402. * not set up a proper pointer then tough luck.
  403. */
  404. put_user(0, tsk->clear_child_tid);
  405. sys_futex((u32*)tsk->clear_child_tid, FUTEX_WAKE,
  406. 1, NULL, NULL, 0);
  407. }
  408. tsk->clear_child_tid = NULL;
  409. }
  410. }
  411. /*
  412. * Allocate a new mm structure and copy contents from the
  413. * mm structure of the passed in task structure.
  414. */
  415. static struct mm_struct *dup_mm(struct task_struct *tsk)
  416. {
  417. struct mm_struct *mm, *oldmm = current->mm;
  418. int err;
  419. if (!oldmm)
  420. return NULL;
  421. mm = allocate_mm();
  422. if (!mm)
  423. goto fail_nomem;
  424. memcpy(mm, oldmm, sizeof(*mm));
  425. /* Initializing for Swap token stuff */
  426. mm->token_priority = 0;
  427. mm->last_interval = 0;
  428. if (!mm_init(mm))
  429. goto fail_nomem;
  430. if (init_new_context(tsk, mm))
  431. goto fail_nocontext;
  432. err = dup_mmap(mm, oldmm);
  433. if (err)
  434. goto free_pt;
  435. mm->hiwater_rss = get_mm_rss(mm);
  436. mm->hiwater_vm = mm->total_vm;
  437. return mm;
  438. free_pt:
  439. mmput(mm);
  440. fail_nomem:
  441. return NULL;
  442. fail_nocontext:
  443. /*
  444. * If init_new_context() failed, we cannot use mmput() to free the mm
  445. * because it calls destroy_context()
  446. */
  447. mm_free_pgd(mm);
  448. free_mm(mm);
  449. return NULL;
  450. }
  451. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  452. {
  453. struct mm_struct * mm, *oldmm;
  454. int retval;
  455. tsk->min_flt = tsk->maj_flt = 0;
  456. tsk->nvcsw = tsk->nivcsw = 0;
  457. tsk->mm = NULL;
  458. tsk->active_mm = NULL;
  459. /*
  460. * Are we cloning a kernel thread?
  461. *
  462. * We need to steal a active VM for that..
  463. */
  464. oldmm = current->mm;
  465. if (!oldmm)
  466. return 0;
  467. if (clone_flags & CLONE_VM) {
  468. atomic_inc(&oldmm->mm_users);
  469. mm = oldmm;
  470. goto good_mm;
  471. }
  472. retval = -ENOMEM;
  473. mm = dup_mm(tsk);
  474. if (!mm)
  475. goto fail_nomem;
  476. good_mm:
  477. /* Initializing for Swap token stuff */
  478. mm->token_priority = 0;
  479. mm->last_interval = 0;
  480. tsk->mm = mm;
  481. tsk->active_mm = mm;
  482. return 0;
  483. fail_nomem:
  484. return retval;
  485. }
  486. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  487. {
  488. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  489. /* We don't need to lock fs - think why ;-) */
  490. if (fs) {
  491. atomic_set(&fs->count, 1);
  492. rwlock_init(&fs->lock);
  493. fs->umask = old->umask;
  494. read_lock(&old->lock);
  495. fs->rootmnt = mntget(old->rootmnt);
  496. fs->root = dget(old->root);
  497. fs->pwdmnt = mntget(old->pwdmnt);
  498. fs->pwd = dget(old->pwd);
  499. if (old->altroot) {
  500. fs->altrootmnt = mntget(old->altrootmnt);
  501. fs->altroot = dget(old->altroot);
  502. } else {
  503. fs->altrootmnt = NULL;
  504. fs->altroot = NULL;
  505. }
  506. read_unlock(&old->lock);
  507. }
  508. return fs;
  509. }
  510. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  511. {
  512. return __copy_fs_struct(old);
  513. }
  514. EXPORT_SYMBOL_GPL(copy_fs_struct);
  515. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  516. {
  517. if (clone_flags & CLONE_FS) {
  518. atomic_inc(&current->fs->count);
  519. return 0;
  520. }
  521. tsk->fs = __copy_fs_struct(current->fs);
  522. if (!tsk->fs)
  523. return -ENOMEM;
  524. return 0;
  525. }
  526. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  527. {
  528. struct files_struct *oldf, *newf;
  529. int error = 0;
  530. /*
  531. * A background process may not have any files ...
  532. */
  533. oldf = current->files;
  534. if (!oldf)
  535. goto out;
  536. if (clone_flags & CLONE_FILES) {
  537. atomic_inc(&oldf->count);
  538. goto out;
  539. }
  540. newf = dup_fd(oldf, &error);
  541. if (!newf)
  542. goto out;
  543. tsk->files = newf;
  544. error = 0;
  545. out:
  546. return error;
  547. }
  548. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  549. {
  550. struct sighand_struct *sig;
  551. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  552. atomic_inc(&current->sighand->count);
  553. return 0;
  554. }
  555. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  556. rcu_assign_pointer(tsk->sighand, sig);
  557. if (!sig)
  558. return -ENOMEM;
  559. atomic_set(&sig->count, 1);
  560. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  561. return 0;
  562. }
  563. void __cleanup_sighand(struct sighand_struct *sighand)
  564. {
  565. if (atomic_dec_and_test(&sighand->count))
  566. kmem_cache_free(sighand_cachep, sighand);
  567. }
  568. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  569. {
  570. struct signal_struct *sig;
  571. int ret;
  572. if (clone_flags & CLONE_THREAD) {
  573. atomic_inc(&current->signal->count);
  574. atomic_inc(&current->signal->live);
  575. return 0;
  576. }
  577. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  578. tsk->signal = sig;
  579. if (!sig)
  580. return -ENOMEM;
  581. ret = copy_thread_group_keys(tsk);
  582. if (ret < 0) {
  583. kmem_cache_free(signal_cachep, sig);
  584. return ret;
  585. }
  586. atomic_set(&sig->count, 1);
  587. atomic_set(&sig->live, 1);
  588. init_waitqueue_head(&sig->wait_chldexit);
  589. sig->flags = 0;
  590. sig->group_exit_code = 0;
  591. sig->group_exit_task = NULL;
  592. sig->group_stop_count = 0;
  593. sig->curr_target = NULL;
  594. init_sigpending(&sig->shared_pending);
  595. INIT_LIST_HEAD(&sig->posix_timers);
  596. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  597. sig->it_real_incr.tv64 = 0;
  598. sig->real_timer.function = it_real_fn;
  599. sig->tsk = tsk;
  600. sig->it_virt_expires = cputime_zero;
  601. sig->it_virt_incr = cputime_zero;
  602. sig->it_prof_expires = cputime_zero;
  603. sig->it_prof_incr = cputime_zero;
  604. sig->leader = 0; /* session leadership doesn't inherit */
  605. sig->tty_old_pgrp = NULL;
  606. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  607. sig->gtime = cputime_zero;
  608. sig->cgtime = cputime_zero;
  609. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  610. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  611. sig->sum_sched_runtime = 0;
  612. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  613. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  614. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  615. taskstats_tgid_init(sig);
  616. task_lock(current->group_leader);
  617. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  618. task_unlock(current->group_leader);
  619. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  620. /*
  621. * New sole thread in the process gets an expiry time
  622. * of the whole CPU time limit.
  623. */
  624. tsk->it_prof_expires =
  625. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  626. }
  627. acct_init_pacct(&sig->pacct);
  628. return 0;
  629. }
  630. void __cleanup_signal(struct signal_struct *sig)
  631. {
  632. exit_thread_group_keys(sig);
  633. kmem_cache_free(signal_cachep, sig);
  634. }
  635. static inline void cleanup_signal(struct task_struct *tsk)
  636. {
  637. struct signal_struct *sig = tsk->signal;
  638. atomic_dec(&sig->live);
  639. if (atomic_dec_and_test(&sig->count))
  640. __cleanup_signal(sig);
  641. }
  642. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  643. {
  644. unsigned long new_flags = p->flags;
  645. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  646. new_flags |= PF_FORKNOEXEC;
  647. if (!(clone_flags & CLONE_PTRACE))
  648. p->ptrace = 0;
  649. p->flags = new_flags;
  650. }
  651. asmlinkage long sys_set_tid_address(int __user *tidptr)
  652. {
  653. current->clear_child_tid = tidptr;
  654. return current->pid;
  655. }
  656. static inline void rt_mutex_init_task(struct task_struct *p)
  657. {
  658. spin_lock_init(&p->pi_lock);
  659. #ifdef CONFIG_RT_MUTEXES
  660. plist_head_init(&p->pi_waiters, &p->pi_lock);
  661. p->pi_blocked_on = NULL;
  662. #endif
  663. }
  664. /*
  665. * This creates a new process as a copy of the old one,
  666. * but does not actually start it yet.
  667. *
  668. * It copies the registers, and all the appropriate
  669. * parts of the process environment (as per the clone
  670. * flags). The actual kick-off is left to the caller.
  671. */
  672. static struct task_struct *copy_process(unsigned long clone_flags,
  673. unsigned long stack_start,
  674. struct pt_regs *regs,
  675. unsigned long stack_size,
  676. int __user *parent_tidptr,
  677. int __user *child_tidptr,
  678. struct pid *pid)
  679. {
  680. int retval;
  681. struct task_struct *p;
  682. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  683. return ERR_PTR(-EINVAL);
  684. /*
  685. * Thread groups must share signals as well, and detached threads
  686. * can only be started up within the thread group.
  687. */
  688. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  689. return ERR_PTR(-EINVAL);
  690. /*
  691. * Shared signal handlers imply shared VM. By way of the above,
  692. * thread groups also imply shared VM. Blocking this case allows
  693. * for various simplifications in other code.
  694. */
  695. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  696. return ERR_PTR(-EINVAL);
  697. retval = security_task_create(clone_flags);
  698. if (retval)
  699. goto fork_out;
  700. retval = -ENOMEM;
  701. p = dup_task_struct(current);
  702. if (!p)
  703. goto fork_out;
  704. rt_mutex_init_task(p);
  705. #ifdef CONFIG_TRACE_IRQFLAGS
  706. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  707. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  708. #endif
  709. retval = -EAGAIN;
  710. if (atomic_read(&p->user->processes) >=
  711. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  712. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  713. p->user != current->nsproxy->user_ns->root_user)
  714. goto bad_fork_free;
  715. }
  716. atomic_inc(&p->user->__count);
  717. atomic_inc(&p->user->processes);
  718. get_group_info(p->group_info);
  719. /*
  720. * If multiple threads are within copy_process(), then this check
  721. * triggers too late. This doesn't hurt, the check is only there
  722. * to stop root fork bombs.
  723. */
  724. if (nr_threads >= max_threads)
  725. goto bad_fork_cleanup_count;
  726. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  727. goto bad_fork_cleanup_count;
  728. if (p->binfmt && !try_module_get(p->binfmt->module))
  729. goto bad_fork_cleanup_put_domain;
  730. p->did_exec = 0;
  731. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  732. copy_flags(clone_flags, p);
  733. p->pid = pid_nr(pid);
  734. retval = -EFAULT;
  735. if (clone_flags & CLONE_PARENT_SETTID)
  736. if (put_user(p->pid, parent_tidptr))
  737. goto bad_fork_cleanup_delays_binfmt;
  738. INIT_LIST_HEAD(&p->children);
  739. INIT_LIST_HEAD(&p->sibling);
  740. p->vfork_done = NULL;
  741. spin_lock_init(&p->alloc_lock);
  742. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  743. init_sigpending(&p->pending);
  744. p->utime = cputime_zero;
  745. p->stime = cputime_zero;
  746. p->prev_utime = cputime_zero;
  747. p->prev_stime = cputime_zero;
  748. p->gtime = cputime_zero;
  749. p->utimescaled = cputime_zero;
  750. p->stimescaled = cputime_zero;
  751. #ifdef CONFIG_TASK_XACCT
  752. p->rchar = 0; /* I/O counter: bytes read */
  753. p->wchar = 0; /* I/O counter: bytes written */
  754. p->syscr = 0; /* I/O counter: read syscalls */
  755. p->syscw = 0; /* I/O counter: write syscalls */
  756. #endif
  757. task_io_accounting_init(p);
  758. acct_clear_integrals(p);
  759. p->it_virt_expires = cputime_zero;
  760. p->it_prof_expires = cputime_zero;
  761. p->it_sched_expires = 0;
  762. INIT_LIST_HEAD(&p->cpu_timers[0]);
  763. INIT_LIST_HEAD(&p->cpu_timers[1]);
  764. INIT_LIST_HEAD(&p->cpu_timers[2]);
  765. p->lock_depth = -1; /* -1 = no lock */
  766. do_posix_clock_monotonic_gettime(&p->start_time);
  767. #ifdef CONFIG_SECURITY
  768. p->security = NULL;
  769. #endif
  770. p->io_context = NULL;
  771. p->audit_context = NULL;
  772. cpuset_fork(p);
  773. #ifdef CONFIG_NUMA
  774. p->mempolicy = mpol_copy(p->mempolicy);
  775. if (IS_ERR(p->mempolicy)) {
  776. retval = PTR_ERR(p->mempolicy);
  777. p->mempolicy = NULL;
  778. goto bad_fork_cleanup_cpuset;
  779. }
  780. mpol_fix_fork_child_flag(p);
  781. #endif
  782. #ifdef CONFIG_TRACE_IRQFLAGS
  783. p->irq_events = 0;
  784. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  785. p->hardirqs_enabled = 1;
  786. #else
  787. p->hardirqs_enabled = 0;
  788. #endif
  789. p->hardirq_enable_ip = 0;
  790. p->hardirq_enable_event = 0;
  791. p->hardirq_disable_ip = _THIS_IP_;
  792. p->hardirq_disable_event = 0;
  793. p->softirqs_enabled = 1;
  794. p->softirq_enable_ip = _THIS_IP_;
  795. p->softirq_enable_event = 0;
  796. p->softirq_disable_ip = 0;
  797. p->softirq_disable_event = 0;
  798. p->hardirq_context = 0;
  799. p->softirq_context = 0;
  800. #endif
  801. #ifdef CONFIG_LOCKDEP
  802. p->lockdep_depth = 0; /* no locks held yet */
  803. p->curr_chain_key = 0;
  804. p->lockdep_recursion = 0;
  805. #endif
  806. #ifdef CONFIG_DEBUG_MUTEXES
  807. p->blocked_on = NULL; /* not blocked yet */
  808. #endif
  809. p->tgid = p->pid;
  810. if (clone_flags & CLONE_THREAD)
  811. p->tgid = current->tgid;
  812. if ((retval = security_task_alloc(p)))
  813. goto bad_fork_cleanup_policy;
  814. if ((retval = audit_alloc(p)))
  815. goto bad_fork_cleanup_security;
  816. /* copy all the process information */
  817. if ((retval = copy_semundo(clone_flags, p)))
  818. goto bad_fork_cleanup_audit;
  819. if ((retval = copy_files(clone_flags, p)))
  820. goto bad_fork_cleanup_semundo;
  821. if ((retval = copy_fs(clone_flags, p)))
  822. goto bad_fork_cleanup_files;
  823. if ((retval = copy_sighand(clone_flags, p)))
  824. goto bad_fork_cleanup_fs;
  825. if ((retval = copy_signal(clone_flags, p)))
  826. goto bad_fork_cleanup_sighand;
  827. if ((retval = copy_mm(clone_flags, p)))
  828. goto bad_fork_cleanup_signal;
  829. if ((retval = copy_keys(clone_flags, p)))
  830. goto bad_fork_cleanup_mm;
  831. if ((retval = copy_namespaces(clone_flags, p)))
  832. goto bad_fork_cleanup_keys;
  833. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  834. if (retval)
  835. goto bad_fork_cleanup_namespaces;
  836. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  837. /*
  838. * Clear TID on mm_release()?
  839. */
  840. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  841. p->robust_list = NULL;
  842. #ifdef CONFIG_COMPAT
  843. p->compat_robust_list = NULL;
  844. #endif
  845. INIT_LIST_HEAD(&p->pi_state_list);
  846. p->pi_state_cache = NULL;
  847. /*
  848. * sigaltstack should be cleared when sharing the same VM
  849. */
  850. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  851. p->sas_ss_sp = p->sas_ss_size = 0;
  852. /*
  853. * Syscall tracing should be turned off in the child regardless
  854. * of CLONE_PTRACE.
  855. */
  856. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  857. #ifdef TIF_SYSCALL_EMU
  858. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  859. #endif
  860. /* ok, now we should be set up.. */
  861. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 :
  862. (clone_flags & CLONE_PARENT) ? current->group_leader->exit_signal :
  863. (clone_flags & CSIGNAL);
  864. p->pdeath_signal = 0;
  865. p->exit_state = 0;
  866. /*
  867. * Ok, make it visible to the rest of the system.
  868. * We dont wake it up yet.
  869. */
  870. p->group_leader = p;
  871. INIT_LIST_HEAD(&p->thread_group);
  872. INIT_LIST_HEAD(&p->ptrace_children);
  873. INIT_LIST_HEAD(&p->ptrace_list);
  874. /* Perform scheduler related setup. Assign this task to a CPU. */
  875. sched_fork(p, clone_flags);
  876. /* Need tasklist lock for parent etc handling! */
  877. write_lock_irq(&tasklist_lock);
  878. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  879. p->ioprio = current->ioprio;
  880. /*
  881. * The task hasn't been attached yet, so its cpus_allowed mask will
  882. * not be changed, nor will its assigned CPU.
  883. *
  884. * The cpus_allowed mask of the parent may have changed after it was
  885. * copied first time - so re-copy it here, then check the child's CPU
  886. * to ensure it is on a valid CPU (and if not, just force it back to
  887. * parent's CPU). This avoids alot of nasty races.
  888. */
  889. p->cpus_allowed = current->cpus_allowed;
  890. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  891. !cpu_online(task_cpu(p))))
  892. set_task_cpu(p, smp_processor_id());
  893. /* CLONE_PARENT re-uses the old parent */
  894. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  895. p->real_parent = current->real_parent;
  896. p->parent_exec_id = current->parent_exec_id;
  897. } else {
  898. p->real_parent = current;
  899. p->parent_exec_id = current->self_exec_id;
  900. }
  901. p->parent = p->real_parent;
  902. spin_lock(&current->sighand->siglock);
  903. /*
  904. * Process group and session signals need to be delivered to just the
  905. * parent before the fork or both the parent and the child after the
  906. * fork. Restart if a signal comes in before we add the new process to
  907. * it's process group.
  908. * A fatal signal pending means that current will exit, so the new
  909. * thread can't slip out of an OOM kill (or normal SIGKILL).
  910. */
  911. recalc_sigpending();
  912. if (signal_pending(current)) {
  913. spin_unlock(&current->sighand->siglock);
  914. write_unlock_irq(&tasklist_lock);
  915. retval = -ERESTARTNOINTR;
  916. goto bad_fork_cleanup_namespaces;
  917. }
  918. if (clone_flags & CLONE_THREAD) {
  919. p->group_leader = current->group_leader;
  920. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  921. if (!cputime_eq(current->signal->it_virt_expires,
  922. cputime_zero) ||
  923. !cputime_eq(current->signal->it_prof_expires,
  924. cputime_zero) ||
  925. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  926. !list_empty(&current->signal->cpu_timers[0]) ||
  927. !list_empty(&current->signal->cpu_timers[1]) ||
  928. !list_empty(&current->signal->cpu_timers[2])) {
  929. /*
  930. * Have child wake up on its first tick to check
  931. * for process CPU timers.
  932. */
  933. p->it_prof_expires = jiffies_to_cputime(1);
  934. }
  935. }
  936. if (likely(p->pid)) {
  937. add_parent(p);
  938. if (unlikely(p->ptrace & PT_PTRACED))
  939. __ptrace_link(p, current->parent);
  940. if (thread_group_leader(p)) {
  941. p->signal->tty = current->signal->tty;
  942. p->signal->pgrp = process_group(current);
  943. set_signal_session(p->signal, process_session(current));
  944. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  945. attach_pid(p, PIDTYPE_SID, task_session(current));
  946. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  947. __get_cpu_var(process_counts)++;
  948. }
  949. attach_pid(p, PIDTYPE_PID, pid);
  950. nr_threads++;
  951. }
  952. total_forks++;
  953. spin_unlock(&current->sighand->siglock);
  954. write_unlock_irq(&tasklist_lock);
  955. proc_fork_connector(p);
  956. return p;
  957. bad_fork_cleanup_namespaces:
  958. put_and_finalize_nsproxy(p->nsproxy);
  959. bad_fork_cleanup_keys:
  960. exit_keys(p);
  961. bad_fork_cleanup_mm:
  962. if (p->mm)
  963. mmput(p->mm);
  964. bad_fork_cleanup_signal:
  965. cleanup_signal(p);
  966. bad_fork_cleanup_sighand:
  967. __cleanup_sighand(p->sighand);
  968. bad_fork_cleanup_fs:
  969. exit_fs(p); /* blocking */
  970. bad_fork_cleanup_files:
  971. exit_files(p); /* blocking */
  972. bad_fork_cleanup_semundo:
  973. exit_sem(p);
  974. bad_fork_cleanup_audit:
  975. audit_free(p);
  976. bad_fork_cleanup_security:
  977. security_task_free(p);
  978. bad_fork_cleanup_policy:
  979. #ifdef CONFIG_NUMA
  980. mpol_free(p->mempolicy);
  981. bad_fork_cleanup_cpuset:
  982. #endif
  983. cpuset_exit(p);
  984. bad_fork_cleanup_delays_binfmt:
  985. delayacct_tsk_free(p);
  986. if (p->binfmt)
  987. module_put(p->binfmt->module);
  988. bad_fork_cleanup_put_domain:
  989. module_put(task_thread_info(p)->exec_domain->module);
  990. bad_fork_cleanup_count:
  991. put_group_info(p->group_info);
  992. atomic_dec(&p->user->processes);
  993. free_uid(p->user);
  994. bad_fork_free:
  995. free_task(p);
  996. fork_out:
  997. return ERR_PTR(retval);
  998. }
  999. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1000. {
  1001. memset(regs, 0, sizeof(struct pt_regs));
  1002. return regs;
  1003. }
  1004. struct task_struct * __cpuinit fork_idle(int cpu)
  1005. {
  1006. struct task_struct *task;
  1007. struct pt_regs regs;
  1008. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
  1009. &init_struct_pid);
  1010. if (!IS_ERR(task))
  1011. init_idle(task, cpu);
  1012. return task;
  1013. }
  1014. static inline int fork_traceflag (unsigned clone_flags)
  1015. {
  1016. if (clone_flags & CLONE_UNTRACED)
  1017. return 0;
  1018. else if (clone_flags & CLONE_VFORK) {
  1019. if (current->ptrace & PT_TRACE_VFORK)
  1020. return PTRACE_EVENT_VFORK;
  1021. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1022. if (current->ptrace & PT_TRACE_CLONE)
  1023. return PTRACE_EVENT_CLONE;
  1024. } else if (current->ptrace & PT_TRACE_FORK)
  1025. return PTRACE_EVENT_FORK;
  1026. return 0;
  1027. }
  1028. /*
  1029. * Ok, this is the main fork-routine.
  1030. *
  1031. * It copies the process, and if successful kick-starts
  1032. * it and waits for it to finish using the VM if required.
  1033. */
  1034. long do_fork(unsigned long clone_flags,
  1035. unsigned long stack_start,
  1036. struct pt_regs *regs,
  1037. unsigned long stack_size,
  1038. int __user *parent_tidptr,
  1039. int __user *child_tidptr)
  1040. {
  1041. struct task_struct *p;
  1042. int trace = 0;
  1043. struct pid *pid = alloc_pid();
  1044. long nr;
  1045. if (!pid)
  1046. return -EAGAIN;
  1047. nr = pid->nr;
  1048. if (unlikely(current->ptrace)) {
  1049. trace = fork_traceflag (clone_flags);
  1050. if (trace)
  1051. clone_flags |= CLONE_PTRACE;
  1052. }
  1053. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1054. /*
  1055. * Do this prior waking up the new thread - the thread pointer
  1056. * might get invalid after that point, if the thread exits quickly.
  1057. */
  1058. if (!IS_ERR(p)) {
  1059. struct completion vfork;
  1060. if (clone_flags & CLONE_VFORK) {
  1061. p->vfork_done = &vfork;
  1062. init_completion(&vfork);
  1063. }
  1064. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1065. /*
  1066. * We'll start up with an immediate SIGSTOP.
  1067. */
  1068. sigaddset(&p->pending.signal, SIGSTOP);
  1069. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1070. }
  1071. if (!(clone_flags & CLONE_STOPPED))
  1072. wake_up_new_task(p, clone_flags);
  1073. else
  1074. p->state = TASK_STOPPED;
  1075. if (unlikely (trace)) {
  1076. current->ptrace_message = nr;
  1077. ptrace_notify ((trace << 8) | SIGTRAP);
  1078. }
  1079. if (clone_flags & CLONE_VFORK) {
  1080. wait_for_completion(&vfork);
  1081. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1082. current->ptrace_message = nr;
  1083. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1084. }
  1085. }
  1086. } else {
  1087. free_pid(pid);
  1088. nr = PTR_ERR(p);
  1089. }
  1090. return nr;
  1091. }
  1092. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1093. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1094. #endif
  1095. static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
  1096. {
  1097. struct sighand_struct *sighand = data;
  1098. if (flags & SLAB_CTOR_CONSTRUCTOR)
  1099. spin_lock_init(&sighand->siglock);
  1100. }
  1101. void __init proc_caches_init(void)
  1102. {
  1103. sighand_cachep = kmem_cache_create("sighand_cache",
  1104. sizeof(struct sighand_struct), 0,
  1105. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1106. sighand_ctor, NULL);
  1107. signal_cachep = kmem_cache_create("signal_cache",
  1108. sizeof(struct signal_struct), 0,
  1109. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1110. files_cachep = kmem_cache_create("files_cache",
  1111. sizeof(struct files_struct), 0,
  1112. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1113. fs_cachep = kmem_cache_create("fs_cache",
  1114. sizeof(struct fs_struct), 0,
  1115. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1116. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1117. sizeof(struct vm_area_struct), 0,
  1118. SLAB_PANIC, NULL, NULL);
  1119. mm_cachep = kmem_cache_create("mm_struct",
  1120. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1121. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1122. }
  1123. /*
  1124. * Check constraints on flags passed to the unshare system call and
  1125. * force unsharing of additional process context as appropriate.
  1126. */
  1127. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1128. {
  1129. /*
  1130. * If unsharing a thread from a thread group, must also
  1131. * unshare vm.
  1132. */
  1133. if (*flags_ptr & CLONE_THREAD)
  1134. *flags_ptr |= CLONE_VM;
  1135. /*
  1136. * If unsharing vm, must also unshare signal handlers.
  1137. */
  1138. if (*flags_ptr & CLONE_VM)
  1139. *flags_ptr |= CLONE_SIGHAND;
  1140. /*
  1141. * If unsharing signal handlers and the task was created
  1142. * using CLONE_THREAD, then must unshare the thread
  1143. */
  1144. if ((*flags_ptr & CLONE_SIGHAND) &&
  1145. (atomic_read(&current->signal->count) > 1))
  1146. *flags_ptr |= CLONE_THREAD;
  1147. /*
  1148. * If unsharing namespace, must also unshare filesystem information.
  1149. */
  1150. if (*flags_ptr & CLONE_NEWNS)
  1151. *flags_ptr |= CLONE_FS;
  1152. }
  1153. /*
  1154. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1155. */
  1156. static int unshare_thread(unsigned long unshare_flags)
  1157. {
  1158. if (unshare_flags & CLONE_THREAD)
  1159. return -EINVAL;
  1160. return 0;
  1161. }
  1162. /*
  1163. * Unshare the filesystem structure if it is being shared
  1164. */
  1165. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1166. {
  1167. struct fs_struct *fs = current->fs;
  1168. if ((unshare_flags & CLONE_FS) &&
  1169. (fs && atomic_read(&fs->count) > 1)) {
  1170. *new_fsp = __copy_fs_struct(current->fs);
  1171. if (!*new_fsp)
  1172. return -ENOMEM;
  1173. }
  1174. return 0;
  1175. }
  1176. /*
  1177. * Unsharing of sighand is not supported yet
  1178. */
  1179. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1180. {
  1181. struct sighand_struct *sigh = current->sighand;
  1182. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1183. return -EINVAL;
  1184. else
  1185. return 0;
  1186. }
  1187. /*
  1188. * Unshare vm if it is being shared
  1189. */
  1190. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1191. {
  1192. struct mm_struct *mm = current->mm;
  1193. if ((unshare_flags & CLONE_VM) &&
  1194. (mm && atomic_read(&mm->mm_users) > 1)) {
  1195. return -EINVAL;
  1196. }
  1197. return 0;
  1198. }
  1199. /*
  1200. * Unshare file descriptor table if it is being shared
  1201. */
  1202. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1203. {
  1204. struct files_struct *fd = current->files;
  1205. int error = 0;
  1206. if ((unshare_flags & CLONE_FILES) &&
  1207. (fd && atomic_read(&fd->count) > 1)) {
  1208. *new_fdp = dup_fd(fd, &error);
  1209. if (!*new_fdp)
  1210. return error;
  1211. }
  1212. return 0;
  1213. }
  1214. /*
  1215. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1216. * supported yet
  1217. */
  1218. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1219. {
  1220. if (unshare_flags & CLONE_SYSVSEM)
  1221. return -EINVAL;
  1222. return 0;
  1223. }
  1224. /*
  1225. * unshare allows a process to 'unshare' part of the process
  1226. * context which was originally shared using clone. copy_*
  1227. * functions used by do_fork() cannot be used here directly
  1228. * because they modify an inactive task_struct that is being
  1229. * constructed. Here we are modifying the current, active,
  1230. * task_struct.
  1231. */
  1232. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1233. {
  1234. int err = 0;
  1235. struct fs_struct *fs, *new_fs = NULL;
  1236. struct sighand_struct *new_sigh = NULL;
  1237. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1238. struct files_struct *fd, *new_fd = NULL;
  1239. struct sem_undo_list *new_ulist = NULL;
  1240. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1241. check_unshare_flags(&unshare_flags);
  1242. /* Return -EINVAL for all unsupported flags */
  1243. err = -EINVAL;
  1244. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1245. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1246. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
  1247. goto bad_unshare_out;
  1248. if ((err = unshare_thread(unshare_flags)))
  1249. goto bad_unshare_out;
  1250. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1251. goto bad_unshare_cleanup_thread;
  1252. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1253. goto bad_unshare_cleanup_fs;
  1254. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1255. goto bad_unshare_cleanup_sigh;
  1256. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1257. goto bad_unshare_cleanup_vm;
  1258. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1259. goto bad_unshare_cleanup_fd;
  1260. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1261. new_fs)))
  1262. goto bad_unshare_cleanup_semundo;
  1263. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1264. task_lock(current);
  1265. if (new_nsproxy) {
  1266. old_nsproxy = current->nsproxy;
  1267. current->nsproxy = new_nsproxy;
  1268. new_nsproxy = old_nsproxy;
  1269. }
  1270. if (new_fs) {
  1271. fs = current->fs;
  1272. current->fs = new_fs;
  1273. new_fs = fs;
  1274. }
  1275. if (new_mm) {
  1276. mm = current->mm;
  1277. active_mm = current->active_mm;
  1278. current->mm = new_mm;
  1279. current->active_mm = new_mm;
  1280. activate_mm(active_mm, new_mm);
  1281. new_mm = mm;
  1282. }
  1283. if (new_fd) {
  1284. fd = current->files;
  1285. current->files = new_fd;
  1286. new_fd = fd;
  1287. }
  1288. task_unlock(current);
  1289. }
  1290. if (new_nsproxy)
  1291. put_and_finalize_nsproxy(new_nsproxy);
  1292. bad_unshare_cleanup_semundo:
  1293. bad_unshare_cleanup_fd:
  1294. if (new_fd)
  1295. put_files_struct(new_fd);
  1296. bad_unshare_cleanup_vm:
  1297. if (new_mm)
  1298. mmput(new_mm);
  1299. bad_unshare_cleanup_sigh:
  1300. if (new_sigh)
  1301. if (atomic_dec_and_test(&new_sigh->count))
  1302. kmem_cache_free(sighand_cachep, new_sigh);
  1303. bad_unshare_cleanup_fs:
  1304. if (new_fs)
  1305. put_fs_struct(new_fs);
  1306. bad_unshare_cleanup_thread:
  1307. bad_unshare_out:
  1308. return err;
  1309. }
  1310. /*
  1311. * Helper to unshare the files of the current task.
  1312. * We don't want to expose copy_files internals to
  1313. * the exec layer of the kernel.
  1314. */
  1315. int unshare_files(struct files_struct **displaced)
  1316. {
  1317. struct task_struct *task = current;
  1318. struct files_struct *copy = NULL;
  1319. int error;
  1320. error = unshare_fd(CLONE_FILES, &copy);
  1321. if (error || !copy) {
  1322. *displaced = NULL;
  1323. return error;
  1324. }
  1325. *displaced = task->files;
  1326. task_lock(task);
  1327. task->files = copy;
  1328. task_unlock(task);
  1329. return 0;
  1330. }