PageRenderTime 77ms CodeModel.GetById 25ms app.highlight 42ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/net/wireless/ath/ath9k/eeprom_4k.c

https://bitbucket.org/slukk/jb-tsm-kernel-4.2
C | 1074 lines | 899 code | 148 blank | 27 comment | 105 complexity | f2690b678a6e3623956847eb0e0f3199 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include "hw.h"
  18#include "ar9002_phy.h"
  19
  20static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  21{
  22	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  23}
  24
  25static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  26{
  27	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  28}
  29
  30#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  31
  32static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  33{
  34	struct ath_common *common = ath9k_hw_common(ah);
  35	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  36	int addr, eep_start_loc = 64;
  37
  38	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  39		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  40			ath_dbg(common, ATH_DBG_EEPROM,
  41				"Unable to read eeprom region\n");
  42			return false;
  43		}
  44		eep_data++;
  45	}
  46
  47	return true;
  48}
  49
  50static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
  51{
  52	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  53
  54	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
  55
  56	return true;
  57}
  58
  59static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  60{
  61	struct ath_common *common = ath9k_hw_common(ah);
  62
  63	if (!ath9k_hw_use_flash(ah)) {
  64		ath_dbg(common, ATH_DBG_EEPROM,
  65			"Reading from EEPROM, not flash\n");
  66	}
  67
  68	if (common->bus_ops->ath_bus_type == ATH_USB)
  69		return __ath9k_hw_usb_4k_fill_eeprom(ah);
  70	else
  71		return __ath9k_hw_4k_fill_eeprom(ah);
  72}
  73
  74#undef SIZE_EEPROM_4K
  75
  76static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  77{
  78#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  79	struct ath_common *common = ath9k_hw_common(ah);
  80	struct ar5416_eeprom_4k *eep =
  81		(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  82	u16 *eepdata, temp, magic, magic2;
  83	u32 sum = 0, el;
  84	bool need_swap = false;
  85	int i, addr;
  86
  87
  88	if (!ath9k_hw_use_flash(ah)) {
  89		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  90					 &magic)) {
  91			ath_err(common, "Reading Magic # failed\n");
  92			return false;
  93		}
  94
  95		ath_dbg(common, ATH_DBG_EEPROM,
  96			"Read Magic = 0x%04X\n", magic);
  97
  98		if (magic != AR5416_EEPROM_MAGIC) {
  99			magic2 = swab16(magic);
 100
 101			if (magic2 == AR5416_EEPROM_MAGIC) {
 102				need_swap = true;
 103				eepdata = (u16 *) (&ah->eeprom);
 104
 105				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
 106					temp = swab16(*eepdata);
 107					*eepdata = temp;
 108					eepdata++;
 109				}
 110			} else {
 111				ath_err(common,
 112					"Invalid EEPROM Magic. Endianness mismatch.\n");
 113				return -EINVAL;
 114			}
 115		}
 116	}
 117
 118	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
 119		need_swap ? "True" : "False");
 120
 121	if (need_swap)
 122		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
 123	else
 124		el = ah->eeprom.map4k.baseEepHeader.length;
 125
 126	if (el > sizeof(struct ar5416_eeprom_4k))
 127		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
 128	else
 129		el = el / sizeof(u16);
 130
 131	eepdata = (u16 *)(&ah->eeprom);
 132
 133	for (i = 0; i < el; i++)
 134		sum ^= *eepdata++;
 135
 136	if (need_swap) {
 137		u32 integer;
 138		u16 word;
 139
 140		ath_dbg(common, ATH_DBG_EEPROM,
 141			"EEPROM Endianness is not native.. Changing\n");
 142
 143		word = swab16(eep->baseEepHeader.length);
 144		eep->baseEepHeader.length = word;
 145
 146		word = swab16(eep->baseEepHeader.checksum);
 147		eep->baseEepHeader.checksum = word;
 148
 149		word = swab16(eep->baseEepHeader.version);
 150		eep->baseEepHeader.version = word;
 151
 152		word = swab16(eep->baseEepHeader.regDmn[0]);
 153		eep->baseEepHeader.regDmn[0] = word;
 154
 155		word = swab16(eep->baseEepHeader.regDmn[1]);
 156		eep->baseEepHeader.regDmn[1] = word;
 157
 158		word = swab16(eep->baseEepHeader.rfSilent);
 159		eep->baseEepHeader.rfSilent = word;
 160
 161		word = swab16(eep->baseEepHeader.blueToothOptions);
 162		eep->baseEepHeader.blueToothOptions = word;
 163
 164		word = swab16(eep->baseEepHeader.deviceCap);
 165		eep->baseEepHeader.deviceCap = word;
 166
 167		integer = swab32(eep->modalHeader.antCtrlCommon);
 168		eep->modalHeader.antCtrlCommon = integer;
 169
 170		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
 171			integer = swab32(eep->modalHeader.antCtrlChain[i]);
 172			eep->modalHeader.antCtrlChain[i] = integer;
 173		}
 174
 175		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 176			word = swab16(eep->modalHeader.spurChans[i].spurChan);
 177			eep->modalHeader.spurChans[i].spurChan = word;
 178		}
 179	}
 180
 181	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
 182	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
 183		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 184			sum, ah->eep_ops->get_eeprom_ver(ah));
 185		return -EINVAL;
 186	}
 187
 188	return 0;
 189#undef EEPROM_4K_SIZE
 190}
 191
 192static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
 193				  enum eeprom_param param)
 194{
 195	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
 196	struct modal_eep_4k_header *pModal = &eep->modalHeader;
 197	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
 198	u16 ver_minor;
 199
 200	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
 201
 202	switch (param) {
 203	case EEP_NFTHRESH_2:
 204		return pModal->noiseFloorThreshCh[0];
 205	case EEP_MAC_LSW:
 206		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
 207	case EEP_MAC_MID:
 208		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
 209	case EEP_MAC_MSW:
 210		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
 211	case EEP_REG_0:
 212		return pBase->regDmn[0];
 213	case EEP_REG_1:
 214		return pBase->regDmn[1];
 215	case EEP_OP_CAP:
 216		return pBase->deviceCap;
 217	case EEP_OP_MODE:
 218		return pBase->opCapFlags;
 219	case EEP_RF_SILENT:
 220		return pBase->rfSilent;
 221	case EEP_OB_2:
 222		return pModal->ob_0;
 223	case EEP_DB_2:
 224		return pModal->db1_1;
 225	case EEP_MINOR_REV:
 226		return ver_minor;
 227	case EEP_TX_MASK:
 228		return pBase->txMask;
 229	case EEP_RX_MASK:
 230		return pBase->rxMask;
 231	case EEP_FRAC_N_5G:
 232		return 0;
 233	case EEP_PWR_TABLE_OFFSET:
 234		return AR5416_PWR_TABLE_OFFSET_DB;
 235	case EEP_MODAL_VER:
 236		return pModal->version;
 237	case EEP_ANT_DIV_CTL1:
 238		return pModal->antdiv_ctl1;
 239	case EEP_TXGAIN_TYPE:
 240		if (ver_minor >= AR5416_EEP_MINOR_VER_19)
 241			return pBase->txGainType;
 242		else
 243			return AR5416_EEP_TXGAIN_ORIGINAL;
 244	default:
 245		return 0;
 246	}
 247}
 248
 249static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
 250				  struct ath9k_channel *chan,
 251				  int16_t *pTxPowerIndexOffset)
 252{
 253	struct ath_common *common = ath9k_hw_common(ah);
 254	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
 255	struct cal_data_per_freq_4k *pRawDataset;
 256	u8 *pCalBChans = NULL;
 257	u16 pdGainOverlap_t2;
 258	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
 259	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 260	u16 numPiers, i, j;
 261	u16 numXpdGain, xpdMask;
 262	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
 263	u32 reg32, regOffset, regChainOffset;
 264
 265	xpdMask = pEepData->modalHeader.xpdGain;
 266
 267	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 268	    AR5416_EEP_MINOR_VER_2) {
 269		pdGainOverlap_t2 =
 270			pEepData->modalHeader.pdGainOverlap;
 271	} else {
 272		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
 273					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 274	}
 275
 276	pCalBChans = pEepData->calFreqPier2G;
 277	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
 278
 279	numXpdGain = 0;
 280
 281	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 282		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 283			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
 284				break;
 285			xpdGainValues[numXpdGain] =
 286				(u16)(AR5416_PD_GAINS_IN_MASK - i);
 287			numXpdGain++;
 288		}
 289	}
 290
 291	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
 292		      (numXpdGain - 1) & 0x3);
 293	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
 294		      xpdGainValues[0]);
 295	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
 296		      xpdGainValues[1]);
 297	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
 298
 299	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
 300		if (AR_SREV_5416_20_OR_LATER(ah) &&
 301		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
 302		    (i != 0)) {
 303			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 304		} else
 305			regChainOffset = i * 0x1000;
 306
 307		if (pEepData->baseEepHeader.txMask & (1 << i)) {
 308			pRawDataset = pEepData->calPierData2G[i];
 309
 310			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
 311					    pRawDataset, pCalBChans,
 312					    numPiers, pdGainOverlap_t2,
 313					    gainBoundaries,
 314					    pdadcValues, numXpdGain);
 315
 316			ENABLE_REGWRITE_BUFFER(ah);
 317
 318			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
 319				REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
 320					  SM(pdGainOverlap_t2,
 321					     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
 322					  | SM(gainBoundaries[0],
 323					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
 324					  | SM(gainBoundaries[1],
 325					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
 326					  | SM(gainBoundaries[2],
 327					       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
 328					  | SM(gainBoundaries[3],
 329				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
 330			}
 331
 332			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
 333			for (j = 0; j < 32; j++) {
 334				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
 335					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
 336					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
 337					((pdadcValues[4 * j + 3] & 0xFF) << 24);
 338				REG_WRITE(ah, regOffset, reg32);
 339
 340				ath_dbg(common, ATH_DBG_EEPROM,
 341					"PDADC (%d,%4x): %4.4x %8.8x\n",
 342					i, regChainOffset, regOffset,
 343					reg32);
 344				ath_dbg(common, ATH_DBG_EEPROM,
 345					"PDADC: Chain %d | "
 346					"PDADC %3d Value %3d | "
 347					"PDADC %3d Value %3d | "
 348					"PDADC %3d Value %3d | "
 349					"PDADC %3d Value %3d |\n",
 350					i, 4 * j, pdadcValues[4 * j],
 351					4 * j + 1, pdadcValues[4 * j + 1],
 352					4 * j + 2, pdadcValues[4 * j + 2],
 353					4 * j + 3, pdadcValues[4 * j + 3]);
 354
 355				regOffset += 4;
 356			}
 357
 358			REGWRITE_BUFFER_FLUSH(ah);
 359		}
 360	}
 361
 362	*pTxPowerIndexOffset = 0;
 363}
 364
 365static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
 366						 struct ath9k_channel *chan,
 367						 int16_t *ratesArray,
 368						 u16 cfgCtl,
 369						 u16 AntennaReduction,
 370						 u16 twiceMaxRegulatoryPower,
 371						 u16 powerLimit)
 372{
 373#define CMP_TEST_GRP \
 374	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
 375	 pEepData->ctlIndex[i])						\
 376	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
 377	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
 378
 379	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 380	int i;
 381	int16_t twiceLargestAntenna;
 382	u16 twiceMinEdgePower;
 383	u16 twiceMaxEdgePower = MAX_RATE_POWER;
 384	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
 385	u16 numCtlModes;
 386	const u16 *pCtlMode;
 387	u16 ctlMode, freq;
 388	struct chan_centers centers;
 389	struct cal_ctl_data_4k *rep;
 390	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
 391	static const u16 tpScaleReductionTable[5] =
 392		{ 0, 3, 6, 9, MAX_RATE_POWER };
 393	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
 394		0, { 0, 0, 0, 0}
 395	};
 396	struct cal_target_power_leg targetPowerOfdmExt = {
 397		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
 398		0, { 0, 0, 0, 0 }
 399	};
 400	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
 401		0, {0, 0, 0, 0}
 402	};
 403	static const u16 ctlModesFor11g[] = {
 404		CTL_11B, CTL_11G, CTL_2GHT20,
 405		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
 406	};
 407
 408	ath9k_hw_get_channel_centers(ah, chan, &centers);
 409
 410	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
 411	twiceLargestAntenna = (int16_t)min(AntennaReduction -
 412					   twiceLargestAntenna, 0);
 413
 414	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
 415	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
 416		maxRegAllowedPower -=
 417			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
 418	}
 419
 420	scaledPower = min(powerLimit, maxRegAllowedPower);
 421	scaledPower = max((u16)0, scaledPower);
 422
 423	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
 424	pCtlMode = ctlModesFor11g;
 425
 426	ath9k_hw_get_legacy_target_powers(ah, chan,
 427			pEepData->calTargetPowerCck,
 428			AR5416_NUM_2G_CCK_TARGET_POWERS,
 429			&targetPowerCck, 4, false);
 430	ath9k_hw_get_legacy_target_powers(ah, chan,
 431			pEepData->calTargetPower2G,
 432			AR5416_NUM_2G_20_TARGET_POWERS,
 433			&targetPowerOfdm, 4, false);
 434	ath9k_hw_get_target_powers(ah, chan,
 435			pEepData->calTargetPower2GHT20,
 436			AR5416_NUM_2G_20_TARGET_POWERS,
 437			&targetPowerHt20, 8, false);
 438
 439	if (IS_CHAN_HT40(chan)) {
 440		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
 441		ath9k_hw_get_target_powers(ah, chan,
 442				pEepData->calTargetPower2GHT40,
 443				AR5416_NUM_2G_40_TARGET_POWERS,
 444				&targetPowerHt40, 8, true);
 445		ath9k_hw_get_legacy_target_powers(ah, chan,
 446				pEepData->calTargetPowerCck,
 447				AR5416_NUM_2G_CCK_TARGET_POWERS,
 448				&targetPowerCckExt, 4, true);
 449		ath9k_hw_get_legacy_target_powers(ah, chan,
 450				pEepData->calTargetPower2G,
 451				AR5416_NUM_2G_20_TARGET_POWERS,
 452				&targetPowerOfdmExt, 4, true);
 453	}
 454
 455	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
 456		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
 457			(pCtlMode[ctlMode] == CTL_2GHT40);
 458
 459		if (isHt40CtlMode)
 460			freq = centers.synth_center;
 461		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
 462			freq = centers.ext_center;
 463		else
 464			freq = centers.ctl_center;
 465
 466		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
 467		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
 468			twiceMaxEdgePower = MAX_RATE_POWER;
 469
 470		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
 471			     pEepData->ctlIndex[i]; i++) {
 472
 473			if (CMP_TEST_GRP) {
 474				rep = &(pEepData->ctlData[i]);
 475
 476				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
 477					freq,
 478					rep->ctlEdges[
 479					ar5416_get_ntxchains(ah->txchainmask) - 1],
 480					IS_CHAN_2GHZ(chan),
 481					AR5416_EEP4K_NUM_BAND_EDGES);
 482
 483				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
 484					twiceMaxEdgePower =
 485						min(twiceMaxEdgePower,
 486						    twiceMinEdgePower);
 487				} else {
 488					twiceMaxEdgePower = twiceMinEdgePower;
 489					break;
 490				}
 491			}
 492		}
 493
 494		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
 495
 496		switch (pCtlMode[ctlMode]) {
 497		case CTL_11B:
 498			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
 499				targetPowerCck.tPow2x[i] =
 500					min((u16)targetPowerCck.tPow2x[i],
 501					    minCtlPower);
 502			}
 503			break;
 504		case CTL_11G:
 505			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
 506				targetPowerOfdm.tPow2x[i] =
 507					min((u16)targetPowerOfdm.tPow2x[i],
 508					    minCtlPower);
 509			}
 510			break;
 511		case CTL_2GHT20:
 512			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
 513				targetPowerHt20.tPow2x[i] =
 514					min((u16)targetPowerHt20.tPow2x[i],
 515					    minCtlPower);
 516			}
 517			break;
 518		case CTL_11B_EXT:
 519			targetPowerCckExt.tPow2x[0] =
 520				min((u16)targetPowerCckExt.tPow2x[0],
 521				    minCtlPower);
 522			break;
 523		case CTL_11G_EXT:
 524			targetPowerOfdmExt.tPow2x[0] =
 525				min((u16)targetPowerOfdmExt.tPow2x[0],
 526				    minCtlPower);
 527			break;
 528		case CTL_2GHT40:
 529			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
 530				targetPowerHt40.tPow2x[i] =
 531					min((u16)targetPowerHt40.tPow2x[i],
 532					    minCtlPower);
 533			}
 534			break;
 535		default:
 536			break;
 537		}
 538	}
 539
 540	ratesArray[rate6mb] =
 541	ratesArray[rate9mb] =
 542	ratesArray[rate12mb] =
 543	ratesArray[rate18mb] =
 544	ratesArray[rate24mb] =
 545	targetPowerOfdm.tPow2x[0];
 546
 547	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
 548	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
 549	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
 550	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
 551
 552	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
 553		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
 554
 555	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
 556	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
 557	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
 558	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
 559
 560	if (IS_CHAN_HT40(chan)) {
 561		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
 562			ratesArray[rateHt40_0 + i] =
 563				targetPowerHt40.tPow2x[i];
 564		}
 565		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
 566		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
 567		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
 568		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
 569	}
 570
 571#undef CMP_TEST_GRP
 572}
 573
 574static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
 575				    struct ath9k_channel *chan,
 576				    u16 cfgCtl,
 577				    u8 twiceAntennaReduction,
 578				    u8 twiceMaxRegulatoryPower,
 579				    u8 powerLimit, bool test)
 580{
 581	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 582	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
 583	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
 584	int16_t ratesArray[Ar5416RateSize];
 585	int16_t txPowerIndexOffset = 0;
 586	u8 ht40PowerIncForPdadc = 2;
 587	int i;
 588
 589	memset(ratesArray, 0, sizeof(ratesArray));
 590
 591	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 592	    AR5416_EEP_MINOR_VER_2) {
 593		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
 594	}
 595
 596	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
 597					     &ratesArray[0], cfgCtl,
 598					     twiceAntennaReduction,
 599					     twiceMaxRegulatoryPower,
 600					     powerLimit);
 601
 602	ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
 603
 604	regulatory->max_power_level = 0;
 605	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 606		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
 607		if (ratesArray[i] > MAX_RATE_POWER)
 608			ratesArray[i] = MAX_RATE_POWER;
 609
 610		if (ratesArray[i] > regulatory->max_power_level)
 611			regulatory->max_power_level = ratesArray[i];
 612	}
 613
 614	if (test)
 615	    return;
 616
 617	/* Update regulatory */
 618	i = rate6mb;
 619	if (IS_CHAN_HT40(chan))
 620		i = rateHt40_0;
 621	else if (IS_CHAN_HT20(chan))
 622		i = rateHt20_0;
 623
 624	regulatory->max_power_level = ratesArray[i];
 625
 626	if (AR_SREV_9280_20_OR_LATER(ah)) {
 627		for (i = 0; i < Ar5416RateSize; i++)
 628			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
 629	}
 630
 631	ENABLE_REGWRITE_BUFFER(ah);
 632
 633	/* OFDM power per rate */
 634	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
 635		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
 636		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
 637		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
 638		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
 639	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
 640		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
 641		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
 642		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
 643		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
 644
 645	/* CCK power per rate */
 646	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
 647		  ATH9K_POW_SM(ratesArray[rate2s], 24)
 648		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
 649		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
 650		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
 651	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
 652		  ATH9K_POW_SM(ratesArray[rate11s], 24)
 653		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
 654		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
 655		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
 656
 657	/* HT20 power per rate */
 658	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
 659		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
 660		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
 661		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
 662		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
 663	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
 664		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
 665		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
 666		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
 667		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
 668
 669	/* HT40 power per rate */
 670	if (IS_CHAN_HT40(chan)) {
 671		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 672			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
 673				       ht40PowerIncForPdadc, 24)
 674			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
 675					 ht40PowerIncForPdadc, 16)
 676			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
 677					 ht40PowerIncForPdadc, 8)
 678			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
 679					 ht40PowerIncForPdadc, 0));
 680		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 681			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
 682				       ht40PowerIncForPdadc, 24)
 683			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
 684					 ht40PowerIncForPdadc, 16)
 685			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
 686					 ht40PowerIncForPdadc, 8)
 687			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
 688					 ht40PowerIncForPdadc, 0));
 689		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
 690			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
 691			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
 692			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
 693			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
 694	}
 695
 696	REGWRITE_BUFFER_FLUSH(ah);
 697}
 698
 699static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
 700				  struct ath9k_channel *chan)
 701{
 702	struct modal_eep_4k_header *pModal;
 703	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
 704	u8 biaslevel;
 705
 706	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
 707		return;
 708
 709	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
 710		return;
 711
 712	pModal = &eep->modalHeader;
 713
 714	if (pModal->xpaBiasLvl != 0xff) {
 715		biaslevel = pModal->xpaBiasLvl;
 716		INI_RA(&ah->iniAddac, 7, 1) =
 717		  (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
 718	}
 719}
 720
 721static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
 722				 struct modal_eep_4k_header *pModal,
 723				 struct ar5416_eeprom_4k *eep,
 724				 u8 txRxAttenLocal)
 725{
 726	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
 727		  pModal->antCtrlChain[0]);
 728
 729	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
 730		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
 731		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
 732		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 733		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 734		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 735
 736	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 737	    AR5416_EEP_MINOR_VER_3) {
 738		txRxAttenLocal = pModal->txRxAttenCh[0];
 739
 740		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
 741			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
 742		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
 743			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
 744		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
 745			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
 746			      pModal->xatten2Margin[0]);
 747		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
 748			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
 749
 750		/* Set the block 1 value to block 0 value */
 751		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
 752			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 753			      pModal->bswMargin[0]);
 754		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
 755			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
 756		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
 757			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
 758			      pModal->xatten2Margin[0]);
 759		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
 760			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
 761			      pModal->xatten2Db[0]);
 762	}
 763
 764	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
 765		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 766	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
 767		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
 768
 769	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
 770		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 771	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
 772		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
 773}
 774
 775/*
 776 * Read EEPROM header info and program the device for correct operation
 777 * given the channel value.
 778 */
 779static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
 780					 struct ath9k_channel *chan)
 781{
 782	struct modal_eep_4k_header *pModal;
 783	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
 784	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
 785	u8 txRxAttenLocal;
 786	u8 ob[5], db1[5], db2[5];
 787	u8 ant_div_control1, ant_div_control2;
 788	u32 regVal;
 789
 790	pModal = &eep->modalHeader;
 791	txRxAttenLocal = 23;
 792
 793	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
 794
 795	/* Single chain for 4K EEPROM*/
 796	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
 797
 798	/* Initialize Ant Diversity settings from EEPROM */
 799	if (pModal->version >= 3) {
 800		ant_div_control1 = pModal->antdiv_ctl1;
 801		ant_div_control2 = pModal->antdiv_ctl2;
 802
 803		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
 804		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
 805
 806		regVal |= SM(ant_div_control1,
 807			     AR_PHY_9285_ANT_DIV_CTL);
 808		regVal |= SM(ant_div_control2,
 809			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
 810		regVal |= SM((ant_div_control2 >> 2),
 811			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
 812		regVal |= SM((ant_div_control1 >> 1),
 813			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
 814		regVal |= SM((ant_div_control1 >> 2),
 815			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
 816
 817
 818		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
 819		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
 820		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
 821		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
 822		regVal |= SM((ant_div_control1 >> 3),
 823			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
 824
 825		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
 826		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
 827	}
 828
 829	if (pModal->version >= 2) {
 830		ob[0] = pModal->ob_0;
 831		ob[1] = pModal->ob_1;
 832		ob[2] = pModal->ob_2;
 833		ob[3] = pModal->ob_3;
 834		ob[4] = pModal->ob_4;
 835
 836		db1[0] = pModal->db1_0;
 837		db1[1] = pModal->db1_1;
 838		db1[2] = pModal->db1_2;
 839		db1[3] = pModal->db1_3;
 840		db1[4] = pModal->db1_4;
 841
 842		db2[0] = pModal->db2_0;
 843		db2[1] = pModal->db2_1;
 844		db2[2] = pModal->db2_2;
 845		db2[3] = pModal->db2_3;
 846		db2[4] = pModal->db2_4;
 847	} else if (pModal->version == 1) {
 848		ob[0] = pModal->ob_0;
 849		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
 850		db1[0] = pModal->db1_0;
 851		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
 852		db2[0] = pModal->db2_0;
 853		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
 854	} else {
 855		int i;
 856
 857		for (i = 0; i < 5; i++) {
 858			ob[i] = pModal->ob_0;
 859			db1[i] = pModal->db1_0;
 860			db2[i] = pModal->db1_0;
 861		}
 862	}
 863
 864	if (AR_SREV_9271(ah)) {
 865		ath9k_hw_analog_shift_rmw(ah,
 866					  AR9285_AN_RF2G3,
 867					  AR9271_AN_RF2G3_OB_cck,
 868					  AR9271_AN_RF2G3_OB_cck_S,
 869					  ob[0]);
 870		ath9k_hw_analog_shift_rmw(ah,
 871					  AR9285_AN_RF2G3,
 872					  AR9271_AN_RF2G3_OB_psk,
 873					  AR9271_AN_RF2G3_OB_psk_S,
 874					  ob[1]);
 875		ath9k_hw_analog_shift_rmw(ah,
 876					  AR9285_AN_RF2G3,
 877					  AR9271_AN_RF2G3_OB_qam,
 878					  AR9271_AN_RF2G3_OB_qam_S,
 879					  ob[2]);
 880		ath9k_hw_analog_shift_rmw(ah,
 881					  AR9285_AN_RF2G3,
 882					  AR9271_AN_RF2G3_DB_1,
 883					  AR9271_AN_RF2G3_DB_1_S,
 884					  db1[0]);
 885		ath9k_hw_analog_shift_rmw(ah,
 886					  AR9285_AN_RF2G4,
 887					  AR9271_AN_RF2G4_DB_2,
 888					  AR9271_AN_RF2G4_DB_2_S,
 889					  db2[0]);
 890	} else {
 891		ath9k_hw_analog_shift_rmw(ah,
 892					  AR9285_AN_RF2G3,
 893					  AR9285_AN_RF2G3_OB_0,
 894					  AR9285_AN_RF2G3_OB_0_S,
 895					  ob[0]);
 896		ath9k_hw_analog_shift_rmw(ah,
 897					  AR9285_AN_RF2G3,
 898					  AR9285_AN_RF2G3_OB_1,
 899					  AR9285_AN_RF2G3_OB_1_S,
 900					  ob[1]);
 901		ath9k_hw_analog_shift_rmw(ah,
 902					  AR9285_AN_RF2G3,
 903					  AR9285_AN_RF2G3_OB_2,
 904					  AR9285_AN_RF2G3_OB_2_S,
 905					  ob[2]);
 906		ath9k_hw_analog_shift_rmw(ah,
 907					  AR9285_AN_RF2G3,
 908					  AR9285_AN_RF2G3_OB_3,
 909					  AR9285_AN_RF2G3_OB_3_S,
 910					  ob[3]);
 911		ath9k_hw_analog_shift_rmw(ah,
 912					  AR9285_AN_RF2G3,
 913					  AR9285_AN_RF2G3_OB_4,
 914					  AR9285_AN_RF2G3_OB_4_S,
 915					  ob[4]);
 916
 917		ath9k_hw_analog_shift_rmw(ah,
 918					  AR9285_AN_RF2G3,
 919					  AR9285_AN_RF2G3_DB1_0,
 920					  AR9285_AN_RF2G3_DB1_0_S,
 921					  db1[0]);
 922		ath9k_hw_analog_shift_rmw(ah,
 923					  AR9285_AN_RF2G3,
 924					  AR9285_AN_RF2G3_DB1_1,
 925					  AR9285_AN_RF2G3_DB1_1_S,
 926					  db1[1]);
 927		ath9k_hw_analog_shift_rmw(ah,
 928					  AR9285_AN_RF2G3,
 929					  AR9285_AN_RF2G3_DB1_2,
 930					  AR9285_AN_RF2G3_DB1_2_S,
 931					  db1[2]);
 932		ath9k_hw_analog_shift_rmw(ah,
 933					  AR9285_AN_RF2G4,
 934					  AR9285_AN_RF2G4_DB1_3,
 935					  AR9285_AN_RF2G4_DB1_3_S,
 936					  db1[3]);
 937		ath9k_hw_analog_shift_rmw(ah,
 938					  AR9285_AN_RF2G4,
 939					  AR9285_AN_RF2G4_DB1_4,
 940					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
 941
 942		ath9k_hw_analog_shift_rmw(ah,
 943					  AR9285_AN_RF2G4,
 944					  AR9285_AN_RF2G4_DB2_0,
 945					  AR9285_AN_RF2G4_DB2_0_S,
 946					  db2[0]);
 947		ath9k_hw_analog_shift_rmw(ah,
 948					  AR9285_AN_RF2G4,
 949					  AR9285_AN_RF2G4_DB2_1,
 950					  AR9285_AN_RF2G4_DB2_1_S,
 951					  db2[1]);
 952		ath9k_hw_analog_shift_rmw(ah,
 953					  AR9285_AN_RF2G4,
 954					  AR9285_AN_RF2G4_DB2_2,
 955					  AR9285_AN_RF2G4_DB2_2_S,
 956					  db2[2]);
 957		ath9k_hw_analog_shift_rmw(ah,
 958					  AR9285_AN_RF2G4,
 959					  AR9285_AN_RF2G4_DB2_3,
 960					  AR9285_AN_RF2G4_DB2_3_S,
 961					  db2[3]);
 962		ath9k_hw_analog_shift_rmw(ah,
 963					  AR9285_AN_RF2G4,
 964					  AR9285_AN_RF2G4_DB2_4,
 965					  AR9285_AN_RF2G4_DB2_4_S,
 966					  db2[4]);
 967	}
 968
 969
 970	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
 971		      pModal->switchSettling);
 972	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
 973		      pModal->adcDesiredSize);
 974
 975	REG_WRITE(ah, AR_PHY_RF_CTL4,
 976		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
 977		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
 978		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
 979		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 980
 981	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
 982		      pModal->txEndToRxOn);
 983
 984	if (AR_SREV_9271_10(ah))
 985		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
 986			      pModal->txEndToRxOn);
 987	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
 988		      pModal->thresh62);
 989	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
 990		      pModal->thresh62);
 991
 992	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 993						AR5416_EEP_MINOR_VER_2) {
 994		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
 995			      pModal->txFrameToDataStart);
 996		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
 997			      pModal->txFrameToPaOn);
 998	}
 999
1000	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1001						AR5416_EEP_MINOR_VER_3) {
1002		if (IS_CHAN_HT40(chan))
1003			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1004				      AR_PHY_SETTLING_SWITCH,
1005				      pModal->swSettleHt40);
1006	}
1007	if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
1008		u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1009				EEP_4K_BB_DESIRED_SCALE_MASK);
1010		if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1011			u32 pwrctrl, mask, clr;
1012
1013			mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1014			pwrctrl = mask * bb_desired_scale;
1015			clr = mask * 0x1f;
1016			REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1017			REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1018			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1019
1020			mask = BIT(0)|BIT(5)|BIT(15);
1021			pwrctrl = mask * bb_desired_scale;
1022			clr = mask * 0x1f;
1023			REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1024
1025			mask = BIT(0)|BIT(5);
1026			pwrctrl = mask * bb_desired_scale;
1027			clr = mask * 0x1f;
1028			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1029			REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1030		}
1031	}
1032}
1033
1034static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1035{
1036#define EEP_MAP4K_SPURCHAN \
1037	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1038	struct ath_common *common = ath9k_hw_common(ah);
1039
1040	u16 spur_val = AR_NO_SPUR;
1041
1042	ath_dbg(common, ATH_DBG_ANI,
1043		"Getting spur idx:%d is2Ghz:%d val:%x\n",
1044		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1045
1046	switch (ah->config.spurmode) {
1047	case SPUR_DISABLE:
1048		break;
1049	case SPUR_ENABLE_IOCTL:
1050		spur_val = ah->config.spurchans[i][is2GHz];
1051		ath_dbg(common, ATH_DBG_ANI,
1052			"Getting spur val from new loc. %d\n", spur_val);
1053		break;
1054	case SPUR_ENABLE_EEPROM:
1055		spur_val = EEP_MAP4K_SPURCHAN;
1056		break;
1057	}
1058
1059	return spur_val;
1060
1061#undef EEP_MAP4K_SPURCHAN
1062}
1063
1064const struct eeprom_ops eep_4k_ops = {
1065	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1066	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1067	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1068	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1069	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1070	.set_board_values	= ath9k_hw_4k_set_board_values,
1071	.set_addac		= ath9k_hw_4k_set_addac,
1072	.set_txpower		= ath9k_hw_4k_set_txpower,
1073	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1074};