PageRenderTime 159ms CodeModel.GetById 18ms app.highlight 122ms RepoModel.GetById 1ms app.codeStats 1ms

/drivers/net/igbvf/netdev.c

https://bitbucket.org/slukk/jb-tsm-kernel-4.2
C | 2873 lines | 1898 code | 491 blank | 484 comment | 271 complexity | 8872c0746cce4e1c1ffb8dfb42e44d8f MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0

Large files files are truncated, but you can click here to view the full file

   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2010 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/module.h>
  29#include <linux/types.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/tcp.h>
  37#include <linux/ipv6.h>
  38#include <linux/slab.h>
  39#include <net/checksum.h>
  40#include <net/ip6_checksum.h>
  41#include <linux/mii.h>
  42#include <linux/ethtool.h>
  43#include <linux/if_vlan.h>
  44#include <linux/prefetch.h>
  45
  46#include "igbvf.h"
  47
  48#define DRV_VERSION "1.0.8-k0"
  49char igbvf_driver_name[] = "igbvf";
  50const char igbvf_driver_version[] = DRV_VERSION;
  51static const char igbvf_driver_string[] =
  52				"Intel(R) Virtual Function Network Driver";
  53static const char igbvf_copyright[] =
  54				"Copyright (c) 2009 - 2010 Intel Corporation.";
  55
  56static int igbvf_poll(struct napi_struct *napi, int budget);
  57static void igbvf_reset(struct igbvf_adapter *);
  58static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  59static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  60
  61static struct igbvf_info igbvf_vf_info = {
  62	.mac                    = e1000_vfadapt,
  63	.flags                  = 0,
  64	.pba                    = 10,
  65	.init_ops               = e1000_init_function_pointers_vf,
  66};
  67
  68static struct igbvf_info igbvf_i350_vf_info = {
  69	.mac			= e1000_vfadapt_i350,
  70	.flags			= 0,
  71	.pba			= 10,
  72	.init_ops		= e1000_init_function_pointers_vf,
  73};
  74
  75static const struct igbvf_info *igbvf_info_tbl[] = {
  76	[board_vf]              = &igbvf_vf_info,
  77	[board_i350_vf]		= &igbvf_i350_vf_info,
  78};
  79
  80/**
  81 * igbvf_desc_unused - calculate if we have unused descriptors
  82 **/
  83static int igbvf_desc_unused(struct igbvf_ring *ring)
  84{
  85	if (ring->next_to_clean > ring->next_to_use)
  86		return ring->next_to_clean - ring->next_to_use - 1;
  87
  88	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  89}
  90
  91/**
  92 * igbvf_receive_skb - helper function to handle Rx indications
  93 * @adapter: board private structure
  94 * @status: descriptor status field as written by hardware
  95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  96 * @skb: pointer to sk_buff to be indicated to stack
  97 **/
  98static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  99                              struct net_device *netdev,
 100                              struct sk_buff *skb,
 101                              u32 status, u16 vlan)
 102{
 103	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
 104		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
 105		                         le16_to_cpu(vlan) &
 106		                         E1000_RXD_SPC_VLAN_MASK);
 107	else
 108		netif_receive_skb(skb);
 109}
 110
 111static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 112                                         u32 status_err, struct sk_buff *skb)
 113{
 114	skb_checksum_none_assert(skb);
 115
 116	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 117	if ((status_err & E1000_RXD_STAT_IXSM) ||
 118	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 119		return;
 120
 121	/* TCP/UDP checksum error bit is set */
 122	if (status_err &
 123	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 124		/* let the stack verify checksum errors */
 125		adapter->hw_csum_err++;
 126		return;
 127	}
 128
 129	/* It must be a TCP or UDP packet with a valid checksum */
 130	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 131		skb->ip_summed = CHECKSUM_UNNECESSARY;
 132
 133	adapter->hw_csum_good++;
 134}
 135
 136/**
 137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 138 * @rx_ring: address of ring structure to repopulate
 139 * @cleaned_count: number of buffers to repopulate
 140 **/
 141static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 142                                   int cleaned_count)
 143{
 144	struct igbvf_adapter *adapter = rx_ring->adapter;
 145	struct net_device *netdev = adapter->netdev;
 146	struct pci_dev *pdev = adapter->pdev;
 147	union e1000_adv_rx_desc *rx_desc;
 148	struct igbvf_buffer *buffer_info;
 149	struct sk_buff *skb;
 150	unsigned int i;
 151	int bufsz;
 152
 153	i = rx_ring->next_to_use;
 154	buffer_info = &rx_ring->buffer_info[i];
 155
 156	if (adapter->rx_ps_hdr_size)
 157		bufsz = adapter->rx_ps_hdr_size;
 158	else
 159		bufsz = adapter->rx_buffer_len;
 160
 161	while (cleaned_count--) {
 162		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 163
 164		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 165			if (!buffer_info->page) {
 166				buffer_info->page = alloc_page(GFP_ATOMIC);
 167				if (!buffer_info->page) {
 168					adapter->alloc_rx_buff_failed++;
 169					goto no_buffers;
 170				}
 171				buffer_info->page_offset = 0;
 172			} else {
 173				buffer_info->page_offset ^= PAGE_SIZE / 2;
 174			}
 175			buffer_info->page_dma =
 176				dma_map_page(&pdev->dev, buffer_info->page,
 177				             buffer_info->page_offset,
 178				             PAGE_SIZE / 2,
 179					     DMA_FROM_DEVICE);
 180		}
 181
 182		if (!buffer_info->skb) {
 183			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 184			if (!skb) {
 185				adapter->alloc_rx_buff_failed++;
 186				goto no_buffers;
 187			}
 188
 189			buffer_info->skb = skb;
 190			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 191			                                  bufsz,
 192							  DMA_FROM_DEVICE);
 193		}
 194		/* Refresh the desc even if buffer_addrs didn't change because
 195		 * each write-back erases this info. */
 196		if (adapter->rx_ps_hdr_size) {
 197			rx_desc->read.pkt_addr =
 198			     cpu_to_le64(buffer_info->page_dma);
 199			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 200		} else {
 201			rx_desc->read.pkt_addr =
 202			     cpu_to_le64(buffer_info->dma);
 203			rx_desc->read.hdr_addr = 0;
 204		}
 205
 206		i++;
 207		if (i == rx_ring->count)
 208			i = 0;
 209		buffer_info = &rx_ring->buffer_info[i];
 210	}
 211
 212no_buffers:
 213	if (rx_ring->next_to_use != i) {
 214		rx_ring->next_to_use = i;
 215		if (i == 0)
 216			i = (rx_ring->count - 1);
 217		else
 218			i--;
 219
 220		/* Force memory writes to complete before letting h/w
 221		 * know there are new descriptors to fetch.  (Only
 222		 * applicable for weak-ordered memory model archs,
 223		 * such as IA-64). */
 224		wmb();
 225		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 226	}
 227}
 228
 229/**
 230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 231 * @adapter: board private structure
 232 *
 233 * the return value indicates whether actual cleaning was done, there
 234 * is no guarantee that everything was cleaned
 235 **/
 236static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 237                               int *work_done, int work_to_do)
 238{
 239	struct igbvf_ring *rx_ring = adapter->rx_ring;
 240	struct net_device *netdev = adapter->netdev;
 241	struct pci_dev *pdev = adapter->pdev;
 242	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 243	struct igbvf_buffer *buffer_info, *next_buffer;
 244	struct sk_buff *skb;
 245	bool cleaned = false;
 246	int cleaned_count = 0;
 247	unsigned int total_bytes = 0, total_packets = 0;
 248	unsigned int i;
 249	u32 length, hlen, staterr;
 250
 251	i = rx_ring->next_to_clean;
 252	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 253	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 254
 255	while (staterr & E1000_RXD_STAT_DD) {
 256		if (*work_done >= work_to_do)
 257			break;
 258		(*work_done)++;
 259		rmb(); /* read descriptor and rx_buffer_info after status DD */
 260
 261		buffer_info = &rx_ring->buffer_info[i];
 262
 263		/* HW will not DMA in data larger than the given buffer, even
 264		 * if it parses the (NFS, of course) header to be larger.  In
 265		 * that case, it fills the header buffer and spills the rest
 266		 * into the page.
 267		 */
 268		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
 269		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
 270		if (hlen > adapter->rx_ps_hdr_size)
 271			hlen = adapter->rx_ps_hdr_size;
 272
 273		length = le16_to_cpu(rx_desc->wb.upper.length);
 274		cleaned = true;
 275		cleaned_count++;
 276
 277		skb = buffer_info->skb;
 278		prefetch(skb->data - NET_IP_ALIGN);
 279		buffer_info->skb = NULL;
 280		if (!adapter->rx_ps_hdr_size) {
 281			dma_unmap_single(&pdev->dev, buffer_info->dma,
 282			                 adapter->rx_buffer_len,
 283					 DMA_FROM_DEVICE);
 284			buffer_info->dma = 0;
 285			skb_put(skb, length);
 286			goto send_up;
 287		}
 288
 289		if (!skb_shinfo(skb)->nr_frags) {
 290			dma_unmap_single(&pdev->dev, buffer_info->dma,
 291			                 adapter->rx_ps_hdr_size,
 292					 DMA_FROM_DEVICE);
 293			skb_put(skb, hlen);
 294		}
 295
 296		if (length) {
 297			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 298			               PAGE_SIZE / 2,
 299				       DMA_FROM_DEVICE);
 300			buffer_info->page_dma = 0;
 301
 302			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 303			                   buffer_info->page,
 304			                   buffer_info->page_offset,
 305			                   length);
 306
 307			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 308			    (page_count(buffer_info->page) != 1))
 309				buffer_info->page = NULL;
 310			else
 311				get_page(buffer_info->page);
 312
 313			skb->len += length;
 314			skb->data_len += length;
 315			skb->truesize += length;
 316		}
 317send_up:
 318		i++;
 319		if (i == rx_ring->count)
 320			i = 0;
 321		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 322		prefetch(next_rxd);
 323		next_buffer = &rx_ring->buffer_info[i];
 324
 325		if (!(staterr & E1000_RXD_STAT_EOP)) {
 326			buffer_info->skb = next_buffer->skb;
 327			buffer_info->dma = next_buffer->dma;
 328			next_buffer->skb = skb;
 329			next_buffer->dma = 0;
 330			goto next_desc;
 331		}
 332
 333		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 334			dev_kfree_skb_irq(skb);
 335			goto next_desc;
 336		}
 337
 338		total_bytes += skb->len;
 339		total_packets++;
 340
 341		igbvf_rx_checksum_adv(adapter, staterr, skb);
 342
 343		skb->protocol = eth_type_trans(skb, netdev);
 344
 345		igbvf_receive_skb(adapter, netdev, skb, staterr,
 346		                  rx_desc->wb.upper.vlan);
 347
 348next_desc:
 349		rx_desc->wb.upper.status_error = 0;
 350
 351		/* return some buffers to hardware, one at a time is too slow */
 352		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 353			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 354			cleaned_count = 0;
 355		}
 356
 357		/* use prefetched values */
 358		rx_desc = next_rxd;
 359		buffer_info = next_buffer;
 360
 361		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 362	}
 363
 364	rx_ring->next_to_clean = i;
 365	cleaned_count = igbvf_desc_unused(rx_ring);
 366
 367	if (cleaned_count)
 368		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 369
 370	adapter->total_rx_packets += total_packets;
 371	adapter->total_rx_bytes += total_bytes;
 372	adapter->net_stats.rx_bytes += total_bytes;
 373	adapter->net_stats.rx_packets += total_packets;
 374	return cleaned;
 375}
 376
 377static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 378                            struct igbvf_buffer *buffer_info)
 379{
 380	if (buffer_info->dma) {
 381		if (buffer_info->mapped_as_page)
 382			dma_unmap_page(&adapter->pdev->dev,
 383				       buffer_info->dma,
 384				       buffer_info->length,
 385				       DMA_TO_DEVICE);
 386		else
 387			dma_unmap_single(&adapter->pdev->dev,
 388					 buffer_info->dma,
 389					 buffer_info->length,
 390					 DMA_TO_DEVICE);
 391		buffer_info->dma = 0;
 392	}
 393	if (buffer_info->skb) {
 394		dev_kfree_skb_any(buffer_info->skb);
 395		buffer_info->skb = NULL;
 396	}
 397	buffer_info->time_stamp = 0;
 398}
 399
 400/**
 401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 402 * @adapter: board private structure
 403 *
 404 * Return 0 on success, negative on failure
 405 **/
 406int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 407                             struct igbvf_ring *tx_ring)
 408{
 409	struct pci_dev *pdev = adapter->pdev;
 410	int size;
 411
 412	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 413	tx_ring->buffer_info = vzalloc(size);
 414	if (!tx_ring->buffer_info)
 415		goto err;
 416
 417	/* round up to nearest 4K */
 418	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 419	tx_ring->size = ALIGN(tx_ring->size, 4096);
 420
 421	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 422					   &tx_ring->dma, GFP_KERNEL);
 423
 424	if (!tx_ring->desc)
 425		goto err;
 426
 427	tx_ring->adapter = adapter;
 428	tx_ring->next_to_use = 0;
 429	tx_ring->next_to_clean = 0;
 430
 431	return 0;
 432err:
 433	vfree(tx_ring->buffer_info);
 434	dev_err(&adapter->pdev->dev,
 435	        "Unable to allocate memory for the transmit descriptor ring\n");
 436	return -ENOMEM;
 437}
 438
 439/**
 440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 441 * @adapter: board private structure
 442 *
 443 * Returns 0 on success, negative on failure
 444 **/
 445int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 446			     struct igbvf_ring *rx_ring)
 447{
 448	struct pci_dev *pdev = adapter->pdev;
 449	int size, desc_len;
 450
 451	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 452	rx_ring->buffer_info = vzalloc(size);
 453	if (!rx_ring->buffer_info)
 454		goto err;
 455
 456	desc_len = sizeof(union e1000_adv_rx_desc);
 457
 458	/* Round up to nearest 4K */
 459	rx_ring->size = rx_ring->count * desc_len;
 460	rx_ring->size = ALIGN(rx_ring->size, 4096);
 461
 462	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 463					   &rx_ring->dma, GFP_KERNEL);
 464
 465	if (!rx_ring->desc)
 466		goto err;
 467
 468	rx_ring->next_to_clean = 0;
 469	rx_ring->next_to_use = 0;
 470
 471	rx_ring->adapter = adapter;
 472
 473	return 0;
 474
 475err:
 476	vfree(rx_ring->buffer_info);
 477	rx_ring->buffer_info = NULL;
 478	dev_err(&adapter->pdev->dev,
 479	        "Unable to allocate memory for the receive descriptor ring\n");
 480	return -ENOMEM;
 481}
 482
 483/**
 484 * igbvf_clean_tx_ring - Free Tx Buffers
 485 * @tx_ring: ring to be cleaned
 486 **/
 487static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 488{
 489	struct igbvf_adapter *adapter = tx_ring->adapter;
 490	struct igbvf_buffer *buffer_info;
 491	unsigned long size;
 492	unsigned int i;
 493
 494	if (!tx_ring->buffer_info)
 495		return;
 496
 497	/* Free all the Tx ring sk_buffs */
 498	for (i = 0; i < tx_ring->count; i++) {
 499		buffer_info = &tx_ring->buffer_info[i];
 500		igbvf_put_txbuf(adapter, buffer_info);
 501	}
 502
 503	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 504	memset(tx_ring->buffer_info, 0, size);
 505
 506	/* Zero out the descriptor ring */
 507	memset(tx_ring->desc, 0, tx_ring->size);
 508
 509	tx_ring->next_to_use = 0;
 510	tx_ring->next_to_clean = 0;
 511
 512	writel(0, adapter->hw.hw_addr + tx_ring->head);
 513	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 514}
 515
 516/**
 517 * igbvf_free_tx_resources - Free Tx Resources per Queue
 518 * @tx_ring: ring to free resources from
 519 *
 520 * Free all transmit software resources
 521 **/
 522void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 523{
 524	struct pci_dev *pdev = tx_ring->adapter->pdev;
 525
 526	igbvf_clean_tx_ring(tx_ring);
 527
 528	vfree(tx_ring->buffer_info);
 529	tx_ring->buffer_info = NULL;
 530
 531	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 532			  tx_ring->dma);
 533
 534	tx_ring->desc = NULL;
 535}
 536
 537/**
 538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 539 * @adapter: board private structure
 540 **/
 541static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 542{
 543	struct igbvf_adapter *adapter = rx_ring->adapter;
 544	struct igbvf_buffer *buffer_info;
 545	struct pci_dev *pdev = adapter->pdev;
 546	unsigned long size;
 547	unsigned int i;
 548
 549	if (!rx_ring->buffer_info)
 550		return;
 551
 552	/* Free all the Rx ring sk_buffs */
 553	for (i = 0; i < rx_ring->count; i++) {
 554		buffer_info = &rx_ring->buffer_info[i];
 555		if (buffer_info->dma) {
 556			if (adapter->rx_ps_hdr_size){
 557				dma_unmap_single(&pdev->dev, buffer_info->dma,
 558				                 adapter->rx_ps_hdr_size,
 559						 DMA_FROM_DEVICE);
 560			} else {
 561				dma_unmap_single(&pdev->dev, buffer_info->dma,
 562				                 adapter->rx_buffer_len,
 563						 DMA_FROM_DEVICE);
 564			}
 565			buffer_info->dma = 0;
 566		}
 567
 568		if (buffer_info->skb) {
 569			dev_kfree_skb(buffer_info->skb);
 570			buffer_info->skb = NULL;
 571		}
 572
 573		if (buffer_info->page) {
 574			if (buffer_info->page_dma)
 575				dma_unmap_page(&pdev->dev,
 576					       buffer_info->page_dma,
 577				               PAGE_SIZE / 2,
 578					       DMA_FROM_DEVICE);
 579			put_page(buffer_info->page);
 580			buffer_info->page = NULL;
 581			buffer_info->page_dma = 0;
 582			buffer_info->page_offset = 0;
 583		}
 584	}
 585
 586	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 587	memset(rx_ring->buffer_info, 0, size);
 588
 589	/* Zero out the descriptor ring */
 590	memset(rx_ring->desc, 0, rx_ring->size);
 591
 592	rx_ring->next_to_clean = 0;
 593	rx_ring->next_to_use = 0;
 594
 595	writel(0, adapter->hw.hw_addr + rx_ring->head);
 596	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 597}
 598
 599/**
 600 * igbvf_free_rx_resources - Free Rx Resources
 601 * @rx_ring: ring to clean the resources from
 602 *
 603 * Free all receive software resources
 604 **/
 605
 606void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 607{
 608	struct pci_dev *pdev = rx_ring->adapter->pdev;
 609
 610	igbvf_clean_rx_ring(rx_ring);
 611
 612	vfree(rx_ring->buffer_info);
 613	rx_ring->buffer_info = NULL;
 614
 615	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 616	                  rx_ring->dma);
 617	rx_ring->desc = NULL;
 618}
 619
 620/**
 621 * igbvf_update_itr - update the dynamic ITR value based on statistics
 622 * @adapter: pointer to adapter
 623 * @itr_setting: current adapter->itr
 624 * @packets: the number of packets during this measurement interval
 625 * @bytes: the number of bytes during this measurement interval
 626 *
 627 *      Stores a new ITR value based on packets and byte
 628 *      counts during the last interrupt.  The advantage of per interrupt
 629 *      computation is faster updates and more accurate ITR for the current
 630 *      traffic pattern.  Constants in this function were computed
 631 *      based on theoretical maximum wire speed and thresholds were set based
 632 *      on testing data as well as attempting to minimize response time
 633 *      while increasing bulk throughput.  This functionality is controlled
 634 *      by the InterruptThrottleRate module parameter.
 635 **/
 636static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
 637                                     u16 itr_setting, int packets,
 638                                     int bytes)
 639{
 640	unsigned int retval = itr_setting;
 641
 642	if (packets == 0)
 643		goto update_itr_done;
 644
 645	switch (itr_setting) {
 646	case lowest_latency:
 647		/* handle TSO and jumbo frames */
 648		if (bytes/packets > 8000)
 649			retval = bulk_latency;
 650		else if ((packets < 5) && (bytes > 512))
 651			retval = low_latency;
 652		break;
 653	case low_latency:  /* 50 usec aka 20000 ints/s */
 654		if (bytes > 10000) {
 655			/* this if handles the TSO accounting */
 656			if (bytes/packets > 8000)
 657				retval = bulk_latency;
 658			else if ((packets < 10) || ((bytes/packets) > 1200))
 659				retval = bulk_latency;
 660			else if ((packets > 35))
 661				retval = lowest_latency;
 662		} else if (bytes/packets > 2000) {
 663			retval = bulk_latency;
 664		} else if (packets <= 2 && bytes < 512) {
 665			retval = lowest_latency;
 666		}
 667		break;
 668	case bulk_latency: /* 250 usec aka 4000 ints/s */
 669		if (bytes > 25000) {
 670			if (packets > 35)
 671				retval = low_latency;
 672		} else if (bytes < 6000) {
 673			retval = low_latency;
 674		}
 675		break;
 676	}
 677
 678update_itr_done:
 679	return retval;
 680}
 681
 682static void igbvf_set_itr(struct igbvf_adapter *adapter)
 683{
 684	struct e1000_hw *hw = &adapter->hw;
 685	u16 current_itr;
 686	u32 new_itr = adapter->itr;
 687
 688	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
 689	                                   adapter->total_tx_packets,
 690	                                   adapter->total_tx_bytes);
 691	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 692	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 693		adapter->tx_itr = low_latency;
 694
 695	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
 696	                                   adapter->total_rx_packets,
 697	                                   adapter->total_rx_bytes);
 698	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 699	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 700		adapter->rx_itr = low_latency;
 701
 702	current_itr = max(adapter->rx_itr, adapter->tx_itr);
 703
 704	switch (current_itr) {
 705	/* counts and packets in update_itr are dependent on these numbers */
 706	case lowest_latency:
 707		new_itr = 70000;
 708		break;
 709	case low_latency:
 710		new_itr = 20000; /* aka hwitr = ~200 */
 711		break;
 712	case bulk_latency:
 713		new_itr = 4000;
 714		break;
 715	default:
 716		break;
 717	}
 718
 719	if (new_itr != adapter->itr) {
 720		/*
 721		 * this attempts to bias the interrupt rate towards Bulk
 722		 * by adding intermediate steps when interrupt rate is
 723		 * increasing
 724		 */
 725		new_itr = new_itr > adapter->itr ?
 726		             min(adapter->itr + (new_itr >> 2), new_itr) :
 727		             new_itr;
 728		adapter->itr = new_itr;
 729		adapter->rx_ring->itr_val = 1952;
 730
 731		if (adapter->msix_entries)
 732			adapter->rx_ring->set_itr = 1;
 733		else
 734			ew32(ITR, 1952);
 735	}
 736}
 737
 738/**
 739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 740 * @adapter: board private structure
 741 * returns true if ring is completely cleaned
 742 **/
 743static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 744{
 745	struct igbvf_adapter *adapter = tx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct igbvf_buffer *buffer_info;
 748	struct sk_buff *skb;
 749	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 750	unsigned int total_bytes = 0, total_packets = 0;
 751	unsigned int i, eop, count = 0;
 752	bool cleaned = false;
 753
 754	i = tx_ring->next_to_clean;
 755	eop = tx_ring->buffer_info[i].next_to_watch;
 756	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 757
 758	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 759	       (count < tx_ring->count)) {
 760		rmb();	/* read buffer_info after eop_desc status */
 761		for (cleaned = false; !cleaned; count++) {
 762			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 763			buffer_info = &tx_ring->buffer_info[i];
 764			cleaned = (i == eop);
 765			skb = buffer_info->skb;
 766
 767			if (skb) {
 768				unsigned int segs, bytecount;
 769
 770				/* gso_segs is currently only valid for tcp */
 771				segs = skb_shinfo(skb)->gso_segs ?: 1;
 772				/* multiply data chunks by size of headers */
 773				bytecount = ((segs - 1) * skb_headlen(skb)) +
 774				            skb->len;
 775				total_packets += segs;
 776				total_bytes += bytecount;
 777			}
 778
 779			igbvf_put_txbuf(adapter, buffer_info);
 780			tx_desc->wb.status = 0;
 781
 782			i++;
 783			if (i == tx_ring->count)
 784				i = 0;
 785		}
 786		eop = tx_ring->buffer_info[i].next_to_watch;
 787		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 788	}
 789
 790	tx_ring->next_to_clean = i;
 791
 792	if (unlikely(count &&
 793	             netif_carrier_ok(netdev) &&
 794	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 795		/* Make sure that anybody stopping the queue after this
 796		 * sees the new next_to_clean.
 797		 */
 798		smp_mb();
 799		if (netif_queue_stopped(netdev) &&
 800		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 801			netif_wake_queue(netdev);
 802			++adapter->restart_queue;
 803		}
 804	}
 805
 806	adapter->net_stats.tx_bytes += total_bytes;
 807	adapter->net_stats.tx_packets += total_packets;
 808	return count < tx_ring->count;
 809}
 810
 811static irqreturn_t igbvf_msix_other(int irq, void *data)
 812{
 813	struct net_device *netdev = data;
 814	struct igbvf_adapter *adapter = netdev_priv(netdev);
 815	struct e1000_hw *hw = &adapter->hw;
 816
 817	adapter->int_counter1++;
 818
 819	netif_carrier_off(netdev);
 820	hw->mac.get_link_status = 1;
 821	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 822		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 823
 824	ew32(EIMS, adapter->eims_other);
 825
 826	return IRQ_HANDLED;
 827}
 828
 829static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 830{
 831	struct net_device *netdev = data;
 832	struct igbvf_adapter *adapter = netdev_priv(netdev);
 833	struct e1000_hw *hw = &adapter->hw;
 834	struct igbvf_ring *tx_ring = adapter->tx_ring;
 835
 836
 837	adapter->total_tx_bytes = 0;
 838	adapter->total_tx_packets = 0;
 839
 840	/* auto mask will automatically reenable the interrupt when we write
 841	 * EICS */
 842	if (!igbvf_clean_tx_irq(tx_ring))
 843		/* Ring was not completely cleaned, so fire another interrupt */
 844		ew32(EICS, tx_ring->eims_value);
 845	else
 846		ew32(EIMS, tx_ring->eims_value);
 847
 848	return IRQ_HANDLED;
 849}
 850
 851static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 852{
 853	struct net_device *netdev = data;
 854	struct igbvf_adapter *adapter = netdev_priv(netdev);
 855
 856	adapter->int_counter0++;
 857
 858	/* Write the ITR value calculated at the end of the
 859	 * previous interrupt.
 860	 */
 861	if (adapter->rx_ring->set_itr) {
 862		writel(adapter->rx_ring->itr_val,
 863		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 864		adapter->rx_ring->set_itr = 0;
 865	}
 866
 867	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 868		adapter->total_rx_bytes = 0;
 869		adapter->total_rx_packets = 0;
 870		__napi_schedule(&adapter->rx_ring->napi);
 871	}
 872
 873	return IRQ_HANDLED;
 874}
 875
 876#define IGBVF_NO_QUEUE -1
 877
 878static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 879                                int tx_queue, int msix_vector)
 880{
 881	struct e1000_hw *hw = &adapter->hw;
 882	u32 ivar, index;
 883
 884	/* 82576 uses a table-based method for assigning vectors.
 885	   Each queue has a single entry in the table to which we write
 886	   a vector number along with a "valid" bit.  Sadly, the layout
 887	   of the table is somewhat counterintuitive. */
 888	if (rx_queue > IGBVF_NO_QUEUE) {
 889		index = (rx_queue >> 1);
 890		ivar = array_er32(IVAR0, index);
 891		if (rx_queue & 0x1) {
 892			/* vector goes into third byte of register */
 893			ivar = ivar & 0xFF00FFFF;
 894			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 895		} else {
 896			/* vector goes into low byte of register */
 897			ivar = ivar & 0xFFFFFF00;
 898			ivar |= msix_vector | E1000_IVAR_VALID;
 899		}
 900		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 901		array_ew32(IVAR0, index, ivar);
 902	}
 903	if (tx_queue > IGBVF_NO_QUEUE) {
 904		index = (tx_queue >> 1);
 905		ivar = array_er32(IVAR0, index);
 906		if (tx_queue & 0x1) {
 907			/* vector goes into high byte of register */
 908			ivar = ivar & 0x00FFFFFF;
 909			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 910		} else {
 911			/* vector goes into second byte of register */
 912			ivar = ivar & 0xFFFF00FF;
 913			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 914		}
 915		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 916		array_ew32(IVAR0, index, ivar);
 917	}
 918}
 919
 920/**
 921 * igbvf_configure_msix - Configure MSI-X hardware
 922 *
 923 * igbvf_configure_msix sets up the hardware to properly
 924 * generate MSI-X interrupts.
 925 **/
 926static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 927{
 928	u32 tmp;
 929	struct e1000_hw *hw = &adapter->hw;
 930	struct igbvf_ring *tx_ring = adapter->tx_ring;
 931	struct igbvf_ring *rx_ring = adapter->rx_ring;
 932	int vector = 0;
 933
 934	adapter->eims_enable_mask = 0;
 935
 936	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 937	adapter->eims_enable_mask |= tx_ring->eims_value;
 938	if (tx_ring->itr_val)
 939		writel(tx_ring->itr_val,
 940		       hw->hw_addr + tx_ring->itr_register);
 941	else
 942		writel(1952, hw->hw_addr + tx_ring->itr_register);
 943
 944	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 945	adapter->eims_enable_mask |= rx_ring->eims_value;
 946	if (rx_ring->itr_val)
 947		writel(rx_ring->itr_val,
 948		       hw->hw_addr + rx_ring->itr_register);
 949	else
 950		writel(1952, hw->hw_addr + rx_ring->itr_register);
 951
 952	/* set vector for other causes, i.e. link changes */
 953
 954	tmp = (vector++ | E1000_IVAR_VALID);
 955
 956	ew32(IVAR_MISC, tmp);
 957
 958	adapter->eims_enable_mask = (1 << (vector)) - 1;
 959	adapter->eims_other = 1 << (vector - 1);
 960	e1e_flush();
 961}
 962
 963static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
 964{
 965	if (adapter->msix_entries) {
 966		pci_disable_msix(adapter->pdev);
 967		kfree(adapter->msix_entries);
 968		adapter->msix_entries = NULL;
 969	}
 970}
 971
 972/**
 973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
 974 *
 975 * Attempt to configure interrupts using the best available
 976 * capabilities of the hardware and kernel.
 977 **/
 978static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
 979{
 980	int err = -ENOMEM;
 981	int i;
 982
 983	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
 984	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
 985	                                GFP_KERNEL);
 986	if (adapter->msix_entries) {
 987		for (i = 0; i < 3; i++)
 988			adapter->msix_entries[i].entry = i;
 989
 990		err = pci_enable_msix(adapter->pdev,
 991		                      adapter->msix_entries, 3);
 992	}
 993
 994	if (err) {
 995		/* MSI-X failed */
 996		dev_err(&adapter->pdev->dev,
 997		        "Failed to initialize MSI-X interrupts.\n");
 998		igbvf_reset_interrupt_capability(adapter);
 999	}
1000}
1001
1002/**
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1004 *
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006 * kernel.
1007 **/
1008static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009{
1010	struct net_device *netdev = adapter->netdev;
1011	int err = 0, vector = 0;
1012
1013	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016	} else {
1017		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019	}
1020
1021	err = request_irq(adapter->msix_entries[vector].vector,
1022	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023	                  netdev);
1024	if (err)
1025		goto out;
1026
1027	adapter->tx_ring->itr_register = E1000_EITR(vector);
1028	adapter->tx_ring->itr_val = 1952;
1029	vector++;
1030
1031	err = request_irq(adapter->msix_entries[vector].vector,
1032	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033	                  netdev);
1034	if (err)
1035		goto out;
1036
1037	adapter->rx_ring->itr_register = E1000_EITR(vector);
1038	adapter->rx_ring->itr_val = 1952;
1039	vector++;
1040
1041	err = request_irq(adapter->msix_entries[vector].vector,
1042	                  igbvf_msix_other, 0, netdev->name, netdev);
1043	if (err)
1044		goto out;
1045
1046	igbvf_configure_msix(adapter);
1047	return 0;
1048out:
1049	return err;
1050}
1051
1052/**
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1055 **/
1056static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057{
1058	struct net_device *netdev = adapter->netdev;
1059
1060	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061	if (!adapter->tx_ring)
1062		return -ENOMEM;
1063
1064	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065	if (!adapter->rx_ring) {
1066		kfree(adapter->tx_ring);
1067		return -ENOMEM;
1068	}
1069
1070	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072	return 0;
1073}
1074
1075/**
1076 * igbvf_request_irq - initialize interrupts
1077 *
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1080 **/
1081static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082{
1083	int err = -1;
1084
1085	/* igbvf supports msi-x only */
1086	if (adapter->msix_entries)
1087		err = igbvf_request_msix(adapter);
1088
1089	if (!err)
1090		return err;
1091
1092	dev_err(&adapter->pdev->dev,
1093	        "Unable to allocate interrupt, Error: %d\n", err);
1094
1095	return err;
1096}
1097
1098static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099{
1100	struct net_device *netdev = adapter->netdev;
1101	int vector;
1102
1103	if (adapter->msix_entries) {
1104		for (vector = 0; vector < 3; vector++)
1105			free_irq(adapter->msix_entries[vector].vector, netdev);
1106	}
1107}
1108
1109/**
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 **/
1112static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113{
1114	struct e1000_hw *hw = &adapter->hw;
1115
1116	ew32(EIMC, ~0);
1117
1118	if (adapter->msix_entries)
1119		ew32(EIAC, 0);
1120}
1121
1122/**
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1124 **/
1125static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126{
1127	struct e1000_hw *hw = &adapter->hw;
1128
1129	ew32(EIAC, adapter->eims_enable_mask);
1130	ew32(EIAM, adapter->eims_enable_mask);
1131	ew32(EIMS, adapter->eims_enable_mask);
1132}
1133
1134/**
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1138 **/
1139static int igbvf_poll(struct napi_struct *napi, int budget)
1140{
1141	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142	struct igbvf_adapter *adapter = rx_ring->adapter;
1143	struct e1000_hw *hw = &adapter->hw;
1144	int work_done = 0;
1145
1146	igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148	/* If not enough Rx work done, exit the polling mode */
1149	if (work_done < budget) {
1150		napi_complete(napi);
1151
1152		if (adapter->itr_setting & 3)
1153			igbvf_set_itr(adapter);
1154
1155		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156			ew32(EIMS, adapter->rx_ring->eims_value);
1157	}
1158
1159	return work_done;
1160}
1161
1162/**
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1165 *
1166 * Configure the maximum size of packets that will be received
1167 */
1168static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169{
1170	int max_frame_size = adapter->max_frame_size;
1171	struct e1000_hw *hw = &adapter->hw;
1172
1173	if (adapter->vlgrp)
1174		max_frame_size += VLAN_TAG_SIZE;
1175
1176	e1000_rlpml_set_vf(hw, max_frame_size);
1177}
1178
1179static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180{
1181	struct igbvf_adapter *adapter = netdev_priv(netdev);
1182	struct e1000_hw *hw = &adapter->hw;
1183
1184	if (hw->mac.ops.set_vfta(hw, vid, true))
1185		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186}
1187
1188static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189{
1190	struct igbvf_adapter *adapter = netdev_priv(netdev);
1191	struct e1000_hw *hw = &adapter->hw;
1192
1193	igbvf_irq_disable(adapter);
1194	vlan_group_set_device(adapter->vlgrp, vid, NULL);
1195
1196	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1197		igbvf_irq_enable(adapter);
1198
1199	if (hw->mac.ops.set_vfta(hw, vid, false))
1200		dev_err(&adapter->pdev->dev,
1201		        "Failed to remove vlan id %d\n", vid);
1202}
1203
1204static void igbvf_vlan_rx_register(struct net_device *netdev,
1205                                   struct vlan_group *grp)
1206{
1207	struct igbvf_adapter *adapter = netdev_priv(netdev);
1208
1209	adapter->vlgrp = grp;
1210}
1211
1212static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1213{
1214	u16 vid;
1215
1216	if (!adapter->vlgrp)
1217		return;
1218
1219	for (vid = 0; vid < VLAN_N_VID; vid++) {
1220		if (!vlan_group_get_device(adapter->vlgrp, vid))
1221			continue;
1222		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1223	}
1224
1225	igbvf_set_rlpml(adapter);
1226}
1227
1228/**
1229 * igbvf_configure_tx - Configure Transmit Unit after Reset
1230 * @adapter: board private structure
1231 *
1232 * Configure the Tx unit of the MAC after a reset.
1233 **/
1234static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1235{
1236	struct e1000_hw *hw = &adapter->hw;
1237	struct igbvf_ring *tx_ring = adapter->tx_ring;
1238	u64 tdba;
1239	u32 txdctl, dca_txctrl;
1240
1241	/* disable transmits */
1242	txdctl = er32(TXDCTL(0));
1243	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1244	msleep(10);
1245
1246	/* Setup the HW Tx Head and Tail descriptor pointers */
1247	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1248	tdba = tx_ring->dma;
1249	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1250	ew32(TDBAH(0), (tdba >> 32));
1251	ew32(TDH(0), 0);
1252	ew32(TDT(0), 0);
1253	tx_ring->head = E1000_TDH(0);
1254	tx_ring->tail = E1000_TDT(0);
1255
1256	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1257	 * MUST be delivered in order or it will completely screw up
1258	 * our bookeeping.
1259	 */
1260	dca_txctrl = er32(DCA_TXCTRL(0));
1261	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1262	ew32(DCA_TXCTRL(0), dca_txctrl);
1263
1264	/* enable transmits */
1265	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1266	ew32(TXDCTL(0), txdctl);
1267
1268	/* Setup Transmit Descriptor Settings for eop descriptor */
1269	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1270
1271	/* enable Report Status bit */
1272	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1273}
1274
1275/**
1276 * igbvf_setup_srrctl - configure the receive control registers
1277 * @adapter: Board private structure
1278 **/
1279static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1280{
1281	struct e1000_hw *hw = &adapter->hw;
1282	u32 srrctl = 0;
1283
1284	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1285	            E1000_SRRCTL_BSIZEHDR_MASK |
1286	            E1000_SRRCTL_BSIZEPKT_MASK);
1287
1288	/* Enable queue drop to avoid head of line blocking */
1289	srrctl |= E1000_SRRCTL_DROP_EN;
1290
1291	/* Setup buffer sizes */
1292	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1293	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1294
1295	if (adapter->rx_buffer_len < 2048) {
1296		adapter->rx_ps_hdr_size = 0;
1297		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1298	} else {
1299		adapter->rx_ps_hdr_size = 128;
1300		srrctl |= adapter->rx_ps_hdr_size <<
1301		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1302		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1303	}
1304
1305	ew32(SRRCTL(0), srrctl);
1306}
1307
1308/**
1309 * igbvf_configure_rx - Configure Receive Unit after Reset
1310 * @adapter: board private structure
1311 *
1312 * Configure the Rx unit of the MAC after a reset.
1313 **/
1314static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1315{
1316	struct e1000_hw *hw = &adapter->hw;
1317	struct igbvf_ring *rx_ring = adapter->rx_ring;
1318	u64 rdba;
1319	u32 rdlen, rxdctl;
1320
1321	/* disable receives */
1322	rxdctl = er32(RXDCTL(0));
1323	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1324	msleep(10);
1325
1326	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1327
1328	/*
1329	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1330	 * the Base and Length of the Rx Descriptor Ring
1331	 */
1332	rdba = rx_ring->dma;
1333	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1334	ew32(RDBAH(0), (rdba >> 32));
1335	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1336	rx_ring->head = E1000_RDH(0);
1337	rx_ring->tail = E1000_RDT(0);
1338	ew32(RDH(0), 0);
1339	ew32(RDT(0), 0);
1340
1341	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1342	rxdctl &= 0xFFF00000;
1343	rxdctl |= IGBVF_RX_PTHRESH;
1344	rxdctl |= IGBVF_RX_HTHRESH << 8;
1345	rxdctl |= IGBVF_RX_WTHRESH << 16;
1346
1347	igbvf_set_rlpml(adapter);
1348
1349	/* enable receives */
1350	ew32(RXDCTL(0), rxdctl);
1351}
1352
1353/**
1354 * igbvf_set_multi - Multicast and Promiscuous mode set
1355 * @netdev: network interface device structure
1356 *
1357 * The set_multi entry point is called whenever the multicast address
1358 * list or the network interface flags are updated.  This routine is
1359 * responsible for configuring the hardware for proper multicast,
1360 * promiscuous mode, and all-multi behavior.
1361 **/
1362static void igbvf_set_multi(struct net_device *netdev)
1363{
1364	struct igbvf_adapter *adapter = netdev_priv(netdev);
1365	struct e1000_hw *hw = &adapter->hw;
1366	struct netdev_hw_addr *ha;
1367	u8  *mta_list = NULL;
1368	int i;
1369
1370	if (!netdev_mc_empty(netdev)) {
1371		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1372		if (!mta_list) {
1373			dev_err(&adapter->pdev->dev,
1374			        "failed to allocate multicast filter list\n");
1375			return;
1376		}
1377	}
1378
1379	/* prepare a packed array of only addresses. */
1380	i = 0;
1381	netdev_for_each_mc_addr(ha, netdev)
1382		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1383
1384	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1385	kfree(mta_list);
1386}
1387
1388/**
1389 * igbvf_configure - configure the hardware for Rx and Tx
1390 * @adapter: private board structure
1391 **/
1392static void igbvf_configure(struct igbvf_adapter *adapter)
1393{
1394	igbvf_set_multi(adapter->netdev);
1395
1396	igbvf_restore_vlan(adapter);
1397
1398	igbvf_configure_tx(adapter);
1399	igbvf_setup_srrctl(adapter);
1400	igbvf_configure_rx(adapter);
1401	igbvf_alloc_rx_buffers(adapter->rx_ring,
1402	                       igbvf_desc_unused(adapter->rx_ring));
1403}
1404
1405/* igbvf_reset - bring the hardware into a known good state
1406 *
1407 * This function boots the hardware and enables some settings that
1408 * require a configuration cycle of the hardware - those cannot be
1409 * set/changed during runtime. After reset the device needs to be
1410 * properly configured for Rx, Tx etc.
1411 */
1412static void igbvf_reset(struct igbvf_adapter *adapter)
1413{
1414	struct e1000_mac_info *mac = &adapter->hw.mac;
1415	struct net_device *netdev = adapter->netdev;
1416	struct e1000_hw *hw = &adapter->hw;
1417
1418	/* Allow time for pending master requests to run */
1419	if (mac->ops.reset_hw(hw))
1420		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1421
1422	mac->ops.init_hw(hw);
1423
1424	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1425		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1426		       netdev->addr_len);
1427		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1428		       netdev->addr_len);
1429	}
1430
1431	adapter->last_reset = jiffies;
1432}
1433
1434int igbvf_up(struct igbvf_adapter *adapter)
1435{
1436	struct e1000_hw *hw = &adapter->hw;
1437
1438	/* hardware has been reset, we need to reload some things */
1439	igbvf_configure(adapter);
1440
1441	clear_bit(__IGBVF_DOWN, &adapter->state);
1442
1443	napi_enable(&adapter->rx_ring->napi);
1444	if (adapter->msix_entries)
1445		igbvf_configure_msix(adapter);
1446
1447	/* Clear any pending interrupts. */
1448	er32(EICR);
1449	igbvf_irq_enable(adapter);
1450
1451	/* start the watchdog */
1452	hw->mac.get_link_status = 1;
1453	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1454
1455
1456	return 0;
1457}
1458
1459void igbvf_down(struct igbvf_adapter *adapter)
1460{
1461	struct net_device *netdev = adapter->netdev;
1462	struct e1000_hw *hw = &adapter->hw;
1463	u32 rxdctl, txdctl;
1464
1465	/*
1466	 * signal that we're down so the interrupt handler does not
1467	 * reschedule our watchdog timer
1468	 */
1469	set_bit(__IGBVF_DOWN, &adapter->state);
1470
1471	/* disable receives in the hardware */
1472	rxdctl = er32(RXDCTL(0));
1473	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1474
1475	netif_stop_queue(netdev);
1476
1477	/* disable transmits in the hardware */
1478	txdctl = er32(TXDCTL(0));
1479	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1480
1481	/* flush both disables and wait for them to finish */
1482	e1e_flush();
1483	msleep(10);
1484
1485	napi_disable(&adapter->rx_ring->napi);
1486
1487	igbvf_irq_disable(adapter);
1488
1489	del_timer_sync(&adapter->watchdog_timer);
1490
1491	netif_carrier_off(netdev);
1492
1493	/* record the stats before reset*/
1494	igbvf_update_stats(adapter);
1495
1496	adapter->link_speed = 0;
1497	adapter->link_duplex = 0;
1498
1499	igbvf_reset(adapter);
1500	igbvf_clean_tx_ring(adapter->tx_ring);
1501	igbvf_clean_rx_ring(adapter->rx_ring);
1502}
1503
1504void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1505{
1506	might_sleep();
1507	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1508		msleep(1);
1509	igbvf_down(adapter);
1510	igbvf_up(adapter);
1511	clear_bit(__IGBVF_RESETTING, &adapter->state);
1512}
1513
1514/**
1515 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1516 * @adapter: board private structure to initialize
1517 *
1518 * igbvf_sw_init initializes the Adapter private data structure.
1519 * Fields are initialized based on PCI device information and
1520 * OS network device settings (MTU size).
1521 **/
1522static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1523{
1524	struct net_device *netdev = adapter->netdev;
1525	s32 rc;
1526
1527	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1528	adapter->rx_ps_hdr_size = 0;
1529	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1530	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1531
1532	adapter->tx_int_delay = 8;
1533	adapter->tx_abs_int_delay = 32;
1534	adapter->rx_int_delay = 0;
1535	adapter->rx_abs_int_delay = 8;
1536	adapter->itr_setting = 3;
1537	adapter->itr = 20000;
1538
1539	/* Set various function pointers */
1540	adapter->ei->init_ops(&adapter->hw);
1541
1542	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1543	if (rc)
1544		return rc;
1545
1546	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1547	if (rc)
1548		return rc;
1549
1550	igbvf_set_interrupt_capability(adapter);
1551
1552	if (igbvf_alloc_queues(adapter))
1553		return -ENOMEM;
1554
1555	spin_lock_init(&adapter->tx_queue_lock);
1556
1557	/* Explicitly disable IRQ since the NIC can be in any state. */
1558	igbvf_irq_disable(adapter);
1559
1560	spin_lock_init(&adapter->stats_lock);
1561
1562	set_bit(__IGBVF_DOWN, &adapter->state);
1563	return 0;
1564}
1565
1566static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1567{
1568	struct e1000_hw *hw = &adapter->hw;
1569
1570	adapter->stats.last_gprc = er32(VFGPRC);
1571	adapter->stats.last_gorc = er32(VFGORC);
1572	adapter->stats.last_gptc = er32(VFGPTC);
1573	adapter->stats.last_gotc = er32(VFGOTC);
1574	adapter->stats.last_mprc = er32(VFMPRC);
1575	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1576	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1577	adapter->stats.last_gorlbc = er32(VFGORLBC);
1578	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1579
1580	adapter->stats.base_gprc = er32(VFGPRC);
1581	adapter->stats.base_gorc = er32(VFGORC);
1582	adapter->stats.base_gptc = er32(VFGPTC);
1583	adapter->stats.base_gotc = er32(VFGOTC);
1584	adapter->stats.base_mprc = er32(VFMPRC);
1585	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1586	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1587	adapter->stats.base_gorlbc = er32(VFGORLBC);
1588	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1589}
1590
1591/**
1592 * igbvf_open - Called when a network interface is made active
1593 * @netdev: network interface device structure
1594 *
1595 * Returns 0 on success, negative value on failure
1596 *
1597 * The open entry point is called when a network interface is made
1598 * active by the system (IFF_UP).  At this point all resources needed
1599 * for transmit and receive operations are allocated, the interrupt
1600 * handler is registered with the OS, the watchdog timer is started,
1601 * and the stack is notified that the interface is ready.
1602 **/
1603static int igbvf_open(struct net_device *netdev)
1604{
1605	struct igbvf_adapter *adapter = netdev_priv(netdev);
1606	struct e1000_hw *hw = &adapter->hw;
1607	int err;
1608
1609	/* disallow open during test */
1610	if (test_bit(__IGBVF_TESTING, &adapter->state))
1611		return -EBUSY;
1612
1613	/* allocate transmit descriptors */
1614	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1615	if (err)
1616		goto err_setup_tx;
1617
1618	/* allocate receive descriptors */
1619	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1620	if (err)
1621		goto err_setup_rx;
1622
1623	/*
1624	 * before we allocate an interrupt, we must be ready to handle it.
1625	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1626	 * as soon as we call pci_request_irq, so we have to setup our
1627	 * clean_rx handler before we do so.
1628	 */
1629	igbvf_configure(adapter);
1630
1631	err = igbvf_request_irq(adapter);
1632	if (err)
1633		goto err_req_irq;
1634
1635	/* From here on the code is the same as igbvf_up() */
1636	clear_bit(__IGBVF_DOWN, &adapter->state);
1637
1638	napi_enable(&adapter->rx_ring->napi);
1639
1640	/* clear any pending interrupts */
1641	er32(EICR);
1642
1643	igbvf_irq_enable(adapter);
1644
1645	/* start the watchdog */
1646	hw->mac.get_link_status = 1;
1647	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1648
1649	return 0;
1650
1651err_req_irq:
1652	igbvf_free_rx_resources(adapter->rx_ring);
1653err_setup_rx:
1654	igbvf_free_tx_resources(adapter->tx_ring);
1655err_setup_tx:
1656	igbvf_reset(adapter);
1657
1658	return err;
1659}
1660
1661/**
1662 * igbvf_close - Disables a network interface
1663 * @netdev: network interface device structure
1664 *
1665 * Returns 0, this is not allowed to fail
1666 *
1667 * The close entry point is called when an interface is de-activated
1668 * by the OS.  The hardware is still under the drivers control, but
1669 * needs to be disabled.  A global MAC reset is issued to stop the
1670 * hardware, and all transmit and receive resources are freed.
1671 **/
1672static int igbvf_close(struct net_device *netdev)
1673{
1674	struct igbvf_adapter *adapter = netdev_priv(netdev);
1675
1676	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1677	igbvf_down(adapter);
1678
1679	igbvf_free_irq(adapter);
1680
1681	igbvf_free_tx_resources(adapter->tx_ring);
1682	igbvf_free_rx_resources(adapter->rx_ring);
1683
1684	return 0;
1685}
1686/**
1687 * igbvf_set_mac - Change the Ethernet Address of the NIC
1688 * @netdev: network interface device structure
1689 * @p: pointer to an address structure
1690 *
1691 * Returns 0 on success, negative on failure
1692 **/
1693static int igbvf_set_mac(struct net_device *netdev, void *p)
1694{
1695	struct igbvf_adapter *adapter = netdev_priv(netdev);
1696	struct e1000_hw *hw = &adapter->hw;
1697	struct sockaddr *addr = p;
1698
1699	if (!is_valid_ether_addr(addr->sa_data))
1700		return -EADDRNOTAVAIL;
1701
1702	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1703
1704	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1705
1706	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1707		return -EADDRNOTAVAIL;
1708
1709	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1710
1711	return 0;
1712}
1713
1714#define UPDATE_VF_COUNTER(reg, name)                                    \
1715	{                                                               \
1716		u32 current_counter = er32(reg);                        \
1717		if (current_counter < adapter->stats.last_##name)       \
1718			adapter->stats.name += 0x100000000LL;           \
1719		adapter->stats.last_##name = current_counter;           \
1720		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1721		adapter->stats.name |= current_counter;                 \
1722	}
1723
1724/**
1725 * igbvf_update_stats - Update the board statistics counters
1726 * @adapter: board private structure
1727**/
1728void igbvf_update_stats(struct igbvf_adapter *adapter)
1729{
1730	struct e1000_hw *hw = &adapter->hw;
1731	struct pci_dev *pdev = adapter->pdev;
1732
1733	/*
1734	 * Prevent stats update while adapter is being reset, link is down
1735	 * or if the pci connection is down.
1736	 */
1737	if (adapter->link_speed == 0)
1738		return;
1739
1740	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1741		return;
1742
1743	if (pci_channel_offline(pdev))
1744		return;
1745
1746	UPDATE_VF_COUNTER(VFGPRC, gprc);
1747	UPDATE_VF_COUNTER(VFGORC, gorc);
1748	UPDATE_VF_COUNTER(VFGPTC, gptc);
1749	UPDATE_VF_COUNTER(VFGOTC, gotc);
1750	UPDATE_VF_COUNTER(VFMPRC, mprc);
1751	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1752	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1753	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1754	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1755
1756	/* Fill out the OS statistics structure */
1757	adapter->net_stats.multicast = adapter->stats.mprc;
1758}
1759
1760static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1761{
1762	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1763	         adapter->link_speed,
1764	         ((adapter->link_duplex == FULL_DUPLEX) ?
1765	          "Full Duplex" : "Half Duplex"));
1766}
1767
1768static bool igbvf_has_link(struct igbvf_adapter *adapter)
1769{
1770	struct e1000_hw *hw = &adapter->hw;
1771	s32 ret_val = E1000_SUCCESS;
1772	bool link_active;
1773
1774	/* If interface is down, stay link down */
1775	if (test_bit(__IGBVF_DOWN, &adapter->state))
1776		return false;
1777
1778	ret_val = hw->mac.ops.check_for_link(hw);
1779	link_active = !hw->mac.get_link_status;
1780
1781	/* if check for link returns error we will need to reset */
1782	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1783		schedule_work(&adapter->reset_task);
1784
1785	return link_active;
1786}
1787
1788/**
1789 * igbvf_watchdog - Timer Call-back
1790 * @data: pointer to adapter cast into an unsigned long
1791 **/
1792static void igbvf_watchdog(unsigned long data)
1793{
1794	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1795
1796	/* Do the rest outside of interrupt context */
1797	schedule_work(&adapter->watchdog_task);
1798}
1799
1800static void igbvf_watchdog_task(struct work_struct *work)
1801{
1802	struct igbvf_adapter *adapter = container_of(work,
1803	                                             struct igbvf_adapter,
1804	                                             watchdog_task);
1805	struct net_device *netdev = adapter->netdev;
1806	struct e1000_mac_info *mac = &adapter->hw.mac;
1807	struct igbvf_ring *tx_ring = adapter->tx_ring;
1808	struct e1000_hw *hw = &adapter->hw;
1809	u32 link;
1810	int tx_pending = 0;
1811
1812	link = igbvf_has_link(adapter);
1813
1814	if (link) {
1815		if (!netif_carrier_ok(netdev)) {
1816			mac->ops.get_link_up_info(&adapter->hw,
1817			                          &adapter->link_speed,
1818			                          &

Large files files are truncated, but you can click here to view the full file